I try to regularly update this page, but you can also look at my publications on Google Scholar.
2024
-
Cossu, A., Carta, A., Passaro, L., Lomonaco, V., Tuytelaars, T., & Bacciu, D. (2024). Continual Pre-Training Mitigates Forgetting in Language and Vision. Neural Networks, 179, 106492. https://doi.org/10.1016/j.neunet.2024.106492
-
Carta, A., Cossu, A., Lomonaco, V., Bacciu, D., & van de Weijer, J. (2024). Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning. Neurocomputing, 598, 127935. https://doi.org/10.1016/j.neucom.2024.127935
-
Marinelli, A. R., Carta, A., & Passaro, L. C. (2024). Updating Knowledge in Large Language Models: An Empirical Evaluation. 2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), 1–8. https://doi.org/10.1109/EAIS58494.2024.10570019
2023
-
Hemati, H., Cossu, A., Carta, A., Hurtado, J., Pellegrini, L., Bacciu, D., Lomonaco, V., & Borth, D. (2023). Class-Incremental Learning with Repetition. Proceedings of The 2nd Conference on Lifelong Learning Agents, 437–455.
-
De Caro, V., Danzinger, H., Gallicchio, C., Könczöl, C., Lomonaco, V., Marmpena, M., Politi, S., Veledar, O., & Bacciu, D. (2023, June). AI-Toolkit: A Microservices Architecture for Low-Code Decentralized Machine Intelligence. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023): 1st Workshop on Ambient AI. https://doi.org/10.1109/ICASSPW59220.2023.10193222
-
Carta, A., Cossu, A., Lomonaco, V., Bacciu, D., & van de Weijer, J. (2023). Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning. arXiv. https://doi.org/10.48550/arXiv.2303.15888
-
Soutif-Cormerais, A., Carta, A., Cossu, A., Hurtado, J., Lomonaco, V., Van de Weijer, J., & Hemati, H. (2023). A Comprehensive Empirical Evaluation on Online Continual Learning. Proceedings of the IEEE/CVF International Conference on Computer Vision, 3518–3528.
-
Carta, A., Pellegrini, L., Cossu, A., Hemati, H., & Lomonaco, V. (2023). Avalanche: A PyTorch Library for Deep Continual Learning. Journal of Machine Learning Research, 24(363), 1–6.
-
Hemati, H., Cossu, A., Carta, A., Hurtado, J., Pellegrini, L., Bacciu, D., Lomonaco, V., & Borth, D. (2023). Class-Incremental Learning with Repetition. arXiv. https://doi.org/10.48550/arXiv.2301.11396
-
Cetin, E., Carta, A., & Celiktutan, O. (2023). A Simple Recipe to Meta-Learn Forward and Backward Transfer. Proceedings of the IEEE/CVF International Conference on Computer Vision, 18732–18742.
-
Bacciu, D., Carta, A., Gallicchio, C., & Schmittner, C. (2023). Safety and Robustness for Deep Neural Networks: An Automotive Use Case. In J. Guiochet, S. Tonetta, E. Schoitsch, M. Roy, & F. Bitsch (Eds.), Computer Safety, Reliability, and Security. SAFECOMP 2023 Workshops (pp. 95–107). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-40953-0_9
2022
-
Sangermano, M., Carta, A., Cossu, A., & Bacciu, D. (2022). Sample Condensation in Online Continual Learning. 2022 International Joint Conference on Neural Networks (IJCNN), 01–08. https://doi.org/10.1109/IJCNN55064.2022.9892299
-
Carta, A., Carfì, G., Caro, V. D., & Gallicchio, C. (2022, July). Efficient Anomaly Detection on Temporal Data via Echo State Networks and Dynamic Thresholding. Proceedings of the 1st International Workshop on Computational Intelligence for Process Mining (CI4PM) and the 1st International Workshop on Pervasive Artificial Intelligence (PAI), Co-Located with the IEEE World Congress on Computational Intelligence (WCCI), , 18–23 July 2022.
-
Cossu, A., Tuytelaars, T., Carta, A., Passaro, L., Lomonaco, V., & Bacciu, D. (2022). Continual Pre-Training Mitigates Forgetting in Language and Vision. arXiv. https://doi.org/10.48550/arXiv.2205.09357
-
De Caro, V., Bano, S., Machumilane, A., Gotta, A., Cassarà, P., Carta, A., Semola, R., Sardianos, C., Chronis, C., Varlamis, I., Tserpes, K., Lomonaco, V., Gallicchio, C., & Bacciu, D. (2022). AI-as-a-Service Toolkit for Human-Centered Intelligence in Autonomous Driving. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), 91–93. https://doi.org/10.1109/PerComWorkshops53856.2022.9767501
-
Rosasco, A., Carta, A., Cossu, A., Lomonaco, V., & Bacciu, D. (2022). Distilled Replay: Overcoming Forgetting Through Synthetic Samples. In F. Cuzzolin, K. Cannons, & V. Lomonaco (Eds.), Continual Semi-Supervised Learning (Vol. 13418, pp. 104–117). Springer International Publishing. https://doi.org/10.1007/978-3-031-17587-9_8
-
Merlin, G., Lomonaco, V., Cossu, A., Carta, A., & Bacciu, D. (2022). Practical Recommendations for Replay-Based Continual Learning Methods. In P. L. Mazzeo, E. Frontoni, S. Sclaroff, & C. Distante (Eds.), Image Analysis and Processing. ICIAP 2022 Workshops (Issue arXiv:2203.10317, pp. 548–559). Springer International Publishing. https://doi.org/10.1007/978-3-031-13324-4_47
-
Lucchesi, N., Carta, A., Lomonaco, V., & Bacciu, D. (2022). Avalanche RL: A Continual Reinforcement Learning Library. In S. Sclaroff, C. Distante, M. Leo, G. M. Farinella, & F. Tombari (Eds.), Image Analysis and Processing – ICIAP 2022 (pp. 524–535). Springer International Publishing. https://doi.org/10.1007/978-3-031-06427-2_44
-
Carta, A., Cossu, A., Lomonaco, V., & Bacciu, D. (2022). Ex-Model: Continual Learning From a Stream of Trained Models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3790–3799.
-
Cossu, A., Graffieti, G., Pellegrini, L., Maltoni, D., Bacciu, D., Carta, A., & Lomonaco, V. (2022). Is Class-Incremental Enough for Continual Learning? Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.829842
-
Carta, A., Cossu, A., Errica, F., & Bacciu, D. (2022). Catastrophic Forgetting in Deep Graph Networks: A Graph Classification Benchmark. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.824655
2021
-
Bacciu, D., Carta, A., Sarli, D. D., Gallicchio, C., Lomonaco, V., & Petroni, S. (2021, December). Towards Functional Safety Compliance of Recurrent Neural Networks. Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI, CAIP 2021, 20-24 November 2021, Bologna, Italy.
-
Bacciu, D., Akarmazyan, S., Armengaud, E., Bacco, M., Bravos, G., Calandra, C., Carlini, E., Carta, A., Cassarà, P., Coppola, M., Davalas, C., Dazzi, P., Degennaro, M. C., Di Sarli, D., Dobaj, J., Gallicchio, C., Girbal, S., Gotta, A., Groppo, R., … Veledar, O. (2021). TEACHING - Trustworthy Autonomous Cyber-Physical Applications through Human-Centred Intelligence. 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS), 1–6. https://doi.org/10.1109/COINS51742.2021.9524099
-
Rosasco, A., Carta, A., Cossu, A., Lomonaco, V., & Bacciu, D. (2021). Distilled Replay: Overcoming Forgetting through Synthetic Samples. arXiv:2103.15851 [Cs].
-
Carta, A., Cossu, A., Errica, F., & Bacciu, D. (2021). Catastrophic Forgetting in Deep Graph Networks: An Introductory Benchmark for Graph Classification. arXiv:2103.11750 [Cs].
-
Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes, T. L., De Lange, M., Masana, M., Pomponi, J., van de Ven, G. M., Mundt, M., She, Q., Cooper, K., Forest, J., Belouadah, E., Calderara, S., Parisi, G. I., Cuzzolin, F., Tolias, A. S., … Maltoni, D. (2021). Avalanche: An End-to-End Library for Continual Learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3600–3610.
-
Cossu, A., Bacciu, D., Carta, A., Gallicchio, C., & Lomonaco, V. (2021). Continual Learning with Echo State Networks. ESANN 2021 Proceedings, 275–280. https://doi.org/10.14428/esann/2021.ES2021-80
-
Cossu, A., Carta, A., Lomonaco, V., & Bacciu, D. (2021). Continual Learning for Recurrent Neural Networks: An Empirical Evaluation. Neural Networks, 143, 607–627. https://doi.org/10.1016/j.neunet.2021.07.021
-
Carta, A., Sperduti, A., & Bacciu, D. (2021). Encoding-Based Memory for Recurrent Neural Networks. Neurocomputing. https://doi.org/10.1016/j.neucom.2021.04.051
2020
-
Carta, A., Sperduti, A., & Bacciu, D. (2020, June). Incremental Training of a Recurrent Neural Network Exploiting a Multi-Scale Dynamic Memory. ECML.
-
Carta, A., & Bacciu, D. (2020). Learning Style-Aware Symbolic Music Representations by Adversarial Autoencoders. ECAI, 8.
-
Carta, A., Sperduti, A., & Bacciu, D. (2020). Short-Term Memory Optimization in Recurrent Neural Networks by Autoencoder-based Initialization. NeurIPS 2020 Workshop “Beyond Backpropagation: Novel Ideas for Training Neural Architectures.”
-
Cossu, A., Carta, A., & Bacciu, D. (2020). Continual Learning with Gated Incremental Memories for Sequential Data Processing. 2020 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN48605.2020.9207550
2019
-
Carta, A., & Bacciu, D. (2019). Sequential Sentence Embeddings for Semantic Similarity. SSCI.
-
Bacciu, D., Carta, A., & Sperduti, A. (2019). Linear Memory Networks. ICANN.
2018
-
Florio, A. D., Pantaleo, F., & Carta, A. (2018). Convolutional Neural Network for Track Seed Filtering at the \p̌hantom\CMS\ȟantom\\ High-Level Trigger. Journal of Physics: Conference Series, 1085, 42040–42040. https://doi.org/10.1088/1742-6596/1085/4/042040
2017
-
Bacciu, D., Carta, A., Gnesi, S., & Semini, L. (2017). An Experience in Using Machine Learning for Short-Term Predictions in Smart Transportation Systems. Journal of Logical and Algebraic Methods in Programming, 87, 52–66. https://doi.org/10.1016/j.jlamp.2016.11.002
-
Attardi, G., Carta, A., Errica, F., Madotto, A., & Pannitto, L. (2017). FA3L at SemEval-2017 Task 3: A ThRee Embeddings Recurrent Neural Network for Question Answering. In S. Bethard, M. Carpuat, M. Apidianaki, S. M. Mohammad, D. M. Cer, & D. Jurgens (Eds.), Proceedings of the 11th International Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada, August 3-4, 2017 (pp. 299–304). Association for Computational Linguistics. https://doi.org/10.18653/v1/S17-2048
2016
-
Bacciu, D., Carta, A., Gnesi, S., & Semini, L. (2016). Adopting a Machine Learning Approach in the Design of Smart Transportation Systems. \ERCIM\ News, 2016(105).