A Tutorial Workshop on ML for Systems and Systems for ML @ BTW 2023

Advances in data-aware compressed-indexing schemes for integer and string keys

Giorgio Vinciguerra

A compressed indexing problem

- 1. Store a sorted set A of n elements in compressed form
- Harder than just indexing or just compressing

- 2. Implement random access
- 3. Implement rank(x) = number of elements in A which are $\leq x$

IP routing, succinct data structures, inverted indexes, ...

Query autocompletion, k-mer counting, range searches, ...

LA-vector: A learned approach for integers

Compressed indexing via piecewise linear approximations (PLAs)

Step 1: map input to (pos, value)

Step 2: build a PLA with max error ε

Step 3: store segments + corrections

 3
 6
 10
 15
 18
 22
 40
 43
 47
 53

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Crucial ingredient: algorithm to learn a PLA that minimises the space by using different ϵ for different segments

What about other sources of compressibility?

LA-vector would store segments and corrections for the repeated sections!

• Split *A* and gap string into equal-sized blocks

16 | 17 Gap string

- Split A and gap string into equal-sized blocks
- Replace repeated blocks with a pointer to the first occurrence
- Split remaining blocks into two and repeat recursively
- For each block at any level, check if a learned model compresses better

Experiments

On 11 standard datasets, up to 490M integers

- No clear winner in space between LA-vector (linearity-aware) and the block tree (repetition-aware)
- Block-ε tree achieves the best or the second-best space in the majority of datasets
- Block-ε tree has 5x slower random access and 4x slower rank than LA-vector

On datasets with explicit linearities and repetitions

Block-\varepsilon tree exploits both repetitions and linearities

Compressed-indexing string keys

Compressed indexing of strings

- Tries are the classic solution
- Many improvements since the '60s
 - Compact unary paths [J. ACM 68]
 - Adaptive node layouts [ICDE 13]
 - Cache-aware layouts [PODS 08]
 - Word packing [CPM 17]
 - Succinct topology representation [SIGMOD 18]
 - •
- No practical solution is good on all different kinds of string data (URLs, k-mers, dictionary terms, ...) \rightarrow no data-awareness

CoCo-trie: Compressed Collapsed trie

Key tool: collapsing subtries

- 1. Store the alphabet of the branching strings: $\{\$, a, e, h, i, o, s, t\}, \sigma = 8$ symbols in total
- 2. Map strings to ints in radix σ , e.g. hat $\rightarrow h\sigma^2 + a\sigma^1 + t\sigma^0 = 3 \cdot 8^2 + 1 \cdot 8^1 + 7 \cdot 8^0 = 207$
- 3. Keep the first string explicit (hat = 207)
- 4. Transform the rest to a list of differences: [he\$-hat, hes-hat, his-hat, hos-hat] = [1, 7, 23, 31]

5. Apply a compressed indexing scheme for integers

Which subtries to collapse?

... a large search space of different layouts

- We aim for the layout that minimise the space (in bytes) of the CoCo-trie
- Recursive cost function to evaluate the space of collapsing a single subtrie
- Find the best layout via a bottom-up algorithm

Which subtries to collapse?

- We aim for the layout that minimise the space (in bytes) of the CoCo-trie
- Recursive cost function to evaluate the space of collapsing a single subtrie
- Find the best layout via a bottom-up algorithm

Different datasets, different CoCo-trie layouts

Experiments on space vs query time

Conclusions

- Advances in compressed indexing schemes
 - for integers: *Block-ε tree*, exploiting data linearity and repetitiveness
 - for strings: CoCo-trie, a data-aware compressed trie

Key takeaway:

The performance of classic solutions can be very input-sensitive. New and robust space-time trade-offs by adapting to the data.

Open problems and ongoing work:

- Efficient construction algorithms
- Compress integers with nonlinear models

