Full Professor – Dipartimento di Informatica, Università di Pisa
Research
Post-Doc
(Dic 2024-…) Deepan Anbarasan (ContinualIST)
(Nov 2024-…) Riccardo Massidda
(Nov 2024-…) Geremia Pompei (ContinualIST)
(Aug 2024-…) Alessio Gravina
(Jan 2024 – …) Valerio De Caro
(Nov 2023-Nov 2024) Francesco Landolfi
(Apr 2023- Apr 2024) Andrea Cossu
(Dec 2022- Jan 2025) Andrea Ceni
(Nov 2022- Jan 2023) Andrea Valenti
(Feb 2021-Lug 2022) Daniele Castellana
(Jun 2021-Feb 2022) Elisa Ferrari
(Feb 2021-Jan 2022) Antonio Carta
Ph.D. students
Completed
Trustworthy AI In Practice: Modeling, Trade-Offs, and Applications (2021-2024) Wesam Nitham Alabbasi, Computer Science Ph.D., Università di Pisa (co-supervision)
An Optimization Perspective on Deep Neural Networks (2019-2024)Dario Balboni, Data Science PhD, Scuola Normale Superiore
Memorization in Recurrent Neural Networks (2017-2020), Antonio Carta, Ph.D. in Computer Science, Università di Pisa
A Tensor Framework for Learning in Structured Domains (2017-2020), Daniele Castellana, Ph.D. in Computer Science, Università di Pisa
Towards Real-World Data Streams for Deep Continual Learning(2019-2022), Andrea Cossu, Data Science PhD, Scuola Normale Superiore
Deep Learning Safety under Non-Stationarity Assumptions (2017-2020), Francesco Crecchi, Ph.D. in Computer Science, Università di Pisa
Learning in Pervasive Environments (2020-2023), Valerio De Caro, Ph.D. in Computer Science, Università di Pisa
Bayesian Deep Learning for Graphs(2018-2021), Federico Errica, Ph.D. in Computer Science, Università di Pisa
Convergent transcriptomic and neuroimaging signature of Autism Spectrum Disorder (2017-2020), Elisa Ferrari, Data Science PhD, Scuola Normale Superiore
Information propagation dynamics in Deep Graph Networks (2020-2023), Alessio Gravina, Ph.D. in Computer Science, Università di Pisa
Data-driven Methods for Data Center Operations Support (2019-2022), Giacomo Lanciano, Data Science PhD, Scuola Normale Superiore
Combinatorial Methods for Graph Pooling(2019-2023), Francesco Landolfi, Ph.D. in Computer Science, Università di Pisa
Methodological Advancements for Causal Abstraction Learning (2021-2024)Riccardo Massidda, Computer Science Ph.D., Università di Pisa
Reasoning Algorithmically in Graph Neural Networks (2020-2023), Danilo Numeroso, Ph.D. in Computer Science, Università di Pisa
Deep Learning on Graphs with Applications to the Life Sciences (2017-2020), Marco Podda, Ph.D. in Computer Science, Università di Pisa
Continual Incremental Language Learning for Neural Machine Translation (2020-2023), Michele Resta, Ph.D. in Computer Science, Università di Pisa
Deep Learning for Graphs in Context-aware Recommendation(2019-2023), Asma Sattar, Ph.D. in Computer Science, Università di Pisa
Learning Representations for Deep Neural Reasoners (2019-2022), Andrea Valenti, Ph. D. in Computer Science, Università di Pisa
In progress
(2024-2027) Filippo Biondi, National Ph.D. in AI, Università di Pisa (co-supervision)
(2022-2025) Alessandro Cabras, National Ph.D. in AI, Università di Pisa (co-supervision)
(2022-2025), Eric Nuertey Coleman, Computer Science Ph.D., Università di Pisa (co-supervision)
(2023-2026) Niko Dalla Noce, Computer Science Ph.D.t, Università di Pisa
(2024-2027) Malio Li, Computer Science Ph.D., Università di Pisa
(2024-2027) Matteo Ninniri, Computer Science Ph.D., Università di Pisa
(2024-2027) Luca Miglior, Computer Science Ph.D., Università di Pisa
(2022-2025) Elia Piccoli, Computer Science Ph.D., Università di Pisa
(2021-2024) Rudy Semola, Computer Science Ph.D., Università di Pisa (co-supervision)
(2022-2025) Lorenzo Simone, Computer Science Ph.D., Università di Pisa
(2024-2027) Matteo Tolloso, National Ph.D. in AI, Università di Pisa
(2023-2026) Alessandro Trenta, National Ph.D. in AI, Università di Pisa
(2021-2024) Edoardo Urettini, National Ph.D. in AI, Università di Pisa
Research scholarships and associates
(Nov 2024 – … ) Rudy Semola: Automated Continual Learning for Space Applications
(Feb 2024-Oct 2024) Matteo Ninniri: Diffusion models and generative deep learning for graphs
(Jan 2024-Aug 2024) Filippo Michelis :Causal learning for timeseries