Skip Headers
Oracle® Data Guard Concepts and Administration
10g Release 2 (10.2)

Part Number B14239-04
Go to Documentation Home
Home
Go to Book List
Book List
Go to Table of Contents
Contents
Go to Index
Index
Go to Master Index
Master Index
Go to Feedback page
Contact Us

Go to previous page
Previous
Go to next page
Next
View PDF

4 Creating a Logical Standby Database

This chapter steps you through the process of creating a logical standby database. It includes the following main topics:

4.1 Prerequisite Conditions for Creating a Logical Standby Database

Before you create a logical standby database, you must first ensure the primary database is properly configured. Table 4-1 provides a checklist of the tasks that you perform on the primary database to prepare for logical standby database creation. There is also a reference to the section that describes the task in more detail.

4.1.1 Determine Support for Data Types and Storage Attributes for Tables

Before setting up a logical standby database, ensure the logical standby database can maintain the data types and tables in your primary database. See Appendix C for a complete list of data type and storage type considerations.

4.1.2 Ensure Table Rows in the Primary Database Can Be Uniquely Identified

The physical organization in a logical standby database is different from that of the primary database, even though the logical standby database is created from a backup copy of the primary database. Thus, ROWIDs contained in the redo records generated by the primary database cannot be used to identify the corresponding row in the logical standby database.

Oracle uses primary-key or unique-constraint/index supplemental logging to logically identify a modified row in the logical standby database. When database-wide primary-key and unique-constraint/index supplemental logging is enabled, each UPDATE statement also writes the column values necessary in the redo log to uniquely identify the modified row in the logical standby database.

  • If a table has a primary key defined, then the primary key is logged along with the modified columns as part of the UPDATE statement to identify the modified row.

  • In the absence of a primary key, the shortest nonnull unique-constraint/index is logged along with the modified columns as part of the UPDATE statement to identify the modified row.

  • In the absence of both a primary key and a nonnull unique constraint/index, all columns of bounded size are logged as part of the UPDATE statement to identify the modified row. In other words, all columns except those with the following types are logged: LONG, LOB, LONG RAW, object type, and collections.

Oracle recommends that you add a primary key or a nonnull unique index to tables in the primary database, whenever possible, to ensure that SQL Apply can efficiently apply redo data updates to the logical standby database.

Perform the following steps to ensure SQL Apply can uniquely identify rows of each table being replicated in the logical standby database.


Step 1 Find tables without unique logical identifier in the primary database.

Query the DBA_LOGSTDBY_NOT_UNIQUE view to display a list of tables that SQL Apply may not be able to uniquely identify. For example:

SQL> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_NOT_UNIQUE
  2> WHERE (OWNER, TABLE_NAME) NOT IN 
  3> (SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED) 
  4> AND BAD_COLLUMN = 'Y'

Step 2 Add a disabled primary-key RELY constraint.

If your application ensures the rows in a table are unique, you can create a disabled primary key RELY constraint on the table. This avoids the overhead of maintaining a primary key on the primary database.

To create a disabled RELY constraint on a primary database table, use the ALTER TABLE statement with a RELY DISABLE clause. The following example creates a disabled RELY constraint on a table named mytab, for which rows can be uniquely identified using the id and name columns:

SQL> ALTER TABLE mytab ADD PRIMARY KEY (id, name) RELY DISABLE;

When you specify the RELY constraint, the system will assume that rows are unique. Because you are telling the system to rely on the information, but are not validating it on every modification done to the table, you must be careful to select columns for the disabled RELY constraint that will uniquely identify each row in the table. If such uniqueness is not present, then SQL Apply will not correctly maintain the table.

To improve the performance of SQL Apply, add a unique-constraint/index to the columns to identify the row on the logical standby database. Failure to do so results in full table scans during UPDATE or DELETE statements carried out on the table by SQL Apply.

See Also:

4.2 Step-by-Step Instructions for Creating a Logical Standby Database

This section describes the tasks you perform to create a logical standby database.

Table 4-2 provides a checklist of the tasks that you perform to create a logical standby database and specifies on which database you perform each task. There is also a reference to the section that describes the task in more detail.

4.2.1 Create a Physical Standby Database

You create a logical standby database by first creating a physical standby database and then transitioning it to a logical standby database. Follow the instructions in Chapter 3, "Creating a Physical Standby Database" to create a physical standby database.

4.2.2 Stop Redo Apply on the Physical Standby Database

You can run Redo Apply on the new physical standby database for any length of time before converting it to a logical standby database. However, before converting to a logical standby database, stop Redo Apply on the physical standby database. Stopping Redo Apply is necessary to avoid applying changes past the redo that contains the LogMiner dictionary (described in Section 4.2.3.2, "Build a Dictionary in the Redo Data").

To stop Redo Apply, issue the following statement on the physical standby database. If the database is a RAC database comprised of multiple instances, then you must first stop all RAC instances except one before issuing this statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

4.2.3 Prepare the Primary Database to Support a Logical Standby Database

This section contains the following topics:

4.2.3.1 Prepare the Primary Database for Role Transitions

In Section 3.1.4, "Set Primary Database Initialization Parameters", you set up several standby role initialization parameters to take effect when the primary database is transitioned to the physical standby role. If you plan to transition the primary database to the logical standby role, then you must also include a LOG_ARCHIVE_DEST_3 destination on the primary database, as shown in Example 4-1, so that no parameters need to change after a role transition. This parameter only takes effect when the primary database is transitioned to the standby role.

Example 4-1 Primary Database: Logical Standby Role Initialization Parameters

LOG_ARCHIVE_DEST_3=
 'LOCATION=/arch2/chicago/
  VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) 
  DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

To dynamically set the LOG_ARCHIVE_DEST_3 parameter, use the SQL ALTER SYSTEM SET statement and include the SCOPE=BOTH clause so that the change takes effect immediately and persists after the database is shut down and started up again.

The following table describes the archival processing defined by the initialization parameters shown in Example 4-1.


When the Chicago Database Is Running in the Primary Role When the Chicago Database Is Running in the Logical Standby Role
LOG_ARCHIVE_DEST_3 Is ignored; LOG_ARCHIVE_DEST_3 is valid only when chicago is running in the standby role. Archives redo data received from the primary database to the local archived redo log files in /arch2/chicago/.

4.2.3.2 Build a Dictionary in the Redo Data

A LogMiner dictionary must be built into the redo data so that the LogMiner component of SQL Apply can properly interpret changes it sees in the redo. As part of building LogMiner Multiversioned Data Dictionary, supplemental logging is automatically set up to log primary key and unique-constraint/index columns. The supplemental logging information ensures each update contains enough information to logically identify each row that is modified by the statement.

To build the LogMiner dictionary, issue the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

The DBMS_LOGSTDBY.BUILD procedure waits for all existing transactions to complete. Long-running transactions executed on the primary database will affect the timeliness of this command.

The DBMS_LOGSTDBY.BUILD procedure uses Flashback Query to obtain a consistent snapshot of the data dictionary that is then logged in the redo stream. Oracle recommends setting the UNDO_RETENTION initialization parameter to 3600 on both the primary and logical standby databases.

See Also:

The DBMS_LOGSTDBY.BUILD PL/SQL package in Oracle Database PL/SQL Packages and Types Reference and the UNDO_RETENTION initialization parameter in Oracle Database Reference

4.2.4 Transition to a Logical Standby Database

This section describes how to prepare the physical standby database to transition to a logical standby database. It contains the following topics:

4.2.4.1 Convert to a Logical Standby Database

The redo logs contain the information necessary to convert your physical standby database to a logical standby database. To continue applying redo data to the physical standby database until it is ready to convert to a logical standby database, issue the following SQL statement:

SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY db_name;

For db_name, specify a database name to identify the new logical standby database. If you are using a server parameter file (spfile) at the time you issue this statement, then the database will update the file with appropriate information about the new logical standby database. If you are not using an spfile, then the database issues a message reminding you to set the name of the DB_NAME parameter after shutting down the database.

The statement waits, applying redo data until the LogMiner dictionary is found in the log files. This may take several minutes, depending on how long it takes redo generated in Section 4.2.3.2, "Build a Dictionary in the Redo Data" to be transmitted to the standby database, and how much redo data need to be applied. If a dictionary build is not successfully performed on the primary database, this command will never complete. You can cancel the SQL statement by issuing the ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL statement from another SQL session.

4.2.4.2 Create a New Password File

Because the conversion process changes the database name (that was originally set with the DB_NAME initialization parameter) for the logical standby database, you must re-create the password file. See Oracle Database Administrator's Guide for more information on creating a secure authentication scheme.

4.2.4.3 Adjust Initialization Parameters for the Logical Standby Database

On the logical standby database, shutdown the instance and issue the STARTUP MOUNT statement to start and mount the database. Do not open the database; it should remain closed to user access until later in the creation process. For example:

SQL> SHUTDOWN;
SQL> STARTUP MOUNT;

You need to modify the LOG_ARCHIVE_DEST_n parameters because, unlike physical standby databases, logical standby databases are open databases that generate redo data and have multiple log files (online redo log files, archived redo log files, and standby redo log files). It is good practice to specify separate local destinations for:

  • Archived redo log files that store redo data generated by the logical standby database. In Example 4-2, this is configured as the LOG_ARCHIVE_DEST_1=LOCATION=/arch1/boston destination.

  • Archived redo log files that store redo data received from the primary database. In Example 4-2, this is configured as the LOG_ARCHIVE_DEST_3=LOCATION=/arch2/boston destination.

Example 4-2 shows the initialization parameter changes that were modified for the logical standby database. The parameters shown are valid for the Boston logical standby database when it is running in either the primary or standby database role.

Example 4-2 Modifying Initialization Parameters for a Logical Standby Database

LOG_ARCHIVE_DEST_1=
  'LOCATION=/arch1/boston/
   VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES)
   DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_2=
  'SERVICE=chicago LGWR ASYNC
   VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
   DB_UNIQUE_NAME=chicago'
LOG_ARCHIVE_DEST_3=
  'LOCATION=/arch2/boston/
   VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE)
   DB_UNIQUE_NAME=boston'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_3=ENABLE

The following table describes the archival processing defined by the initialization parameters shown in Example 4-2.


When the Boston Database Is Running in the Primary Role When the Boston Database Is Running in the Logical Standby Role
LOG_ARCHIVE_DEST_1 Directs archival of redo data generated by the primary database from the local online redo log files to the local archived redo log files in /arch1/boston/. Directs archival of redo data generated by the logical standby database from the local online redo log files to the local archived redo log files in /arch1/boston/.
LOG_ARCHIVE_DEST_2 Directs transmission of redo data to the remote logical standby database chicago. Is ignored; LOG_ARCHIVE_DEST_2 is valid only when boston is running in the primary role.
LOG_ARCHIVE_DEST_3 Is ignored; LOG_ARCHIVE_DEST_3 is valid only when boston is running in the standby role. Directs archival of redo data received from the primary database to the local archived redo log files in /arch2/boston/.

Note:

The DB_FILE_NAME_CONVERT initialization parameter is not honored once a physical standby database is converted to a logical standby database. If necessary, you should register a skip handler and provide SQL Apply with a replacement DDL string to execute by converting the path names of the primary database datafiles to the standby datafile path names. See the DBMS_LOGSTDBY package in Oracle Database PL/SQL Packages and Types Reference. for information about the SKIP procedure.

4.2.5 Open the Logical Standby Database

The new database is logically the same as your primary database, but it is transactionally inconsistent with the primary database, and thus incompatible for recovery operations.

To open the new logical standby database, you must open it with the RESETLOGS option by issuing the following statement:

SQL> ALTER DATABASE OPEN RESETLOGS;

Because this is the first time the database is being opened, the database's global name is adjusted automatically to match the new DB_NAME initialization parameter.

Issue the following statement to begin applying redo data to the logical standby database. For example:

SQL>  ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

4.2.6 Verify the Logical Standby Database Is Performing Properly

See the following sections for help verifying that the logical standby database is performing properly:

4.3 Post-Creation Steps

At this point, the logical standby database is running and can provide the maximum performance level of data protection. The following list describes additional preparations you can take on the logical standby database: