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A compressed indexing problem

1. Store a sorted set 𝐴 of 𝑛 elements in compressed form
2. Implement random access
3. Implement 𝑟𝑎𝑛𝑘 𝑥 = number of elements in 𝐴 which are ≤ 𝑥
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Harder than just indexing
or just compressing

IP routing, succinct data structures, 
inverted indexes, …

Query autocompletion, k-mer counting, 
range searches, …



LA-vector: A learned approach for integers

Compressed indexing via piecewise linear approximations (PLAs)
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Step 1: map input to (pos, value) Step 2: build a PLA with max error ε Step 3: store segments + corrections

Crucial ingredient: algorithm to learn a 
PLA that minimises the space by using 
different ε for different segments

ACM Trans. Algorithms 2022



What about other sources of compressibility? 
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Difference between 
adjacent values

…

Gap string

𝐴

Store just a “back reference”

LA-vector would store segments and corrections for the repeated sections!

∆ = 14 − 3



Block-ε tree: exploiting linearity and repetitiveness
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IEEE Access 2022

• Split 𝐴 and gap string into equal-sized blocks



Block-ε tree: exploiting linearity and repetitiveness
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• Split 𝐴 and gap string into equal-sized blocks
• Replace repeated blocks with a pointer to the first occurrence
• Split remaining blocks into two and repeat recursively
• For each block at any level, check if a learned model compresses better

IEEE Access 2022

∆ = 23 − 6

∆ = 18 − 1

∆ = 43 − 4



Block-ε tree: exploiting linearity and repetitiveness
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• Split 𝐴 and gap string into equal-sized blocks
• Replace repeated blocks with a pointer to the first occurrence
• Split remaining blocks into two and repeat recursively
• For each block at any level, check if a learned model compresses better

• If so, replace the block and the subtree with the model



Block-ε tree: exploiting linearity and repetitiveness
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• Split 𝐴 and gap string into equal-sized blocks
• Replace repeated blocks with a pointer to the first occurrence
• Split remaining blocks into two and repeat recursively
• For each block at any level, check if a learned model compresses better

• If so, replace the block and the subtree with the model



Experiments
On 11 standard datasets, up to 490M integers
• No clear winner in space between LA-vector (linearity-aware) and the block tree (repetition-aware)
• Block-ε tree achieves the best or the second-best space in the majority of datasets
• Block-ε tree has 5x slower random access and 4x slower rank than LA-vector

On datasets with explicit linearities and repetitions
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Block-ε tree exploits 
both repetitions and 

linearities



Compressed-indexing
string keys



Compressed indexing of strings

• Tries are the classic solution
• Many improvements since the ’60s
• Compact unary paths [J. ACM 68]
• Adaptive node layouts [ICDE 13]
• Cache-aware layouts [PODS 08]
• Word packing [CPM 17]
• Succinct topology representation [SIGMOD 18]
• …

• No practical solution is good on all different kinds of string data 
(URLs, k-mers, dictionary terms, …) à no data-awareness
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CoCo-trie: Compressed Collapsed trie
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SPIRE 22

Key tool: collapsing subtries

1. Store the alphabet of the branching strings: $, a, e, h, i, o, s, t , 𝜎 = 8 symbols in total
2. Map strings to ints in radix 𝜎, e.g. hat → h𝜎! + a𝜎" + t𝜎# = 3 ⋅ 8! + 1 ⋅ 8" + 7 ⋅ 8# = 207
3. Keep the first string  explicit (hat = 207)
4. Transform the rest to a list of differences:

[he$–hat, hes–hat, his–hat, hos–hat] = [1, 7, 23, 31]
5. Apply a compressed indexing scheme for integers

How to encode these 
5 branching strings?



Which subtries to collapse?

• We aim for the layout that minimise the space (in bytes) of the CoCo-trie
• Recursive cost function to evaluate the space of collapsing a single subtrie
• Find the best layout via a bottom-up algorithm
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... a large search space 
of different layouts



Which subtries to collapse?

• We aim for the layout that minimise the space (in bytes) of the CoCo-trie
• Recursive cost function to evaluate the space of collapsing a single subtrie
• Find the best layout via a bottom-up algorithm
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Best solutions 
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increase the height by 1



Different datasets, different CoCo-trie layouts
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SPIRE 22 + later improvements



Experiments on space vs query time
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SPIRE 22 + later improvements

CART is not competitive

PDT and FST show 
inconsistent performance 
across datasets

CoCo is efficient and flexible

[ICDE 13, SIGMOD 16] [J. Exp. Algorithmics 14] [SIGMOD 18]



Conclusions
• Advances in compressed indexing schemes

• for integers: Block-ε tree, exploiting data linearity and repetitiveness
• for strings: CoCo-trie, a data-aware compressed trie

Key takeaway:
The performance of classic solutions can be very input-sensitive. New 
and robust space-time trade-offs by adapting to the data.

Open problems and ongoing work:
• Efficient construction algorithms
• Compress integers with nonlinear models
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