
Advances in data-aware
compressed-indexing schemes
for integer and string keys

Giorgio Vinciguerra

A Tutorial Workshop on ML for Systems and Systems for ML @ BTW 2023

Based on papers with A. Boffa, P. Ferragina, G. Manzini, F. Tosoni

A compressed indexing problem

1. Store a sorted set 𝐴 of 𝑛 elements in compressed form
2. Implement random access
3. Implement 𝑟𝑎𝑛𝑘 𝑥 = number of elements in 𝐴 which are ≤ 𝑥

𝑟𝑎𝑛𝑘 12 = 3

Compressed3 6 10 15 18 20
1 2 3 4 5 6

2

In
te
ge
rs Strings

1 2 3 4 5 6

a a
n

t
h
a
t

t
h
e

t
h
i
s

t
h
o
s
e

𝑟𝑎𝑛𝑘 these = 4

Co
m

pr
es

se
d

Harder than just indexing
or just compressing

IP routing, succinct data structures,
inverted indexes, …

Query autocompletion, k-mer counting,
range searches, …

LA-vector: A learned approach for integers

Compressed indexing via piecewise linear approximations (PLAs)

3

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

position

va
lu
e

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e 3 1 0 0 ‐2 ‐3 3 0 ‐2 ‐2

1 2 3 4 5 6 7 8 9 10
𝐶

⌈log(2𝜀 + 1)⌉ bit

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e

Step 1: map input to (pos, value) Step 2: build a PLA with max error ε Step 3: store segments + corrections

Crucial ingredient: algorithm to learn a
PLA that minimises the space by using
different ε for different segments

ACM Trans. Algorithms 2022

What about other sources of compressibility?

4

2 3 5 6 13 14 16 17 20 24

2 1 2 1 7 1 2 1 3 4 …

Difference between
adjacent values

…

Gap string

𝐴

Store just a “back reference”

LA-vector would store segments and corrections for the repeated sections!

∆ = 14 − 3

Block-ε tree: exploiting linearity and repetitiveness

5

1 1 2 2 4 3 2 1 1 1 1 2 2 4 3 2 1 1 4 1 2 2 2 4Gap string

1 2 4 6 10 13 15 16 17 18 19 21 23 27 30 32 33 34 38 39 41 43 45 49𝐴

IEEE Access 2022

• Split 𝐴 and gap string into equal-sized blocks

Block-ε tree: exploiting linearity and repetitiveness

6

1 1 2 2 4 3 2 1 1 1 1 2 2 4 3 2 1 1 4 1 2 2 2 4Gap string

1 1 2 2 4 3 2 1 1 1 1 2 4 1 2 2 2 4

...

1 2 4 6 10 13 15 16 17 18 19 21 23 27 30 32 33 34 38 39 41 43 45 49𝐴

• Split 𝐴 and gap string into equal-sized blocks
• Replace repeated blocks with a pointer to the first occurrence
• Split remaining blocks into two and repeat recursively
• For each block at any level, check if a learned model compresses better

IEEE Access 2022

∆ = 23 − 6

∆ = 18 − 1

∆ = 43 − 4

Block-ε tree: exploiting linearity and repetitiveness

7

1 1 2 2 4 3 2 1 1 1 1 2 2 4 3 2 1 1 4 1 2 2 2 4Gap string

1 1 2 2 4 3 2 1 1 1 1 2 4 1 2 2 2 4

...

1 2 4 6 10 13 15 16 17 18 19 21 23 27 30 32 33 34 38 39 41 43 45 49𝐴

Pr
un

e

IEEE Access 2022

• Split 𝐴 and gap string into equal-sized blocks
• Replace repeated blocks with a pointer to the first occurrence
• Split remaining blocks into two and repeat recursively
• For each block at any level, check if a learned model compresses better

• If so, replace the block and the subtree with the model

Block-ε tree: exploiting linearity and repetitiveness

8

1 1 2 2 4 3Gap string

2 1 1 4 1 2

1 2 4 6 10 13 15 16 17 18 19 21 23 27 30 32 33 34 38 39 41 43 45 49𝐴

IEEE Access 2022

• Split 𝐴 and gap string into equal-sized blocks
• Replace repeated blocks with a pointer to the first occurrence
• Split remaining blocks into two and repeat recursively
• For each block at any level, check if a learned model compresses better

• If so, replace the block and the subtree with the model

Experiments
On 11 standard datasets, up to 490M integers
• No clear winner in space between LA-vector (linearity-aware) and the block tree (repetition-aware)
• Block-ε tree achieves the best or the second-best space in the majority of datasets
• Block-ε tree has 5x slower random access and 4x slower rank than LA-vector

On datasets with explicit linearities and repetitions

9

IEEE Access 2022

Block-ε tree exploits
both repetitions and

linearities

Compressed-indexing
string keys

Compressed indexing of strings

• Tries are the classic solution
• Many improvements since the ’60s
• Compact unary paths [J. ACM 68]
• Adaptive node layouts [ICDE 13]
• Cache-aware layouts [PODS 08]
• Word packing [CPM 17]
• Succinct topology representation [SIGMOD 18]
• …

• No practical solution is good on all different kinds of string data
(URLs, k-mers, dictionary terms, …) à no data-awareness

11

CoCo-trie: Compressed Collapsed trie

12

SPIRE 22

Key tool: collapsing subtries

1. Store the alphabet of the branching strings: $, a, e, h, i, o, s, t , 𝜎 = 8 symbols in total
2. Map strings to ints in radix 𝜎, e.g. hat → h𝜎! + a𝜎" + t𝜎# = 3 ⋅ 8! + 1 ⋅ 8" + 7 ⋅ 8# = 207
3. Keep the first string explicit (hat = 207)
4. Transform the rest to a list of differences:

[he$–hat, hes–hat, his–hat, hos–hat] = [1, 7, 23, 31]
5. Apply a compressed indexing scheme for integers

How to encode these
5 branching strings?

Which subtries to collapse?

• We aim for the layout that minimise the space (in bytes) of the CoCo-trie
• Recursive cost function to evaluate the space of collapsing a single subtrie
• Find the best layout via a bottom-up algorithm

13

SPIRE 22

... a large search space
of different layouts

Which subtries to collapse?

• We aim for the layout that minimise the space (in bytes) of the CoCo-trie
• Recursive cost function to evaluate the space of collapsing a single subtrie
• Find the best layout via a bottom-up algorithm

14

SPIRE 22

Currently examined node

Best solutions
already found

Currently examined node

Best solutions
already found

increase the height by 1

Different datasets, different CoCo-trie layouts

15

Height of the
collapsed subtries

Height of the
collapsed subtries

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

SPIRE 22 + later improvements

Experiments on space vs query time

16

SPIRE 22 + later improvements

CART is not competitive

PDT and FST show
inconsistent performance
across datasets

CoCo is efficient and flexible

[ICDE 13, SIGMOD 16] [J. Exp. Algorithmics 14] [SIGMOD 18]

Conclusions
• Advances in compressed indexing schemes

• for integers: Block-ε tree, exploiting data linearity and repetitiveness
• for strings: CoCo-trie, a data-aware compressed trie

Key takeaway:
The performance of classic solutions can be very input-sensitive. New
and robust space-time trade-offs by adapting to the data.

Open problems and ongoing work:
• Efficient construction algorithms
• Compress integers with nonlinear models

17

