A Tutorial Workshop on ML for Systems and Systems for ML @ BTW 2023

Advances in dala-aware
compressed-indexing schemes
for inleger and string keys

Giorgio Vinciguerra
-@5: UNIVERSITA DI PIsA

Based on papers with A. Boffa, P. Ferragina, G. Manzini, F. Tosoni

A compressed indexing problem -

Harder than just indexing

1. Store a sorted set 4 of n elements in compressed form or just compressing

2. Implement random access

3. Implement rank(x) = number of elements in 4 which are < x

—_— e e e e e — - - —_——— e =~ —_— e e e —— - —_— e e — e - —_—— e e e e —— - —_—— e =~ —_— e e e —— - —_— e e e ——— -

! I.' ! U rank(these) = 4 Il'
,. ; ! 1 2 3 4 5 6 :
| rank(12) = 3 Lo g :
- () Py o lalalt|t]t]t o |
| o "y L & n|h|h|h|h =
) | : S 2
= 3|6 |10[15|18|20 }Compressed L g 3 aje|r|o T
! : ! £ t s|s !
' 3 4 5 6 ' ' S '
i ! | € |
1 | 1 - |
IP routing, succinct data structures, Query autocompletion, k-mer counting,
inverted indexes, ... range searches, ...

ACM Trans. Algorithms 2022

LA-vector: A learned approach for integers

Compressed indexing via piecewise linear approximations (PLAS)

value

53 1

47 |

43 |
40 |

22 t

18 +
15 1

10 +

map input to (pos, value)

o

1 2 3 4 5 6 7 8 9 10
position

6 (10(15(18(22{40(43(47|53

2 3 4 5 6 7 8 9 10

value

build a PLA with max error €

fo(x) =6x—5 I
(6)
o

1 2 3 4 5 6 7 8 9 10
position

store segments + corrections

53 + o
fo(x)=6x—-5

47 + o

43

40 ¢

[log(2¢ + 1)] bit

¢ [3]1]o]o]-2][-3|@]0]2]-2)
1 2 3 4 5 6 7 8 9 10

value

1 2 3 4 5 6 7 8 9 10
position

algorithm to learn a
PLA that minimises the space by using
different € for different segments

What about other sources of compressibility?

A2 |3]|5|6|13[14(16(17|120|24] -

Difference between
¢ adjacent values

Gap string 7@@ 314

Store just a "back reference”

A=14-3

LA-vector would store segments and corrections for the repeated sections!

IEEE Access 2022

Block-¢ tree: exploiting linearity and repetitiveness

* Split A and gap string into equal-sized blocks

A 112146 (10|13 |15|16|17|18|19|21|23|27|30|32(33|34|38|39(41|43|45|49

Gapstring |1 |1 |2|2|4|3|2|1|1]|1|1]|2|2]|4|3|2|1|1]|4|1|2]|2]|2]|4

IEEE Access 2022

Block-¢ tree: exploiting linearity and repetitiveness

Split 4 and gap string into equal-sized blocks

Replace repeated blocks with a pointer to the first occurrence

Split remaining blocks into two and repeat recursively

For each block at any level, check if a learned model compresses better

A |1

N
N
(0))
=
o
[IRN
w
=
(92}
[IRN
(0))
=
N
=
(00)
[IRN
O
N
=
N
w
N
N

30|32(33|34 38|39 (4143|4549

Gap string 1

N
N
D
w
N
[IRN
=
=
[IRN
N
N
[IRN
N
N
N
N

IEEE Access 2022

Block-¢ tree: exploiting linearity and repetitiveness

13

Split 4 and gap string into equal-sized blocks

10

Replace repeated blocks with a pointer to the first occurrence

value
°

Split remaining blocks into two and repeat recursively

=N » o
[]

For each block at any level, check if a learned model compresses better
* If so, replace the block and the subtree with the model

A 1124 6]|10]13 15|16 17|18 |19 | 21 23|27 (30(32|33|34 38|39 |41|43|45|49
Gapstring| [1|1]|2]2|4]3 211 1]11]2 4al1]l212121|24

(e

-

all1|1]2 21413 21111 41112

% w J

IEEE Access 2022

Block-¢ tree: exploiting linearity and repetitiveness

13

Split 4 and gap string into equal-sized blocks

10

Replace repeated blocks with a pointer to the first occurrence

value
°

Split remaining blocks into two and repeat recursively

For each block at any level, check if a learned model compresses better
* If so, replace the block and the subtree with the model

=N A O

N1 2 3 4 5 6

Gap string 1112|243

— L / \

IEEE Access 2022

Experiments

On 11 standard datasets, up to 490M integers

« No clear winner in space between LA-vector (linearity-aware) and the block tree (repetition-aware)
» Block-¢ tree achieves the best or the second-best space in the majority of datasets
* Block-¢ tree has 5x slower random access and 4x slower rank than LA-vector

On datasets with explicit linearities and repetitions

Linear with 1 repetitions Linear with % repetitions Linear with 2 repetitions

&]]
9
c
3]
o j Block-¢ tree exploits
et e
o both repetitions and
] linearities
° @« & 60&0‘ & &
. 166' ‘\‘e ods \‘:6 . ’bs’ ’\‘ o(l \gq/
QTP QY Q° 15 SONEN SN Q°

O

Compressed-indexing
string keys

Compressed indexing of strings

* Tries are the classic solution I

« Many improvements since the '60s $*n \\h
« Compact unary paths [J. ACM 68] “ >,\
« Adaptive node layouts [ICDE 13] /a ,(e 1\?\
« Cache-aware layouts [PODS 08] t ‘$ S} i i
« Word packing [CPM 17] ° e

« Succinct topology representation [SIGMOD 18]

* No practical solution is good on all different kinds of string data
(URLSs, k-mers, dictionary terms, ...) 2 no data-awareness

SPIRE 22

CoCo-trie: Compressed Collapsed trie

Key tool: collapsing subtries

a\ a/‘\ How to encode these
$ n \I ,(5 branching strings?
4 B % & %
// a~ e 1.0 e %
S ¢ } é
€ e €
: : ¢

Store the alphabet of the branching strings: {$,a,e,h,i,0,s,t}, 0 = 8 symbols in total
Map strings to ints in radix o, e.g. hat > ho? + act +t¢® =3-8%2+1-81 4+ 7.8 = 207
Keep the first string explicit (hat = 207)

Transform the rest to a list of differences:
[he$-hat, hes-hat, his-hat, hos-hat] = [1, 7, 23, 31]

5. Apply a compressed indexing scheme for integers @

> w bR

SPIRE 22

Which subtries to collapse?

... a large search space
of different layouts

LA

 We aim for the layout that minimise the space (in bytes) of the CoCo-trie
* Recursive cost function to evaluate the space of collapsing a single subtrie
* Find the best layout via a bottom-up algorithm

SPIRE 22

Which subtries to collapse?

Currently examined node Currently examined node

o
Best solutions
already found / 5 .
Best solutions
already found

 We aim for the layout that minimise the space (in bytes) of the CoCo-trie
* Recursive cost function to evaluate the space of collapsing a single subtrie
* Find the best layout via a bottom-up algorithm

SPIRE 22 + later improvements

Different datasets, different CoCo-trie layouts

Frequency

Frequency

url

0.1

0.05

0.4

0.2

- T T T
1 10 20 30 40 50 60

trec-terms

T T T T T T
1 10 20 30 40 50 60
Height of the
collapsed subtries

dna

0.3
0.2

0.1

0 — T
1 5 10 15 20

tpcds-id

0.8 -
0.6
0.4 -
0.2

1 3 5 7 9 11

Height of the
collapsed subtries

SPIRE 22 + later improvements

Experiments on space vs query time

@ CART
[ICDE 13, SIGMOD 16]

¢ FST
[SIGMOD 18]

v PDT (vbyte) PDT (csp) @ CoCo-trie

[J. Exp. Algorithmics 14]

url (9999MB) dna (6566MB)

40

: . so| "
I i
Ep 30 - 60:
‘a |
kS i . .
® g0 40 - CART is not competitive
[P] . -
wn . ¢ N v
0] @ KIS 3, Sue | apd FST show
L e e e B B L =TT inconsistent performance
6 8 10 15 2 25 3 35 4
trec-terms (285MB) tpcds-id (476 MB) across datasets
i * i @
= 1 80 - CoCo is efficient and flexible
£ .
2100 - 60 -
5 i
2 l]
o a
® 40
2 : i
I n ’no 4
—x%| l‘ |’I®l T 1 1 1 wvy @ — 1 1 T T 1 T T 1 1 T 1 T 1
06 0.8 1 12 14 06 08 1 12 14 ‘I’
Time (ps / query) Time (us / query)

Conclusions

* Advances in compressed indexing schemes
» for integers: Block-¢ tree, exploiting data linearity and repetitiveness
 for strings: CoCo-trie, a data-aware compressed trie

Key takeaway:

The performance of classic solutions can be very input-sensitive. New
and robust space-time trade-offs by adapting to the data.

Open problems and ongoing work:
 Efficient construction algorithms
 Compress integers with nonlinear models

