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A compressed indexing problem -

Harder than just indexing

1. Store a sorted set 4 of n elements in compressed form or just compressing

2. Implement random access

3. Implement rank(x) = number of elements in 4 which are < x
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IP routing, succinct data structures, Query autocompletion, k-mer counting,
inverted indexes, ... range searches, ...
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LA-vector: A learned approach for integers

Compressed indexing via piecewise linear approximations (PLAS)
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What about other sources of compressibility?
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Store just a "back reference”

A=14-3

LA-vector would store segments and corrections for the repeated sections!
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Block-¢ tree: exploiting linearity and repetitiveness

* Split A and gap string into equal-sized blocks
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Block-¢ tree: exploiting linearity and repetitiveness

Split 4 and gap string into equal-sized blocks

Replace repeated blocks with a pointer to the first occurrence

Split remaining blocks into two and repeat recursively

For each block at any level, check if a learned model compresses better
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Block-¢ tree: exploiting linearity and repetitiveness

13

Split 4 and gap string into equal-sized blocks

10

Replace repeated blocks with a pointer to the first occurrence

value
°

Split remaining blocks into two and repeat recursively
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For each block at any level, check if a learned model compresses better
* If so, replace the block and the subtree with the model
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Block-¢ tree: exploiting linearity and repetitiveness

13

Split 4 and gap string into equal-sized blocks

10

Replace repeated blocks with a pointer to the first occurrence

value
°

Split remaining blocks into two and repeat recursively

For each block at any level, check if a learned model compresses better
* If so, replace the block and the subtree with the model
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Experiments

On 11 standard datasets, up to 490M integers

« No clear winner in space between LA-vector (linearity-aware) and the block tree (repetition-aware)
» Block-¢ tree achieves the best or the second-best space in the majority of datasets
* Block-¢ tree has 5x slower random access and 4x slower rank than LA-vector

On datasets with explicit linearities and repetitions

Linear with 1 repetitions Linear with % repetitions Linear with 2 repetitions
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Compressed-indexing
string keys



Compressed indexing of strings

* Tries are the classic solution I

« Many improvements since the '60s $*n \\h
« Compact unary paths [J. ACM 68] “ >,\
« Adaptive node layouts [ICDE 13] /a ,(e 1\?\
« Cache-aware layouts [PODS 08] t ‘$ S} i i
« Word packing [CPM 17] ° e

« Succinct topology representation [SIGMOD 18]

* No practical solution is good on all different kinds of string data
(URLSs, k-mers, dictionary terms, ...) 2 no data-awareness
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CoCo-trie: Compressed Collapsed trie

Key tool: collapsing subtries

a\ a/‘\ How to encode these
$ n \I ,( 5 branching strings?
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Store the alphabet of the branching strings: {$,a,e,h,i,0,s,t}, 0 = 8 symbols in total
Map strings to ints in radix o, e.g. hat > ho? + act +t¢® =3-8%2+1-81 4+ 7.8 = 207
Keep the first string explicit (hat = 207)

Transform the rest to a list of differences:
[he$-hat, hes-hat, his-hat, hos-hat] = [1, 7, 23, 31]

5. Apply a compressed indexing scheme for integers @

> w bR
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Which subtries to collapse?

... a large search space
of different layouts

LA

 We aim for the layout that minimise the space (in bytes) of the CoCo-trie
* Recursive cost function to evaluate the space of collapsing a single subtrie
* Find the best layout via a bottom-up algorithm
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Which subtries to collapse?

Currently examined node Currently examined node

o
Best solutions
already found / 5 .
Best solutions
already found

 We aim for the layout that minimise the space (in bytes) of the CoCo-trie
* Recursive cost function to evaluate the space of collapsing a single subtrie
* Find the best layout via a bottom-up algorithm
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Different datasets, different CoCo-trie layouts
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Experiments on space vs query time

@ CART
[ICDE 13, SIGMOD 16]

¢ FST
[SIGMOD 18]

v PDT (vbyte) PDT (csp) @ CoCo-trie

[J. Exp. Algorithmics 14]

url (9999MB) dna (6566MB)

40

: . so| "
I i
Ep 30 - 60:
‘a |
kS i . .
® g0 40 - CART is not competitive
[P] . -
wn . ¢ N v
0] @ KIS 3, Sue | apd FST show
L e e e B B L =TT inconsistent performance
6 8 10 15 2 25 3 35 4
trec-terms (285MB) tpcds-id (476 MB) across datasets
i * i @
= 1 80 - CoCo is efficient and flexible
£ .
2100 - 60 -
5 i
2 l ]
o a
® 40
2 : i
I n ’no 4
—x%| l‘ |’I®l T 1 1 1 wvy @ — 1 1 T T 1 T T 1 1 T 1 T 1
06 0.8 1 12 14 06 08 1 12 14 ‘I’
Time (ps / query) Time (us / query)



Conclusions

* Advances in compressed indexing schemes
» for integers: Block-¢ tree, exploiting data linearity and repetitiveness
 for strings: CoCo-trie, a data-aware compressed trie

Key takeaway:

The performance of classic solutions can be very input-sensitive. New
and robust space-time trade-offs by adapting to the data.

Open problems and ongoing work:
 Efficient construction algorithms
 Compress integers with nonlinear models




