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Abstract

This thesis revisits two fundamental problems in data structure design: predecessor
search and rank/select primitives. These problems are pervasive in applications,
particularly in areas such as database systems, search engines, bioinformatics, and
Internet routing. We show that real data present a peculiar kind of regularity that
can be explained in terms of geometric considerations. We name it “approximate
linearity” and analyse its algorithmic effectiveness in a variety of possible input
data distributions. We then expand the horizon of compressed data structures by
presenting solutions for the problems above that discover, or “learn”, in a rigorous
and efficient algorithmic way, the approximate linearities present in the data. In
addition, we show how to combine this new form of compressibility with the classic
repetition-aware approaches thus introducing a new class of compressed indexes.
We accompany our theoretical results with implementations and experiments on
large amounts of data, and we show that, compared to several well-engineered
known compressed indexes, our data structures provide improvements in time, in
space or both (often of orders of magnitude).
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Introduction 1
Representing data in a computing machine and supporting efficient searches is
among the oldest and most prominent class of problems in computer science, well-
studied and ubiquitous in research and applications. Not surprisingly, it is often
used as an introductory topic in basic algorithms courses, paving the way to the
study of fundamental data structures such as arrays, lists, search trees, tries and
hash tables.

These and other fundamental data structures are often sufficient to solve any given
computational problem that we might encounter in practice, from a programming
puzzle asked in a coding interview to a real-world application. Yet, it would be amiss
to claim that an algorithm designer’s toolbox is comprehensive with these design
elements alone, especially considering the vast amount of facets an instance of a
searching problem can exhibit (computational constraints, data volume growth over
time, hardware technology, . . . ).

The advent of external memory devices and hierarchical memories, for example,
allowed us to deal with massive amounts of data and, at the same time, it challenged
the data structures design field up to one of its core assumptions, i.e. that all memory
accesses are created equal.

This eventually lead to the introduction of new models of computation, such as the
external-memory and the cache-oblivious model [Vit01; Fri+12]. These models
enforce the design of algorithms that exploit the locality of memory accesses thereby
reducing the time-consuming input/output communication (I/O) between memory
levels, and they have been applied to searching as well as some other problems,
such as sorting, matrix multiplications, and graph problems [Vit01].

In some situations, however, loading the hierarchical memory with more and more
data is not possible either because of physical capacity constraints (think of smart
and embedded devices), or because it would slow down the searches too much due
to the increased I/Os needed to handle a larger problem size (think of the latency
requirements a Web search engine must guarantee to its users).

In the 1990s, the field of compact data structures emerged (encompassing the so-
called succinct, compressed or opportunistic data structures) [Nav16]. These data
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structures represent data in as little space as possible while still providing efficient
query operations. That is, they allow efficient searches without fully decompressing
the data, as a sheer compression approach would instead require. This way, we can
fit larger volumes of data in memory, where the computation is much faster.

Today, it is known how to turn almost any traditional data structure into a compact
data structure that exploits some source of compressibility in the input data. In
this regard, we can distinguish between a statistical source and a repetitive source.
Roughly speaking, for the former, we assigning shorter descriptions to the most fre-
quent symbols in the input data (possibly looking at the symbol’s preceding context),
and we relate the compact data structure size to its Shannon entropy [CT06]. For
the latter, we replace repetitive subsequences in the input data with references to an
existing entry in a small and properly-built dictionary, and we relate the compact
data structure size to one of the multitude repetitiveness measures [Nav20].

In this thesis, we revisit some fundamental and ubiquitous data structuring problems,
namely predecessor search and rank/select primitives, in light of a new kind of data
regularity that we call approximate linearity. This regularity manifests itself when we
map the input data into points in a specially-crafted Cartesian plane [Ao+11].

The first key idea underpinning our approaches to data structure design is to “learn”
the distribution of the above points via error-bounded linear functions, computed
via a classical result in computational geometry [ORo81]. These linear functions
form a lossy and succinct learned representation of the input distribution. Intuitively,
the more the input data exhibits roughly linear trends (i.e. the more the data is
approximately linear), the more compressed such learned representation is.

We formalise the above intuition by studying the effectiveness and the power of
approximate linearity under several theoretical and practical settings. Then, by
orchestrating the learned representation with proper algorithms and data structures,
we expand the horizon of compressed data structures with novel solutions that
provide new and improved space-time trade-offs for the problems above. Further-
more, we also study combinations of our approaches with the ones based on statist-
ical and repetitive sources, and we show that they complement and integrate each
other nicely. Our experimental achievements corroborate these theoretical results
by showing improvements in time, in space or both (often of orders of magnitude)
compared to several well-engineered data structures implementations, making them
promising and possibly impactful approaches also in real applications.

We conclude by discussing the plethora of research opportunities that these new
learning-based approaches to data structure design open up.

2 Chapter 1 Introduction



1.1 Thesis structure

The rest of this thesis, which builds upon the author’s publications listed at page vii,
is structured as follows.

Chapter 2: Basics

We introduce and discuss the main ingredients that will be used throughout the
thesis, namely the mapping of the input data to a Cartesian plane, and the concept
and computation of piecewise linear ε-approximations. We accompany the exposition
with a motivating searching problem that is pervasive in computer science.

Chapter 3: Effectiveness of piecewise linear ε-approximations

We study the power of the concept of approximate linearity by analysing the space
usage of piecewise linear ε-approximations built on a wide range of possible input
data distributions. We show that piecewise linear ε-approximations are indeed
succinct and effective, and thus they form a strong basis for the learning-based data
structure design that will be introduced in the following. This chapter is based in
part on [FLV20; FLV21].

Chapter 4: Predecessor search

We dig into a generalisation of the searching problem introduced in Chapter 2, the
so-called predecessor search problem. This problem has several critical applications,
such as range queries in database systems, conjunctive queries in search engines, and
the routing of Internet packets. We introduce the PGM-index, an external-memory
learning-based data structure for this problem with optimal worst case bounds. We
make it compressed, dynamic and adaptive not only to the approximate linearity
in the data but also to a given query distribution. A wide set of experiments on
large datasets show that our solution improves some efficient predecessor structure
implementations in time and in space, sometimes by orders of magnitude. This
chapter is based in part on [FV20b].

Chapter 5: Rank/select dictionaries

We focus on the problem of representing a compressed dictionary of integers while
supporting rank and select operations. This well-studied problem is at the heart
of virtually any compact data structure, and we revisit it by proposing a learning-
based rank/select scheme, named LA-vector, that achieves competitive compressed
space occupancy and efficient query operations by exploiting the approximate
linearity in the data. A comparison of this approach with some other well-engineered
compressed rank/select dictionaries shows new space-time trade-offs. This chapter
is based in part on [BFV21a; BFV21b].

1.1 Thesis structure 3



Chapter 6: Repetition- and linearity-aware rank/select dictionaries

We continue our study on rank/select dictionaries by showing how to combine two
sources of compressibility: approximate linearity and repetitiveness in the data. We
do so by building on two repetitiveness-aware methods, one more space-efficient
and the other more query-efficient, namely Lempel-Ziv parsings [LZ76; ZL77; KN13]
and block trees [Bel+21], respectively. We empower these two methods with the
ability to exploit approximate linearities and thus introduce two solutions, the LZρ

ε

and the block-ε tree. Our experimental achievements show that the combination of
the two sources of compressibility is effective and achieves the best of both worlds.
This chapter is based in part on [FMV21].

Chapter 7: Conclusions

We summarise the findings of this thesis and discuss the research opportunities
that these new learning-based approaches to compressed data structure design
open up.

4 Chapter 1 Introduction



Basics 2
In this chapter, we introduce the main design ingredients that will be used throughout
the thesis.

As our motivating application, we consider one of the most basic and pervasive
problems in computer science, the searching problem, formulated as follows. Suppose
we are given a sorted array A[1, n] of n distinct keys drawn from a universe U . Given
a query element x ∈ U , we are asked to return an index i such that x = A[i] or, if x

is not a key of A, the index j after which x could be inserted to keep A sorted, i.e.
the j such that A[j] < x < A[j + 1].

The elementary binary search algorithm is sufficient to solve the searching problem
in Θ(log n) comparisons, and it is also optimal if we consider a computational model
that only allows comparing atomic items with a cost of 1, i.e. the comparison model.
Yet, with the large set of operations available in today’s processors, it is customary
to consider less restrictive computational models.

One of the computational models that we use in this thesis is the word RAM [Hag98].
The word RAM model is assumed to have an infinite memory consisting of cells
of w bits, where w is a positive integer called the word length. Consequently, the
content of any memory cell is an integer x in the range {0, . . . , 2w − 1}, often called
a word. Given two words, we can execute arithmetic instructions that compute
their sum, difference, product, and quotient. Moreover, we can execute Boolean
instructions that compute the conjunction (AND), and disjunction (OR) of two
words, and the negation (NOT) of a word. The execution of every instruction is
assumed to take constant time. Then, we can measure the time complexity of an
algorithm by counting how many memory accesses and instructions are executed,
and we can measure the space complexity by counting how many words or bits are
used by the algorithm. We observe, for when later in this chapter we show examples
with non-integer data, that the above integer instructions are sufficient to implement
IEEE 754 floating-point data types and operations [PH20, §3.5].

Under the word RAM and other computational models, plenty of algorithms and data
structures were shown to break the Θ(log n)-barrier of comparison-based methods
for the searching problem. We will review some of them in Chapter 4, in which we
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dig into the closely related predecessor search problem. Here, instead, we want to give
a different and possibly unusual perspective on the searching problem by showing
how it reduces to approximating a set of points in a specially-crafted Cartesian
plane [Ao+11].

2.1 A geometric reduction

The first ingredient to solve the searching problem consists in mapping each key A[i]
of the input array A to a point (A[i], i) in the Cartesian plane of keys-positions, for
i = 1, . . . , n. The second ingredient is a function f that “best fits” the points in such
plane, namely, a function that given a query element x ∈ U returns the appropriate
position of x in A, i.e. the answer to our searching problem.

Unsurprisingly, the best function f that we can hope to find is the function rank : U →
{0, . . . , n} that, for any x ∈ U , returns the number rank(x) of keys in A that are less
than or equal to x. But implementing rank in the word RAM in a space/time-efficient
manner is simply another way of restating the searching problem. Thus, up to now,
our reduction seems of no use.

The reduction becomes interesting when we allow f to make errors, that is, to
slightly under- or overestimate the position of x in A. This opens up a whole range
of possibilities for implementing f , not only using data structure design elements (such
as nodes, pointers, hashing, samplings, etc.), but also using tools from numerical
analysis and machine learning (such as linear models, polynomials, neural networks,
regression trees, etc).

For example, suppose that A = [7, 16, 17, 18, 19, 20, 29, 54, 57, 60], and that the func-
tion that “best fits” these points is the one computed using ordinary least squares on
the dataset {(A[i], i)}i=1,...,n, i.e. f(x) = 0.14x + 1.29, as depicted in Figure 2.1. For
an input query x = 29, we can use f to solve the searching problem by computing
the approximate position p = ⌊f(x)⌉ = ⌊29×0.14+1.29⌉ = 5.1 But the true position
of x is 7, hence, if we return 7 as the answer to the query, we make an error err = 2.
The twist here is that, since A is available, the error can always be fixed. Indeed, a
simple and fast scan from p = 5 forward let us find the sought key x in position 7,
which is the answer to the query.

More in general, let us define the maximum error of f as the value

err = max
x∈U
|⌊f(x)⌉ − rank(x)|. (2.1)

1We use ⌊x⌉ to denote the nearest integer function, i.e. ⌊x⌉ = ⌊x + 1
2 ⌋.
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Figure 2.1: An array A of ten keys mapped to the key-position Cartesian plane.
The linear model f , computed using ordinary least squares on the points, estimates
that x = 29 is in position p = ⌊f(x)⌉ = 5, but the true position of x is 7.

Then, our data structure for the searching problem is given by the value err and
the parameters of f , and the search algorithm amounts to compute p = ⌊f(x)⌉ and
to perform a binary search on A[p− err , p + err ] for the sought value x. If f takes
sf space to be stored and tf time to be evaluated, then our data structure solves the
searching problem in O(tf + log err) time and sf space.

Continuing with our example of a linear function f , we can easily verify that
err = 2, sf = 2 words, as we need to store the slope and the intercept of f , while
tf = O(1) time, as computing f(x) requires one multiplication and one addition,
which both take constant time in the word RAM model defined before. The search
time is thus O(log err), which is independent of n.

2.2 What function to use?

From the bounds above it is evident that a crucial design choice is how to imple-
ment f . As the data grows and exhibits irregular trends in the key-position Cartesian
plane, the choice of a linear f would quickly become inadequate due to the large
errors that impact negatively on the O(log err)-term of the search time complexity.
As a remedy, we could use, say, a deep neural network f that was finely tuned to
yield a very small err . But, on the other hand, we may end up paying too much

2.2 What function to use? 7
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Figure 2.2: The same array A and the corresponding key-position Cartesian plane
of Figure 2.1 where instead of f we use a polynomial function g. The function
g incurs in a large error when approximating the position of a query key x that
belongs to U but does not occur in A.

space st for the weights of the neural network and too much time tf for the matrix
multiplications needed when evaluating f(x).

Another key point that we must consider when choosing f is that the max in the
definition of err (Equation 2.1) ranges over all x ∈ U and not over all x ∈ A. This is
necessary because otherwise we would not be able to provide correct answers when
the query key does not occur in A. And in general, although for the example in
the previous section the linear function f was computed via ordinary least squares
on D = {(A[i], i)}i=1,...,n, i.e. without caring about the values in U \A, choosing a
function giving a small error on these latter values is equally important. For instance,
say that we fit a polynomial function g of degree seven on D, as shown in Figure 2.2.
The error over the keys in A is equal to 0, so we could be led to believe that g is
a good function in that it takes little space and makes no error. But in reality, the
error at the value x = 46, which does not belong to A, is quite larger than what we
expected, leading to increased query times.

Overall, it seems that choosing a function f and then evaluating whether its accuracy
is good or not via Equation 2.1 is a time-consuming, trial-and-error and very dataset-
specific task. And although this task can be automated (e.g., via a grid or a random
search), we should aim for a general and robust enough solution that can handle any
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kind of input data, no matter its amount or the (ir)regular trends it exhibits.

For the first step toward a more general solution, we observe that it is desirable
to have a way to control the error beforehand, i.e. before the choice of f , via
a positive integer parameter ε. This is because the O(log err)-term of the search
time complexity would then become O(log ε), which is independent of the accuracy
of f over the input data. And also because, in more practical terms, modern
memory technologies all access data in blocks (also called pages or lines) of bw bits,
for a certain factor b ≥ 1 [PH20, §5], and hence it is natural to ask that our f

outputs predictions that require just a few fetches of blocks to be corrected, i.e.
err = ε = Θ(b).

Now, within a fixed error ε, we ought to find a function f guaranteeing such error
over all the keys in U (recall the definition of Equation 2.1). Although nonlinear
functions are appealing, especially because they form an infinite class of functions
where there is certainly one fitting the input data within the ε error constraint,
training them is challenging by itself [GBC16, §8.2], and subtleties like computing
the error efficiently and keeping it low over keys in U \A exacerbate the problem,
especially over the large universes that arise in modern applications and computers
having w = 64 bits.

We therefore backtrack to linear functions and, to solve their shortcomings on large
and potentially irregular input data, we take a turn by generalising them to what
are called piecewise linear ε-approximations.

2.3 Piecewise linear ε-approximations

We now introduce the concept of piecewise linear ε-approximation as a sequence of
segments (linear functions) partitioning A and approximating the rank function, i.e.
the answer to the searching problem, within a given maximum error ε.

Definition 2.1. For a given integer parameter ε ≥ 0 and a sorted array A[1, n] of n

keys drawn from a universe U , a piecewise linear ε-approximation for A is a partition
of A into subarrays such that each subarray A[i, j] of the partition is covered by a
segment fk such that |fk(x)− rank(x)| ≤ ε for each A[i] ≤ x ≤ A[j].

An example of piecewise linear ε-approximation, with ε = 2, is depicted in Figure 2.3.
Its first segment covers A[1, 6], and its second segment covers the remaining A[7, 10].
The storage of this piecewise linear ε-approximation includes the slope and the
intercept of each of the two segments, and the abscissa A[7] where the second

2.3 Piecewise linear ε-approximations 9
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Figure 2.3: A piecewise linear ε-approximation, with ε = 2, composed of two
segments for the same array A of Figures 2.1 and 2.2.

segment starts. This way, given a search key x, depending on whether x < A[7]
or not, we retrieve the first or the second segment’s parameters ⟨αj , βj⟩, and we
compute the approximate position of x as p = ⌊fj(x)⌋ = ⌊αj x + βj⌋. Finally, we run
a binary search on A[p− ε, p + ε] to find the answer rank(x) to the query.2

Among all the possible piecewise linear ε-approximations that one can construct
on a given A[1, n], we aim for the most succinct one, namely the one with the least
amount of segments, or equivalently, the one that maximises the length ℓ of the
subarray A[i, i + ℓ− 1] covered by a segment starting at i.

To this end, we recall a classical computational geometry problem that admits an
optimal O(n)-time algorithm.

Lemma 2.1 (O’Rourke’s algorithm [ORo81]). Given a sequence of n vertical ranges
(a1, b1), . . . , (an, bn) in the plane and corresponding abscissæ x1 < · · · < xn, there
exists an algorithm that in O(n) time finds all the linear functions g(x) = αx + β that
pierce each vertical range, i.e. all pairs ⟨α, β⟩ such that ai ≤ g(xi) ≤ bi for i = 1, . . . , n.

To construct a minimum-sized piecewise linear ε-approximation for A with O’Rourke’s
algorithm, we simply set the input vertical ranges to (1 + ε, 1− ε), . . . , (n + ε, n− ε)

2As a technical note, to correctly approximate the position of the keys falling in-between a segment j
and the next (in the example, any key k such that A[6] = 20 < k < 29 = A[7]), we should compute
the position as p = min{fj(x), fj+1(kj+1)}, where kj+1 is the first key covered by the segment
j + 1 (in the example, the key kj+1 = A[7]).

10 Chapter 2 Basics



and the abscissæ to A[1] < · · · < A[n]. The algorithm then processes each vertical
range left-to-right while shrinking a convex polygon in the parameter space of
slopes-intercepts. Any coordinate (α, β) inside the convex polygon represents a
linear function with slope α and intercept β that approximates with error ε the
current set of processed points of the kind (A[i], i). As soon as the ith vertical range
causes the polygon to be empty, a linear function g can be chosen inside the previous
polygon and written to the output, and a new polygon is started from the ith vertical
range [ORo81].

Theorem 2.1. Given a sorted array A[1, n] and an integer ε ≥ 0, there exists an
algorithm that in O(n) time computes a piecewise linear ε-approximation for A with
the minimum number of segments.

Proof. Pick a segment g(x) = αx + β covering the subarray A[i, j] from the output
of the procedure above, i.e. the output of O’Rourke’s algorithm with input vertical
ranges of the kind (i + ε, i− ε) and corresponding abscissæ of the kind xi = A[i]. By
Lemma 2.1, we know that g was chosen inside the convex polygon containing all
the linear functions piercing the vertical ranges defined for A[i, j], or equivalently,
that g is one of the functions maximising the length of the subarray A[i, j] and is
such that |g(x)− rank(x)| ≤ ε for each x = A[i], . . . , A[j].

We are left with showing that there exists an f (derived from g) such that |f(x)−
rank(x)| ≤ ε for any A[i] ≤ x < A[j] (the case of the values in U \ A occurring
in-between two segments has already been dealt with in Footnote 2).

Without loss of generality, consider two consecutive input keys a, b in A[i, j] and
pick an x such that a ≤ x < b. Observe that, for any such x, it holds rank(x) =
rank(a) = rank(b)− 1. Also, since the input vertical ranges are increasing, we can
assume α ≥ 0, and thus that g is a non-decreasing function.

We let f(x) = ⌊g(x)⌋ and consider two cases. First, if f(x) ≥ rank(x), then

|f(x)− rank(x)| = ⌊g(x)⌋ − rank(x)
≤ g(x)− rank(x)
< g(b)− rank(x)
= g(b)− rank(b) + 1
≤ ε + 1.

Therefore, we have |f(x)− rank(x)| < ε + 1 and, since both sides of this inequality
are integers, we can rewrite it as |f(x)− rank(x)| ≤ ε.

2.3 Piecewise linear ε-approximations 11



Second, if f(x) < rank(x), then

|f(x)− rank(x)| = rank(x)− ⌊g(x)⌋
< rank(x)− g(x) + 1
≤ rank(x)− g(a) + 1
= rank(a)− g(a) + 1
≤ ε + 1,

and the same considerations of the previous case apply. Therefore, we conclude that,
with the choice of f(x) = ⌊g(x)⌋, it holds |f(x) − rank(x)| ≤ ε for any x such that
a ≤ x < b.

In conclusion, we found an implementation of f that is fast to construct, that takes
little space (just three words per segment) and that computes an ε-approximation of
the true position of a key regardless of the learnability of the pattern and trends in
the input data. On the one hand, it reduces to a constant-space and -time solution
for the searching problem when the data is roughly linear. On the other hand, it
adapts to any nonlinearities by employing more than one segment, but no more than
necessary thanks to its minimum-size guarantee.

2.4 Summary

We showed how one of the most basic problems in data structure design can be
reframed as the problem of approximating, or “learning”, the distribution of a set of
n points in a specially-crafted Cartesian plane via a function f . We discussed some
possible implementations of f along with their advantages and drawbacks. Finally,
we introduced the concept of optimal piecewise linear ε-approximation, i.e. an
implementation of f via the most succinct sequence of segments (linear models) that
guarantee a maximum user-given error ε, and we showed that it can be computed
in optimal O(n) time thanks to a classical computational geometry algorithm.
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Effectiveness of piecewise
linear ε-approximations

3

Piecewise linear ε-approximations are the core component of some new space-
efficient data structures that we will introduce in Chapters 4 and 5. To set the stage
for these data structures, we devote this chapter to the study of the effectiveness of
piecewise linear ε-approximations in terms of space usage.

Given that storing a piecewise linear ε-approximation amounts to store a constant
amount of information for each segment — namely the slope, the intercept and
possibly the abscissa/ordinate where the segment starts — we turn our attention
to the equivalent task of counting the number of segments a piecewise linear ε-
approximation is composed of. Moreover, for a fixed input array A and a value ε, we
shall focus only on minimum-sized piecewise linear ε-approximations, which, as we
saw in the previous chapter, can be computed efficiently (Theorem 2.1).

In general, it is hard to predict or bound what will be the number of segments,
as it heavily depends on the regularity of the input data and on the value of ε.
For instance, consider the three situations depicted in Figure 3.1. The first plot
shows an input array A = [3, 6, 9, . . . , 45] with a linear trend, which thus requires
just one segment with slope α = 1/3 and intercept β = 0. The remaining two
plots show a less regular input array A and the two corresponding piecewise linear
ε-approximations for two values of ε, namely ε1 ≫ ε2, giving two and four segments,
respectively.

This notwithstanding, it is not too difficult to prove our first upper bound on the
number of segments, which holds regardless of A and ε.

Lemma 3.1. For any given sorted array A[1, n] and an integer ε ≥ 0, the optimal
piecewise linear ε-approximation for A of Theorem 2.1 is composed of segments covering
subarrays of length at least 2ε′, where ε′ = max{ε, 1}. Consequently, the number of
segments is at most n/(2ε′).

Proof. We first examine the case ε ̸= 0. For any chunk of 2ε consecutive keys
A[i], . . . , A[i + 2ε− 1], consider the linear function g with slope α = 0 and intercept

13
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Figure 3.1: For the data on the left plot, only one segment is needed. On the
remaining two plots, the input data is the same, but different values of ε give a
different number of segments in the piecewise linear ε-approximation.

β = i + ε. It is easy to see that g is far at most ε from the points (A[i], i), . . . ,

(A[i + 2ε− 1], i + 2ε− 1) in the key-position Cartesian plane.

Then, since O’Rourke’s algorithm (cf. Lemma 2.1) finds the set G of all functions
piercing the vertical ranges of size 2ε derived from the keys in A[i, i + 2ε−1], it must
be that g ∈ G. In other words, the computation of any segment cannot stop before
2ε keys have been covered (except possibly due to the exhaustion of the input).

The case ε = 0 is trivial since any two consecutive keys admit a segment that
connects them with no errors.

The above lemma will be very useful in Chapters 4 and 5. Yet, we ought to observe
that it is rather pessimistic. For instance, even for the simple case of linear trends
that require just one segment like the one in the left plot of Figure 3.1, which
nonetheless are not rare in real applications (e.g. an auto-incremented primary key
column in a database table), Lemma 3.1 overestimates the number of segments as
n/2. For this reason, it is customary to continue our study on the effectiveness of
piecewise linear ε-approximations under some additional and possibly real-world
assumptions on the distribution of the input data.

In the rest of this chapter, which is based on [FLV20; FLV21], we show that with
some additional modelling and constraints on the input data (Section 3.1), the
number of segments in a piecewise linear ε-approximation can be as little as O(n/ε2)
(Section 3.2). Then, we discuss the case in which input keys present some form
of correlation (Section 3.3). Finally, we validate our claims with a large set of
simulations and experiments on real and synthetic data (Section 3.4).
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3.1 Preliminaries

We model the sorted input array A as a stream of keys x0, x1, . . . generating the gaps
g1, g2, . . . between keys, so that the ith input key is xi = ∑i

j=1 gj (for convenience,
we fix x0 = 0). We assume that the sequence gaps {gi}i∈N is a realisation of a random
process {Gi}i∈N, where the Gis are positive, independent and identically distributed
(iid) random variables with probability density function (pdf) fG, mean E[Gi] = µ

and variance Var[Gi] = σ2. Then, we define the random variables modelling the
cumulative sum as Xi = ∑i

j=1 Gj (for i = 1, 2, . . . ) and fix X0 = 0.

In this setting, our problem is to find a linear model that approximates the points
(0, 0), (X1, 1), (X2, 2), . . . in the Cartesian plane within a given maximum error ε ≥ 1,
measured along the y-axis.

Now, let us consider the two parallel lines y = αx±ε, for an α to be chosen later, and
the strip S of height 2ε between them, i.e. S = {(x, y) | αx−ε < y < αx+ε}.

To mimic the behaviour of O’Rourke’s algorithm (see Section 2.3), among all the pos-
sible choices of the linear model, we want the one that maximises |S|. Hence, we are
interested in the slope α that maximises the smallest i such that the corresponding
point (Xi, i) is outside S. Formally, we are interested in maximising

i∗ = min{i ∈ N | (Xi∗ , i∗) /∈ S}. (3.1)

Since i∗ is a random variable, we will find its expected value over different realisa-
tions of the sequence {Xi}i∈N as a function of ε, α, µ, σ2. An example of a realisation
is depicted in Figure 3.2a.
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Figure 3.2: An example of random walk (a) and the corresponding transformed
random walk (b).
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3.2 Main results

We recall that the value of i∗ depends on the choice of the slope α, and the objective
of the algorithm is to maximise the expected value of i∗. Our main result is that, in a
suitable limit, this maximum is achieved when α = 1/µ, and in this case the number
of keys covered scales as Θ(ε2).

More precisely, we can prove the following theorems and corollaries characterising
i∗ on general or specific distributions of the gaps between consecutive keys in S

(proofs follow below all the statements).

Theorem 3.1. Given any ε ≥ 1 and a sorted set S of n input keys, suppose that the
gaps between consecutive keys in S are a realisation of a random process consisting of
positive, independent and identically distributed random variables with mean µ and
variance σ2. Then, if ε is sufficiently larger than σ/µ, the expected number of keys
covered by a segment with slope α = 1/µ and maximum error ε is

µ2

σ2 ε2.

The following theorem shows that a segment with slope α = 1/µ is on average the
best possible choice in terms of the number of ε-approximated keys.

Theorem 3.2. Under the assumptions of Theorem 3.1, the largest expected number of
keys covered by a segment with maximum error ε is achieved with slope 1/µ.

The variance of the length of the segment with slope α = 1/µ can also be written in
closed-form.

Theorem 3.3. Under the assumptions of Theorem 3.1, the variance of the number of
keys covered by a segment with slope 1/µ and maximum error ε is

2
3

µ4

σ4 ε4.

By instantiating some common probability distributions in Theorem 3.1, it follows
the next key corollary.

Corollary 3.1. Under the assumptions of Theorem 3.1, the expected number of keys
covered by a segment is:

• 3 (a+b)2

(b−a)2 ε2 if the gaps are iid and uniformly distributed with minimum a and
maximum b.
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• a(a− 2)ε2 if the gaps are iid and Pareto (power law) distributed with minimum
value k > 0 and shape parameter a > 2.

• ε2/(eσ2 − 1) if the gaps are iid and lognormally distributed with mean µ and
variance σ2.

• ε2 if the gaps are iid and exponentially distributed with rate λ > 0.

• kε2 if the gaps are iid and gamma distributed with shape parameter k > 0 and
scale parameter θ > 0.

As the next result shows, the number of keys covered by a segment scales as Θ(ε2)
even when S contains repeated keys, i.e. when some gaps are equal to zero.

Corollary 3.2. Given any ε ≥ 1 and a sorted set S of input keys, suppose that the gap
between any two consecutive keys in S is zero with probability p, and that, with the
remaining probability (1− p), the gap is drawn from a distribution with mean µ and
variance σ2. Define

κ2 = (1− p)µ2

σ2 + pµ2 .

If ε is sufficiently larger than 1/κ, the expected number of keys covered by a segment
with slope α = 1/(µ(1− p)) and maximum error ε is κ2ε2.

Finally, we can show that the number of segments s which have slope α = 1/µ and
guarantee a maximum error ε on a stream of length n is very concentrated around
Θ(n/ε2).

Theorem 3.4. Under the assumptions of Theorem 3.1, the number of segments s

needed to cover a stream of length n with error at most ε converges almost surely to

σ2

µ2
n

ε2 ,

and the relative standard deviation of s converges to zero as 1/
√

n when n→∞.

In the following, given this last result, we will say that the number of segments s is
O(n/ε2) “with high probability” [MR95].

The above theorems are based on the assumption that gaps are independent and
identically distributed. In applications, this condition might not be true and thus it is
important to assess whether our results hold, even in some asymptotic regimes, when
gaps are autocorrelated. We answer this question affirmatively in Section 3.3.
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Proof of Theorem 3.1

Let us consider the Cartesian plane introduced in Section 3.1. By swapping ab-
scissas and ordinates of the plane, the equation of the two parallel lines becomes
y = (x ± ε)/α (x and y are the new coordinates), and the sequence of points be-
comes {(i, Xi)}i∈N. This sequence describes a discrete-time random walk with iid
increments Gi = Xi −Xi−1. The main idea of the proof is to determine the Mean
Exit Time (MET) of the random walk out of the strip delimited by the two lines
above, i.e. the mean of

i∗ = min
{

i ∈ N
∣∣∣ Xi >

i

α
+ ε

α
∨ Xi <

i

α
− ε

α

}
. (3.2)

To simplify the analysis, we consider the following transformed random walk, where
we use the equality Xi = ∑i

j=1 Gj and set Wj = Gj − 1/α:

Zi = Xi −
i

α
=

i∑
j=1

(
Gj −

1
α

)
=

i∑
j=1

Wj .

The objective (3.2) can be thus rewritten as

i∗ = min {i ∈ N | Zi > ε/α ∨ Zi < −ε/α} ,

which is the exit time of the transformed random walk {Zi}i∈N whose increments Wj

are iid with mean E[Wj ] = E[Gj−1/α] = µ−1/α, variance Var[Wj ] = Var[Gj ] = σ2

and pdf fW (w) = fG(w + 1/α).

An example of this transformed random walk is depicted in Figure 3.2b above.

Let T (z0) = E[i∗ | Z0 = z0] be the MET if the random walk {Zi}i∈N starts from
z0. In our case, it starts from z0 = y0 − 0/α = 0 (since y0 = 0). It is well
known [MMP05; Red01] that T (z) satisfies the Fredholm integral equation of the
second kind T (z0) = 1 +

∫ ε/α
−ε/α fW (z − z0) T (z) dz, which for our problem can be

rewritten as

T (z0) = 1 +
∫ ε/α

−ε/α
fG

(
z − z0 + 1

α

)
T (z) dz. (3.3)

While solving exactly the integral equation (3.3) is in general impossible, it is possible
to give a general limiting result when ε is sufficiently large. More specifically, when
α = 1/µ, the transformed random walk Zi has increments with zero mean and
variance equal to σ2, and the boundaries of the strip are at ±εµ. When σ ≪ εµ or
equivalently ε≫ σ/µ, the Central Limit Theorem tells us that the distribution of the
position of the random walker is Normal because many steps are necessary to reach
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the boundary. In this case, the transformed random walk converges to a Brownian
motion (or Wiener process) in continuous time [Gar85].

Now, it is well known [Gar85] that for a driftless Wiener process the MET out of an
interval [−δ/2, δ/2] is

T (x) = (δ/2)2 − x2

σ2 , (3.4)

where x ∈ [−δ/2, δ/2] is the value of the process at the initial time. In our case,
x = 0 and δ = 2ε/α = 2εµ, thus we finally have the statement of the theorem.

Proof of Theorem 3.2

Using an approach similar to the one of the previous section, if α ̸= 1/µ, the
transformed random walk Zi = Xi − 1/α = ∑i

j=1 Wj has increments with mean
d ≡ E[Wj ] = µ − 1/α and variance σ2 (see the previous section). For large ε the
process converges to a Brownian motion with drift. The MET out of an interval
[−δ/2, δ/2] for a Brownian motion with drift coefficient d ̸= 0 and diffusion rate σ

can be proved to be

T (0) = δ

2d

[
edδ/σ2 + e−dδ/σ2 − 2

edδ/σ2 − e−dδ/σ2

]
. (3.5)

To show this, we use the known fact (see [Gar85, §5.2.7]) that the MET T (x) out
of an interval [−δ/2, δ/2] of a Brownian motion with drift d and diffusion rate σ

starting at position x satisfies the differential equation

d
dT (x)

dx
+ σ2

2
d2T (x)

dx2 = −1,

with the boundary conditions

T (δ/2) = T (−δ/2) = 0.

The solution to this Cauchy problem is

T (x) = δ − 2x

2d
+ δ

d

[
e−dδ/σ2 − e−2dx/σ2

edδ/σ2 − e−dδ/σ2

]
.

If the random walker starts at x = 0, this expression becomes T (0) of Equa-
tion 3.5.
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Clearly, by taking the limit d→ 0 (i.e. µ→ 1/α) in (3.5), one obtains Equation 3.4.
As in the proof of Theorem 3.1, we have δ = 2ε/α, thus substituting it in the equation
above we get

T (0) = ε

αd
tanh

(
εd

ασ2

)
.

It is easy to see that the maximum of T (0) is achieved for d = 0, i.e. when α = 1/µ,
which is exactly the setting considered in Theorem 3.1.

Proof of Corollary 3.2

Under the assumptions of the corollary, the gaps Gj have mean value µ̃ = (1− p)µ
and variance σ̃2 = (1−p)(σ2+µ2)−(1−p)2µ2, thus the increments Wj = Gj−1/α =
Gj − µ̃ of the transformed random walk have zero mean and variance σ̃2. Using
Theorem 3.1 and Theorem 3.2, we conclude that the optimal slope is α = 1/µ̃ and
the expected number of keys is (µ̃2/σ̃2) ε2, i.e. the thesis.

Proof of Theorem 3.3

Following Gardiner [Gar85, Equation 5.2.156], the second moment T2(x) of the exit
time of a Brownian motion with diffusion rate σ starting at x is the solution of the
partial differential equation

−2T (x) = σ2

2 ∂2
x T2(x),

where T (x) is the MET out of an interval [−δ/2, δ/2] (see Equation 3.4), with
boundary conditions T2(±δ/2) = 0.

Solving for T2(x), we get

T2(x) = x4 − 2δ2x2/3 + 5δ4/16
3σ4 .

Setting x = 0 and δ = 2ε/α = 2εµ, we find that the second moment of the exit time
starting at x = 0 is

T2(0) = 5
3

µ4

σ4 ε4,

thus

T2(0)− [T (0)]2 = 2
3

µ4

σ4 ε4.
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Proof of Theorem 3.4

Consider a process that starts a new segment j + 1 as soon as the current one j

cannot cover more than i∗
j keys without exceeding the error ε (see Equation 3.2).

We define the total number of segments s on a stream of length n as

s(n) = sup{k ≥ 1 | Sk ≤ n},

where Sk = i∗
1 + i∗

2 + · · ·+ i∗
k.

We notice that {s(n)}n≥0 is a renewal counting process of non-negative integer
random variables i∗

1, . . . , i∗
k, which are independent due to the lack of memory of

the random walk.

Let E[i∗
j ] = 1/λ and Var[i∗

j ] = ς2. It is well known [EMK97, §2.5.2] that E[s(n)] =
λn +O(1) as n → ∞, Var[s(n)] = ς2λ3n + o(n) as n → ∞, and that s(n)/n

a.s.−−→ λ.
In our case (see Theorems 3.1 and 3.3), it holds

1
λ

= µ2

σ2 ε2 and ς2 = 2
3

µ4

σ4 ε4,

hence s(n)/n
a.s.−−→ λ = (σ/(µ ε))2. Finally, the following ratio converges to zero as

n→∞: √
Var[s(n)]
E[s(n)] →

√
ς2λ

n
=
√

2
3

µε

σ

1√
n

.

3.3 A conjecture for the case of correlated keys

In this section, we study the case in which the independence assumption of Sec-
tion 3.2 is waived. Specifically, we study a random process {Gi}i∈N generating
gaps that consist of positive and identically distributed random variables with
mean E[Gi] = µ, variance Var[Gi] = σ2, and covariances C(ℓ) = Cov[Gi, Gi+ℓ] =
E[GiGi+ℓ]− µ2 for any lag ℓ ≥ 1.

As usual, we define the random variables modelling the ith input key Xi as the
cumulative sum Xi = ∑i

j=1 Gj (for i = 1, 2, . . . ) and fix X0 = 0. It is easy to see
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that their mean is E[Xi] = iµ and their variance is

Var[Xi] =
i∑

j=1

i∑
k=1

Cov[Gj , Gk]

=
i∑

j=1
Var[Gj ] + 2

∑
j<i

Cov[Gj , Gi]

= iσ2 + 2 [(i− 1)C(1) + (i− 2)C(2) + · · ·+ C(i− 1)]

= iσ2 + 2
i−1∑
ℓ=1

(i− ℓ)C(ℓ)

= iσ2
[
1 + 2

i−1∑
ℓ=1

(
1− ℓ

i

)
ρ(ℓ)

]
, (3.6)

where ρ(ℓ) ≡ C(ℓ)/σ2 is the autocorrelation function.

When i is much larger than the time scale ℓ0 after which the autocorrelation is
negligible (the “memory” of the process), the ℓ/i term can be neglected.

Hence, as i≫ ℓ0 we get the approximation

Var[Xi] ≃ i

σ2 + 2
ℓ0∑

ℓ=1
C(ℓ)

 = iσ2

1 + 2
ℓ0∑

ℓ=1
ρ(ℓ)

 . (3.7)

Thus for large i, the process becomes exactly diffusive (i.e. the Var[Xi] increases
linearly with i) as in a random walk with iid increments and effective diffusion rate
σ2(1 + 2∑ℓ0

ℓ=1 ρ(ℓ)). We therefore state the following conjecture:

Conjecture 3.1. If ε is sufficiently large, the random walk will make a large number i

of steps, and thus it will satisfy the condition of Theorem 3.1 with mean E[Xi] = iµ

and variance Var[Xi] given by Equation 3.7, giving for the expected number of keys
covered by a segment with slope α = 1/µ and maximum error ε the value

1
1 + 2∑ℓ0

ℓ=1 ρ(ℓ)
µ2

σ2 ε2 ≈ 1
1 + 2∑∞

ℓ=1 ρ(ℓ)
µ2

σ2 ε2.

In the above approximation, we have extended the sum at the denominator from
ℓ ≤ ℓ0 to ℓ → +∞, since by construction ρ(ℓ) is negligible (or zero) when ℓ > ℓ0.
The above formula shows that, in a random walk with correlated increments, the
expected number of keys increases quadratically with ε as in the random walk
with iid increments. The main difference is the prefactor multiplying µ2ε2/σ2:
when the increments are positively correlated (ρ(ℓ) > 0), the prefactor is smaller
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than 1, i.e. the expected number of keys is smaller than for a random walk with iid
increments.

In order to dig into the significance of this observation, let us study a few specific,
yet realistic, examples. In Section 3.4, we provide numerical evidence that the above
conjecture describes accurately the expected number of keys in one of the examples
presented below.

Example 1 (Moving-average process). Let us consider a process {Ui}i∈N of positive
iid variables Ui having mean E[Ui] = µU and variance Var[Ui] = σ2

U . We then assume
that a gap Gi is generated by a convolution of ℓ0 variables Ui as Gi = ∑ℓ0

k=1 ϕiUi,

where ϕi are positive weights, i.e. that {Gi}i∈N is a moving-average process of
order ℓ0.

It is immediate to show that µ := E[Gi] = µU
∑ℓ0

k=1 ϕk and σ2 := Var[Gi] =
σ2

U

∑ℓ0
k=1 ϕ2

k. Moreover, it holds

C(ℓ) = Cov[Gi, Gi+ℓ] =

σ2
U

∑ℓ0−ℓ
k=1 ϕkϕk+ℓ if ℓ < ℓ0

0 otherwise.

In the special case of a flat filter, i.e. ϕi = 1 for any i, it is easy to see that µ = ℓ0µU ,
σ2 = ℓ0σ2

U , and that C(ℓ) = σ2
U (ℓ0−ℓ) if ℓ < ℓ0 and C(ℓ) = 0 otherwise. By plugging

the last definitions of σ2 and C(ℓ) into Equation 3.6, we obtain

Var[Xi] = iℓ0σ2
U + 2i

ℓ0−1∑
ℓ=1

(
1− ℓ

i

)
σ2

U (ℓ0 − ℓ)

≤ iℓ0σ2
U + 2iσ2

U

ℓ0−1∑
ℓ=1

(ℓ0 − ℓ)

= i

(
ℓ0σ2

U + 2σ2
U

ℓ0(ℓ0 − 1)
2

)
= iℓ2

0σ2
U

= iℓ0σ2.

To mimic the statement of Theorem 3.1 in the special case we just described, we
conjecture that if ε is sufficiently larger than σ

√
ℓ0/µ, the expected number of keys

covered by a segment with slope 1/µ and maximum error ε is at least

µ2

σ2ℓ0
ε2. (3.8)
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Example 2 (Autoregressive process). This second example assumes that the gaps
follow an AR(1) process, i.e. Gi = φ Gi−1 + ηi, where φ is a real parameter, and ηi

is a white noise with mean µη and variance σ2
η.

It is well-known [Fel70] that when |φ| < 1

µ := E[Gi] = µη

1− φ
, σ2 := Var[Gi] =

σ2
η

1− φ2 , and C(ℓ) = σ2φℓ.

The autocorrelation function decays exponentially to zero, thus in this case ρ(ℓ) is
never zero, even if the time scale of the process is finite and related to |φ|. The
variance of the random walk is

Var[Xi] = iσ2
[
1 + 2

i∑
ℓ=1

(
1− ℓ

i

)
φℓ

]

= iσ2
(

1 + 2 φ

1− φ
− 2 φ− φi+1

(1− φ)2i

)
.

When i is very large the last (negative) term in brackets becomes negligible, and the
variance of the random walk may be approximated by

Var[Xi] ≃ iσ2 1 + φ

1− φ
.

To mimic the statement Theorem 3.1 in the special case we just described, we
conjecture that if ε is sufficiently larger than

√
1+φ
1−φ

σ
µ , the expected number of keys

covered by a segment with slope 1/µ and maximum error ε is

1− φ

1 + φ

µ2

σ2 ε2. (3.9)

3.4 Experiments

We start with an experiment aimed at validating our main result (Theorem 3.1).1

We generated 107 random streams of gaps for each of the following distributions:
Uniform, Pareto, Lognormal, Exponential/Gamma. For each generated stream S,
we picked an integer ε in the range [1, 28], which contains the values that are the

1The code to reproduce the experiments is available at https://github.com/gvinciguerra/
Learned-indexes-effectiveness. The experiments were run on an Intel Xeon Gold 6132 CPU.
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most effective in practice, as we will see in Chapter 4. Then, we ran the following
piecewise linear ε-approximation construction algorithms with input ε and S:

MET. This is the algorithm that fixes the slope of a segment to 1/µ and stops when
the next point of S is outside the strip of width 2ε, see Equation 3.1. This
corresponds to the random process we used to prove Theorem 3.1.

OPT. This is O’Rourke’s algorithm (see Lemma 2.1), which computes the segment
(of any slope and intercept) that ε-approximate the longest prefix of S.

We analysed the length of the segments computed by the two previous algorithms,
that is, the index of the first key that causes the algorithm to stop because the
(vertical) distance of the point from the segment is larger than ε. We plot in
Figure 3.3 the mean and the standard deviation of these segment lengths. The figure
shows that the theoretical mean segment length computed according to Corollary 3.1
(hence the formula (µ2/σ2) ε2), depicted as a solid black line, accurately describes
the experimented algorithm MET, depicted as red points, over all tested distributions
(just observe that the solid black line overlaps the red points). Moreover, the standard
deviation of the exit time, depicted as a shaded red region, follows the corresponding
bound proved in Theorem 3.3 and depicted as two dashed black lines in each plot.
So our theoretical analysis of Theorem 3.1 is tight.

Not surprisingly, the plots show also that OPT performs better than MET. This is
because MET fixes the slope of a segment to 1/µ, while OPT optimally adapts to
each sequence of points given in input by choosing the slope that maximises the
number of points covered by a segment. Thus it is more robust to outliers and hence
can find longer segments.

Overall this first experiment validates our claim that a piecewise linear ε-approxima-
tion use a space that decreases as fast as O(n/ε2) (Theorem 3.4).

The second experiment analysed the slopes found by OPT over the sequence of
points generated according to the previous experiment, and averaged over ε. We
compared them to the fixed slope 1/µ of MET. Table 3.1 clearly shows that these
slopes are centred around 1/µ, thus confirming the result of Theorem 3.2 that 1/µ

is the best slope on average.

The third experiment was devoted to studying the accuracy of the approximation to
the mean exit time provided by the formula (µ2/σ2) ε2 under the assumption “with
ε sufficiently larger than σ/µ” present in the statement of Theorem 3.1. To this end,
we properly set the distribution parameters to obtain a ratio σ/µ in {0.15, 1.5, 15}.
We plot in Figure 3.4 the relative error between the experimented MET (i.e. the
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Figure 3.3: We consider four gap distributions — Uniform, Pareto, Lognormal,
and Gamma — with various parameter settings. We plot the formula (µ2/σ2) ε2

given in Theorem 3.1 with a solid black line and the Mean Exit Time (MET) of the
experimented random walk with red points. The figure shows that they overlap,
thus the formula stated in Theorem 3.1 accurately predicts the experimented MET.
The figure also shows the performance of the algorithm OPT with green points.
The shaded regions represent the standard deviation. The improvement of OPT
with respect to MET is evident, indicating that OPT is more robust to outliers.
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Distribution Parameters 1/µ Avg. slope range

Uniform a = 0, b = 1 2 [2.000, 2.002]
Uniform a = 0, b = 10 0.2 [0.200, 0.200]
Uniform a = 10, b = 100 0.018 [0.018, 0.018]

Pareto k = 2, a = 2.5 0.3 [0.300, 0.301]
Pareto k = 3, a = 3 0.222 [0.222, 0.222]
Pareto k = 4, a = 3.5 0.179 [0.179, 0.179]

Lognormal µ = 1, σ = 0.5 0.325 [0.325, 0.325]
Lognormal µ = 1, σ = 0.75 0.278 [0.278, 0.278]
Lognormal µ = 1, σ = 1 0.223 [0.223, 0.224]

Exponential λ = 1 1 [1.000, 1.003]
Gamma θ = 3, k = 2 0.167 [0.167, 0.167]
Gamma θ = 6, k = 3 0.056 [0.056, 0.056]

Table 3.1: The range of slopes found by OPT in the experiments of Figure 3.3.
Notice that these ranges are centred and close to 1/µ, which is the theoretical slope
that maximises the MET of the random walk depicted in Figure 3.2a.

empirical mean segment length) and the formula above, as ε grows from 1 to 28.
For the left plot, we notice that for all the distributions the relative error converges
soon to 0 (here, the ratio σ/µ is very small compared to ε). In the middle plot, the
convergence is fast for Gamma and Lognormal distributions, but it is slower for
Pareto because a = 2.202 generates a very fat tail that slows down the convergence
of the Central Limit Theorem. This is a well-known fact [Fel70] since the third
moment diverges and the region where the Gaussian approximation holds grows
extremely slowly with the number of steps of the walk. This effect is even more
evident in the rightmost plot where all the three distributions have very fat tails.
Overall, Figure 3.4 confirms that ε does not need to be “too much larger” than σ/µ

to get convergence to the predicted mean exit time, as stated in Theorem 3.1.

The fourth experiment considered streams of increasing length n (up to 106) that
follow the gap distributions of the first column of Figure 3.3. For each part of a
stream, we computed with the MET algorithm the s segments that approximate that
stream with error ε = 50. By repeating the experiment 104 times, we computed the
average and the standard deviation of s/n. Figure 3.5 shows that for a large n the
distribution of s/n concentrates on λ = (σ/(µ ε))2, with a speed that is faster for
smaller µε/σ, as predicted by Theorem 3.4.

The fifth experiment, reported in Figure 3.6, shows the average segment length of
OPT on real-world datasets of 200 million elements from [Mar+20]. The books data-
set represents book sale popularity from Amazon, while fb contains Facebook user
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Figure 3.4: Three plots for three different settings of the ratio σ/µ for the distri-
butions: Pareto, Gamma and Lognormal. We plot the relative error between the
formula (µ2/σ2) ε2 of Theorem 3.1 and the experimented MET. Notice how the
fat-tail of the distributions affects the accuracy of the formula with respect to MET,
as commented in the text.

IDs. Even though these datasets do not satisfy the assumption of Theorem 3.1, the
fitted curves show a superlinear growth in ε. This suggests that the ε1+O(1) growth
established in our analysis may also be valid on datasets that do not strictly follow
the assumption on iid gaps.

The sixth experiment considered the random process described in Example 1 of
Section 3.3, i.e. streams of gaps generated by moving-average processes of order ℓ0.
Specifically, we computed the moving average of reals drawn from a uniform dis-
tribution (with parameters a = 0, b = 1) by using unit weights ϕi and by varying
ℓ0 in {5, 50, 500}. For each value of ℓ0, we repeated the experiment 107 times, each
time picking an integer ε in the range [1, 28] and running OPT and MET with argu-
ment ε. Figure 3.7 shows that the mean segment length of the two algorithms scales
quadratically in ε and that the conjectured correction of the prefactor related to
autocorrelation is in a very good agreement with simulations. This entails that even
in the case of keys correlated at large lags (e.g. ℓ0 = 500) the result of Theorem 3.1
might still hold, as discussed thoroughly in Section 3.3.

The seventh and final experiment considered the random process described in
Example 2 of Section 3.3, i.e. streams of gaps generated by an autoregressive
process with parameter φ. We sampled the white noise terms from a uniform
distribution (with parameters a = 0, b = 1) and varied φ in {0.1, 0.5, 0.9}. For each
value of φ, we repeated the experiment 107 times, each time picking an integer ε in
the range [1, 28] and running OPT and MET with argument ε. Figure 3.8 shows that
the mean segment length of the two algorithms scales quadratically in ε and that
the conjectured correction of the prefactor related to autocorrelation is in very good
agreement with simulations.
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Figure 3.7: The mean segment length computed by OPT and MET on keys gener-
ated by three moving-average processes of order ℓ0 = 5, 50 and 500, respectively.
The solid black line overlaps the red dots of MET, and thus it shows that Equa-
tion 3.8 provides a good approximation for the case of correlated keys.
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that Equation 3.9 provides a good approximation for the case of correlated keys.
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3.5 Summary

We stated several results on the size of piecewise linear ε-approximations built on a
sorted input array of size n. First, we proved an upper bound ofO(n/ε) that holds for
any kind of input data (Lemma 3.1). Then, we showed that if the gaps between con-
secutive input keys follow a distribution with finite mean and variance, then the size
of a piecewise linear ε-approximation can be bounded by O(n/ε2) (Theorem 3.4).
Moreover, we argued that this last bound may hold also in the case in which the
input keys are correlated. Finally, we performed an extensive set of experiments
corroborating that all our theoretical achievements are highly precise.

The results in this chapter appeared in [FLV20; FLV21]. The code to reproduce the
experiments is publicly available at https://github.com/gvinciguerra/Learned-
indexes-effectiveness.
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Predecessor search 4
We now dig into a generalisation of the searching problem introduced in Chapter 2,
the so-called dynamic predecessor search problem. This problem asks to store an input
set S of n keys drawn from an integer universe U = {0, . . . , u− 1} while supporting
the following query and update operations (for x, y ∈ U):

1. predecessor(x) = max{a ∈ S | a ≤ x};
2. range(x, y) = S ∩ [x, y];
3. insert(x) adds x to S, i.e. S ← S ∪ {x};
4. delete(x) removes x from S, i.e. S ← S \ {x}.

The pervasiveness of these operations in areas such as Internet routing, databases,
search engines, etc. makes predecessor search the most run algorithmic problem in
the world [Pǎt16; Bel16; NR20].

Note that the basic membership or dictionary problem, which only aims to find
whether q ∈ S, is less powerful than the predecessor search problem, as indeed
we can solve it by simply checking whether q = predecessor(q). Besides, the only
availability of the membership operation does not allow implementing range(x, y)
efficiently (unless the universe range [x, y] is small enough to allow an exhaustive
membership test of its elements).

Existing solutions to predecessor search can be categorised according to the tech-
nique they use: length reduction and cardinality reduction [NR20]. The first tech-
nique consists in reducing the size of U recursively (or equivalently, the length of the
searched keys), while the second one consists in reducing the size of S recursively.
Roughly speaking, trie-based data structures implement the former technique, while
comparison-based search trees implement the latter technique.

Prototypical examples of data structures falling in the first category are van Emde
Boas trees [vEB77], which support query and update operations in O(log log u) time
and O(u) space, and Willard’s y-fast tries [Wil83], which reduce the space of van
Emde Boas trees to O(n).

Data structures in the second category range from balanced search trees [Cor+09, Ch.
13], which support query and update operations in O(log n) time and O(n) space, to
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Fredman and Willard’s fusion trees, which support these operations inO(logw n) time
and O(n) space in the w-bit word RAM model we defined in Chapter 2.

From a theoretical standpoint, Pǎtraşcu and Thorup closed the static predecessor
search problem by showing matching lower and upper bounds in the word RAM
model covering a full spectrum of space-time trade-offs [PT06]. Later, they also exten-
ded the results to the dynamic version when randomisation is allowed [PT14].

From a practical standpoint, modern storage systems dealing with massive data
are predominantly based on B-trees and their variants [Pet18; IC20], which are
cardinality reduction–based examples of data structures for external memory.

It is thus useful to introduce a model of computation that better captures the
properties of these modern storage systems, the external memory model. This model
abstracts the memory hierarchy of a computer by modelling just two levels: an
internal memory of limited size M , and an external memory of unlimited size divided
into blocks of B consecutive items [Vit01]. Data is brought into internal memory
and written back to external memory by transferring one block at a time, and the
cost of a block transfer overshadows the cost of arithmetic and logic operations
done by the machine. The efficiency of an algorithm is thus evaluated by counting
the asymptotic number of transfers, or I/Os, it makes for solving a given problem.
In this model, B-trees [Cor+09, Ch. 18] support query and update operations in
O(logB n) I/Os, which is optimal [PT06].

Here, we build on some of the tools and results of the previous chapters and
introduce novel data structures for the dynamic predecessor search problem in
external memory. Compared to the data structures based on length or cardinality
reduction mentioned above, and similarly to [Ao+11; Kra+18; Gal+19; Din+20]
and other subsequent results surveyed in [FV20a], we exploit trends and patterns
in the keys-positions Cartesian plane for the input set S (see Section 2.1). Our
solutions have provably efficient I/O-bounds and are shown to improve the space
occupancy of B-trees from O(n/B) to O(n/B2) under some general assumptions on
the input data.

In the rest of this chapter, which is based on [FV20b], we first design a new static
data structure called the PGM-index (Section 4.1) and make it dynamic (Section 4.2).
Then, we introduce novel techniques for making it compressed (Section 4.3) and
adaptive not only to the input data distribution but also to the query distribution
(Section 4.4). We then show that our data structure can auto-tune itself efficiently to
any given space or latency requirements (Section 4.5). Finally, we test the efficiency
of the PGM-index on real-world datasets of up to 800M keys (Section 4.6).
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4.1 The PGM-index

We assume that the input set S is kept as a sorted array A[1, n] in external memory,
and we want to build an index structure that enables efficient predecessor and range
searches in A using as little space as possible (we defer the discussion on updates to
Section 4.2).

This is common in practice, e.g. when A corresponds to an immutable disk compon-
ent (also referred to as run) in an LSM-based storage system [LC20], and an index
must be built on it to reduce the number of disk I/Os. Here, it is essential to have a
small index, especially considering that there are multiple disk components and thus
multiple indexes to be kept in the faster memory levels, such as in main memory or
in the CPU caches. As a matter of fact, we will see in Section 4.6.2 that just for a
single array A, the corresponding index can take hundreds of megabytes.

The first ingredient of our index structure is the piecewise linear ε-approximation,
which, we recall from Section 2.3, is a sequence of m segments (i.e. linear models)
that maps keys from U to their approximate positions (or rank) in the array A with a
maximum given error of at most ε. We use Theorem 2.1 to compute the piecewise
linear ε-approximation and store the segments contiguously as triples with the first
key key covered by the segment, the slope α and the intercept β.

Since we access to A via block transfers, we will focus on the case ε = Θ(B) so that
a segment allows us to individuate and fetch just O(1) blocks of A containing the
answer to the predecessor search, and then we scan or binary search these blocks
efficiently with no further I/Os.

It now remains for us to explain how to efficiently find a segment responsible for
a query key x, which is the rightmost segment s whose first key s.key is smaller
than or equal to x. A straightforward approach would be to build a B-tree on the
segments which, in additional Θ(m/B) space on top of the m segments, would allow
us to find the correct segment in O(logB m) I/Os, but we will aim for something
more space and time efficient than this.

Our approach, and second ingredient of our index structure, is a recursive design
based entirely on segments. More precisely, we turn the piecewise linear ε-approx-
imation built over A into a subset of keys formed by the first key covered by each
segment (i.e. an abscissa in the keys-positions Cartesian plane), and we proceed re-
cursively by building another piecewise linear ε-approximation over this subset. This
process continues until one single segment is obtained, which forms the root of our
data structure, which we name the Piecewise Geometric Model index (PGM-index).
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Figure 4.1: A PGM-index on an input array A[1, n] is composed of levels of
piecewise linear ε-approximations. Each level is thus a sequence of segments, each
stored as a triple with the first key it covers, its slope α and intercept β.

Overall, each piecewise linear ε-approximation forms a level of the PGM-index, and
each segment of that piecewise linear ε-approximation forms a sort of node of the
data structure at that level, as depicted in Figure 4.1.

This construction process is formalised by Algorithm 1 and analysed here. At
each iteration, we build a new level by computing at Line 5 a piecewise linear
ε-approximation for the array keys[1, m] obtained from the keys in the level below
(initially keys[1, m] = A[1, n]). Since the time spent in each of the l iterations is
dominated by the execution of Line 5, which takes O(m) time (Theorem 2.1), and
since m shrinks by a factor of at least 2ε at each iteration (Lemma 3.1), the time
complexity of Algorithm 1 is O(n +∑l

i=1 n/(2ε)i) = O(n).1

If we map segments to nodes, then this approach constructs a sort of B-tree but with
three main advantages: (i) its nodes have variable fan-out driven by the (typically
large) number of keys covered by the segments associated with those nodes; (ii) the
segment in a node plays the role of a constant-space and constant-time ε-approximate
routing table for the various queries to be supported; (iii) the search in each node
corrects the ε-approximate position returned by that routing table by a binary
search (see next), and thus it has a time cost that depends logarithmically on ε,
independently of the number of keys covered by the corresponding segment.

1Alternatively, we can construct the PGM-index levels simultaneously and in a single pass by keeping
one “under construction segment” for each level. When O’Rourke’s algorithm applied on A outputs
a new segment with key k, we insert k in the segment under construction in the level above
recursively. The time complexity of this alternative construction algorithm is still O(n), but we will
use the same idea in Section 4.2 to support efficient appends (i.e. inserts of keys at the end of A).
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Algorithm 1 PGM-index construction.

Input: Input array A[1, n], maximum error ε ≥ 0
Output: PGM-index as an array of levels

1: levels ← an empty dynamic array
2: l← 1
3: keys ← A
4: repeat
5: M ← build a piecewise linear ε-approximation on keys via Theorem 2.1
6: levels[l]←M
7: l← l + 1
8: m ← SIZE(M)
9: keys ← [M [1].key, . . . , M [m].key]

10: until m = 1
11: return levels[1, l] in reverse order

Algorithm 2 PGM-index query.

Input: Query key x, input array A[1, n], PGM-index levels array levels[1, l]
Output: The predecessor of x in A

1: pos ← fr(x), where r = levels[1][1]
2: for i← 2 to l do
3: lo = max{pos− ε, 1}
4: hi = min{pos + ε, SIZE(levels[i])}
5: s← the rightmost segment s′ in levels[i][lo, hi] such that s′.key ≤ x
6: t← the segment at the right of s
7: pos ← min{fs(x), ft(t.key)}
8: lo = max{pos − ε, 1}
9: hi = min{pos + ε, n}

10: return search for x in A[lo, hi]

We now detail how to perform a predecessor query in the PGM-index. At every
level, we use the segment referring to the visited node to estimate the position
of the searched key x among the keys in the level below. The actual position is
then found by a binary search for x in a range of size 2ε + 1 centred around the
estimated position. Given that every key in the level below is the first key covered by
a segment in that level, we have identified the next segment to query. As shown in
Algorithm 2, this process continues up to the last level, at which point we compute
an approximate position into A and find the answer via a final binary search.2

For example, consider the PGM-index of Figure 4.1, and assume it was built with
ε = 1. To search for the predecessor of x = 75, we start from the root segment

2Recall the observation of Footnote 2 in Chapter 2, which explains the ft(t.key) in Line 7 of
Algorithm 2. Also, in the pseudocode, if there is no segment t at the right of s, we assume that
ft(t.key) returns the number of elements in the level below.
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s′ = levels[1][1] = (2, α1
1, β1

1) and compute the position fs′(x) = ⌊α1
1 x + β1

1⌋ = 2
for the next level. We then search for x in levels[2][1 − ε, 1 + ε] among the keys
[2, 31, 102] (delimited by the cyan bracket), and we determine that the next segment
responsible for x is s′′ = levels[2][2] = (31, α2

1, β2
2) because x falls between 31 and

102. Then, we compute the position fs′′(x) = 3, and hence we search for x in
levels[3][3− ε, 3 + ε] among the keys [31, 48, 71] (delimited by the cyan bracket). This
way, we determine that x > 71, and hence the next segment responsible for x is
s′′′ = levels[3][5] = (71, α3

5, β3
5). Finally, we compute the position fs′′′(x) = 17 for the

next level (i.e. the whole array A), and hence we search for x in A[17− ε, 17 + ε]
among the keys [73, 74, 76] (delimited by the cyan bracket). Eventually, we find that
predecessor(x) = 74.

Theorem 4.1. Given a sorted array A[1, n] and an integer ε ≥ 1, the PGM-index an-
swers predecessor queries in O((logε m) log(ε/B)) I/Os, where B is the block size of the
external memory model. Range queries are answered in extra (optimal) O(K/B) I/Os,
where K is the number of keys satisfying the range query.

Proof. By Lemma 3.1, each level of the PGM-index contains a number of segments
that is at least 2ε smaller than the one in the level below. Therefore, the levels are
l = O(logε m), and the total space required by the index is

∑l
i=0 m/(2ε)i = O(m).

The bound on the I/O-complexity of a predecessor query follows by observing that a
query performs l binary searches over intervals of size at most 2ε + 1. For a range
query, the bound follows by observing that it is sufficient to scan and output K keys
in A starting from the predecessor of the left endpoint of the range.

An interesting setting for Theorem 4.1 is that of ε = Θ(B). In this case, the
PGM-index takes O(m) = O(n/B) space and answers predecessor queries in
O(logB n) I/Os, and thus, according to the lower bound of [PT06], it solves I/O-op-
timally the predecessor search problem in external memory, as B-trees do.

However, compared a B-tree and its variants, the space overhead of a PGM-index
does not grow as Θ(n/B), but it depends on the size O(m) of the piecewise linear
ε-approximation, which in turn depends on the regularity of the input data in the
keys-positions Cartesian plane. In particular, with the results obtained in Section 3.2,
we can prove that the space of a PGM-index can improve the space of a B-tree from
Θ(n/B) to O(m) = O(n/ε2) = O(n/B2), which is significant considering that B in
practical settings is of the order of hundreds or thousands (recall from the beginning
of this section that we are not considering the space taken by A, which is linear in n

for both the B-tree and the PGM-index).
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Corollary 4.1. If A satisfies the regularity assumptions of Theorem 3.4, the PGM-index
takes O(n/B2) space with high probability and answers predecessor queries in optimal
O(logB n) I/Os, where B is the block size of the external memory model.

Finally, for what concerns the RAM model, a straightforward analysis reveals that pre-
decessor queries with a PGM-index run in O(log m + log ε) time. It is possible to im-
prove this bound by using any RAM-efficient predecessor structure over the set of the
first keys covered by the segments in the last level of a PGM-index and discarding the
upper levels. For example, with the structure of [BN15, Appendix A], we obtain the
following result (note that other space-time trade-offs are possible [NR20]).

Theorem 4.2. In the w-bit word RAM model, the PGM-index takes O(m) space and
answers predecessor queries in O(log logw

u
m + log ε) time.

4.2 The Dynamic PGM-index

Insertions and deletions in a PGM-index are more difficult to be implemented
compared to traditional indexes. First and foremost, the fact that a segment could
index a variable and potentially large subset of data makes the classic split and merge
algorithms on B-tree nodes inapplicable, as indeed they rely on the fact that a node
contains a fixed number Θ(B) of keys. One could indeed force the segments to cover
a fixed number of keys, but this would limit the indexing power of the segments at
the core of the PGM-index, which could potentially cover a large number of keys,
such as O(B2) keys (Theorem 3.1). Existing learned indexes suggest inserting new
elements in a sorted buffer for each node (model) which, from time to time, is
merged with the main index, thus causing the retraining of the corresponding model
[Gal+19; Kra+18]. This solution is inefficient when a model indexes many keys
(and thus its retraining is slow), or when the insertions hammer a certain area of
the key-space (thus causing many merges due to the rapid filling of few buffers). In
this section, we propose two improved strategies for handling updates, one targeted
to time series, and the other targeted to more general dynamic scenarios.

If new keys are appended to the end of the array A while maintaining the sorted
order, the PGM-index updates the last segment in O(1) time amortised [ORo81]. If
the new key x can be covered by this last segment while preserving the ε guarantee,
then the insertion process stops. Otherwise, a new segment with key x is created.
The insertion of x is then repeated recursively in the last segment of the level above.
The recursion stops when a segment at any level covers x within the ε guarantee,
or when the root segment is reached. At that point, the root segment might need
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splitting and the creation of a new root node with its corresponding segment. Since
the work at each level takes constant I/Os amortised, the overall number of I/Os
required by this insertion algorithm is O(logε m) amortised.

For inserts that occur at arbitrary positions of A, we use instead the logarithmic
method [BS80; Ove83].3 We define a series of PGM-indexes built over sets S0, . . . , Sb

of keys which are either empty or have size 20, 21, . . . , 2b, where b = Θ(log n).

The insert of a key x finds the first empty set Si and builds a new PGM-index over
the merged set S0 ∪ · · · ∪ Si−1 ∪ {x}. This union can be computed in time linear in
the size of the merged set because the Sjs are sorted (0 ≤ j < i). The new sorted set
consists of 2i keys (given that 2i = 1 +∑i−1

j=0 2j). The new merged set is used as Si,
and the previous sets are emptied. If we consider one key and examine its history
over n insertions, we notice that it can participate in at most b = Θ(log n) merges
because each merge moves the keys to the right indexes and the full Slog n might
include all inserted keys. Given that the merges take time linear in the number of
the merged keys, we pay O(1) time per key at each merge, that is, O(log n) time
amortised per insertion overall.

The deletion of a key x is handled similarly to an insert by adding a special tombstone
value that signals the logical removal of x. As soon as the number of tombstones is
sufficiently large, say n/2, we rebuild the whole data structure by keeping only the
non-deleted elements.

A predecessor query is then implemented by combining the results of the predecessor
queries in each of the b PGM-indexes, thus taking e.g. O(b(log logw

u
m + log ε)) time

with the solution of Theorem 4.2.

A range query for [x, y] starts with a predecessor query for x and then outputs the
keys from each of the b sets, which are sorted, until a key greater than y is found.
The cost is thus given by the cost of a predecessor query plus O(K) time, where K

is the number of keys satisfying the range query.

In the external memory model with page size B, instead, we follow the ideas
of [AV04] and define a series of PGM-indexes with ε = Θ(B) built over sets
S1, . . . , Sb′ of size at most B1, . . . , Bb′

, where b′ = Θ(logB n).

The insert of a key x finds the first set Si such that
∑i

j=1 |Sj | < Bi, builds a new
PGM-index over the merged set S1 ∪ · · · ∪ Si ∪ {x} in O(|Si|/B) = O(Bi−1) I/Os,
and then it empties the sets Sj with j ≤ i. Since

∑i−1
j=1 |Sj | ≥ Bi−1, then at least

3The logarithmic method underlies also the Log-Structured Merge Tree (LSM-tree) [ONe+96], which
is data structure employed in several modern key-value stores [IC20; LC20; DAI18].
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Bi−1 keys are moved to Si, and thus we pay O(1) I/Os per moved key. Since an
element can only move to a larger set, it participates in at most b′ moves during n

insertions, thus the insertion cost is O(b′) · O(1) = O(logB n) I/Os amortised.

A predecessor query combines the results from each of the b′ PGM-indexes and
takes O(b′ logε m) = O((logB n)(logε m)) I/Os. A range query proceeds as de-
scribed before, and thus its I/O-complexity is equal to a predecessor query plus
O(K/B) I/Os.

Summing up, we have proved the following.

Theorem 4.3. Given a sorted array A[1, n] and an integer ε ≥ 1, the Dynamic
PGM-index answers predecessor queries in O((logB n)(logε m)) I/Os, while insertions
and deletions take O(logB n) I/Os amortised, where B is the block size of the external
memory model. Range queries are answered at the cost of a predecessor query plus extra
(optimal) O(K/B) I/Os, where K is the number of keys satisfying the range query.

4.3 The Compressed PGM-index

Compressing the PGM-index boils down to providing proper lossless compressors
for its building blocks, i.e. segments represented via a slope and an intercept.

For what concerns the compression of intercepts, we first recall the Elias-Fano [Eli74;
Fan71] representation for compressing and random-accessing monotone integer
sequences [Nav16, §4.4].

Lemma 4.1 (Elias-Fano encoding). We can store a sequence of n increasing positive
integers over a universe of size u in n⌈log u

n⌉ + 2n + o(n) = n log u
n +O(n) bits and

access any integer of the sequence in O(1) time.

It turns out that intercepts can be made increasing by using the coordinate system
of the segments, i.e. the one that for a segment sj = (keyj , αj , βj) computes the
position of a key x as fsj (x) = ⌊αj(x− keyj) + βj⌋. Then, since the result of fsj (x)
is truncated to return an integer position, we represent the intercepts as integers
⌊βj⌋.4 Finally, since these transformations form an increasing sequence of positive
integers smaller than n, we use Lemma 4.1 to obtain the following result.

Theorem 4.4. Let m be the number of segments of a PGM-index indexing n keys drawn
from a universe U . The intercepts of these segments can be stored using m log n

m +O(m)
bits and be randomly accessed in O(1) time.

4Note that this transformation increases ε by 1 in Algorithm 2.
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The compression of slopes is more involved, and we need to design a specific novel
compression technique. The starting observation is that O’Rourke’s algorithm (see
Section 2.3) computes not just a single segment but a whole family of ε-approximate
segments whose slopes identify an interval of reals. Specifically, let us suppose that
the slope intervals for the m optimal segments are I1 = (a1, b1), . . . , Im = (am, bm),
hence each original slope αj belongs to Ij for j = 1, . . . , m. The goal of our
compression algorithm is to reduce the entropy of the set of these slopes by reducing
their distinct number from m to t. Given the t slopes, we can store them in a table
T [0, t − 1] and then change the encoding of each original αj into the encoding of
one of these t slopes, say α′

j , which is still guaranteed to belong to Ij but now it can
be encoded in ⌈log t⌉ bits (as a pointer to table T ).

Let us now describe the algorithm. First, we sort lexicographically the slope intervals
Ijs to obtain an array I in which overlapping intervals are consecutive. We assume
that every pair keeps as satellite information the index of the corresponding interval,
namely j for (aj , bj). Then, we scan I to determine the maximal prefix of intervals
in I that intersect each other. As an example, say the sorted slope intervals are
{(2, 7), (3, 6), (4, 8), (7, 9), . . . }. The first maximal sequence of intersecting intervals
is {(2, 7), (3, 6), (4, 8)} because these intervals intersect each other, but the fourth
interval (7, 9) does not intersect the second interval (3, 6) and thus is not included
in the maximal sequence.

Let (l, r) be the intersection of all the intervals in the current maximal prefix of I: it
is (4, 6) in the running example. Then, any slope in (l, r) is an ε-approximate slope
for each of the intervals in that prefix of I. Therefore, we choose one real in (l, r)
and assign it as the slope of each of those segments in that maximal prefix. The
process then continues by determining the maximal prefix of the remaining intervals,
until the overall sequence I is processed.

Theorem 4.5. Let m be the number of ε-approximate segments of a PGM-index indexing
n keys drawn from a universe U . There exists a lossless compressor for the segments
which computes the minimum number of distinct slopes t ≤ m while preserving the
ε-guarantee. The algorithm takes O(m log m) time and compresses the slopes into
64t + m⌈log t⌉ bits of space.

Proof. The choice performed by the algorithm is to keep adding slope intervals in
lexicographic order and updating the current intersection (l, r) until an interval
(aj , bj) having aj > r arrives. It is easy to verify that an optimal solution has slopes
within the t intersection intervals found by this algorithm. The space occupancy
of the t distinct slopes in T is, assuming double-precision floats, 64t bits. The new
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slopes α′
j are still m in their overall number, but each of them can be encoded as the

position 0, . . . , t− 1 into T of its corresponding double-precision float.

4.4 The Distribution-Aware PGM-index

The PGM-index of Theorem 4.1 implicitly assumes that the queries are uniformly dis-
tributed, but this seldom happens in practice. For example, queries in search engines
are very well known to follow skewed distributions such as Zipf’s law [WMB99]. In
such cases, it is desirable to have an index that answers the most frequent queries
faster than the rare ones, so to achieve a higher query throughput. Previous work
exploited query distribution in the design of binary trees [BST85], treaps [SA96],
and skip lists [BBG05], to mention a few.

In this section, we introduce a variant of the PGM-index that adapts itself not only
to the distribution of the input keys but also to the distribution of the queries. This
turns out to be the first distribution-aware learned index to date, with the additional
positive feature of being very succinct in space.

Formally speaking, given a sequence S = {(ki, pi)}i=1,...,n, where pi is the probability
to query the key ki (that is assumed to be known), we want to solve the distribution-
aware dictionary problem, which asks for a data structure that searches for a key ki

in time O(log(1/pi)) so that the average query time coincides with the entropy of
the query distribution H = ∑

i=1,...,n pi log(1/pi).

Recall from section 2.3 that O’Rourke’s algorithm (Lemma 2.1) finds the set of all
segments that intersect some given vertical ranges in O(n) time. Our key idea is
to define for every key ki a vertical range of size yi = min {1/pi, ε}, and then to
apply Lemma 2.1 on that set of keys and vertical ranges. Clearly, for the keys whose
vertical range is ε we can use Lemma 2.1 and derive the same space bound of O(m).
For the keys whose vertical range is 1/pi < ε, we observe that they are no more than
ε (in fact, the pis sum up to 1), but they are possibly spread among all positions in A,
and thus they induce in the worst case 2ε extra segments. Therefore, the total space
occupancy of the bottom level of the index is Θ(m + ε), where m is the one defined
in Theorem 4.1. Now, let us assume that the search for a key ki arrived at the last
level of this Distribution-Aware PGM-index, and thus we know in which segment to
search for ki: the final binary search step within the ε-approximate range returned
by that segment takes O(log min{1/pi, ε}) = O(log(1/pi)) as we aimed for.

We are left with showing how to find that segment in a distribution-aware manner,
namely in O(log(1/pi)) time. We proceed similarly to the recursive construction
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of the PGM-index, but with a careful design of the recursive step because of the
probabilities (and thus the variable vertical ranges) assigned to the recursively
defined set of keys.

Let us consider the segment s[a,b] covering the keys in S[a,b] = {(ka, pa), . . . , (kb, pb)},
denote by qa,b = maxi∈[a,b] pi the maximum probability of a key in S[a,b], and by
Pa,b = ∑b

i=a pi the cumulative probability of all keys in S[a,b] (which is indeed the
probability to end up in that segment when searching for one of its keys). To move
to the next upper level of the PGM-index, we create a new set of keys which includes
the first key ka covered by each segment s[a,b] and set its associated probability
to qa,b/Pa,b. Then, we construct the next upper level of the Distribution-Aware
PGM-index by applying Lemma 2.1 to this new set of segments. If we iterate the
above analysis for this new level of “weighted” segments, we conclude that: if we
know from the search executed on the levels above that ki ∈ S[a,b], the time cost to
search for ki in this level is O(log min{Pa,b/qa,b, ε}) = O(log(Pa,b/pi)).

Let us repeat this argument for another upper level to understand the influence on
the search time complexity. We denote the range of keys which include ki in the upper
level with S[a′,b′] ⊃ S[a,b], the cumulative probability with Pa′,b′ , and assign to the
first key ka′ ∈ S[a′,b′] the probability r/Pa′,b′ , where r is the maximum probability of
the form Pa,b of the ranges included in [a′, b′]. In other words, if [a′, b′] is partitioned
into {z1, . . . , zc}, then r = maxi∈[1,c) Pzi,zi+1 . Reasoning as done previously, if we
know from the search executed on the levels above that ki ∈ S[a′,b′], the time cost
to search for ki in this level is O(log min {Pa′,b′/r, ε}) = O(log(Pa′,b′/Pa,b)) because
[a, b] is, by definition, one of these ranges in which [a′, b′] is partitioned.

Repeating this design until one single segment is obtained, we get a total time cost
for the search in all levels of the PGM-index equal to a sum of logarithms whose
arguments “cancel out” (i.e. a telescoping sum) and get O(log(1/pi)).

As far as the space bound is concerned, we recall that the number of levels in the
PGM-index is l = O(logε m), and that we have to account for the ε extra segments
per level returned by the algorithm of Theorem 2.1. Consequently, this distribution-
aware variant of the PGM-index takes O(m + lε) space, which is indeed O(m)
because ε is a constant parameter.

Theorem 4.6. Given a sorted array A[1, n] of keys with corresponding (known) query
probabilities p1, . . . , pn, and given an integer ε ≥ 1, the Distribution-Aware PGM-index
indexes the array A in O(m) space and answers queries in O(H) average time, where
H is the entropy of the query distribution, and m is the size of the optimal piecewise
linear ε-approximation built on A.
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4.5 The Multicriteria PGM-index

Tuning a data structure to match the requirements of an application is often a
difficult and error-prone task for a software engineer, not to mention that these
needs may change over time due to mutations in data distribution, devices, resource
requirements, and so on.

The typical approach is a grid search on the various instances of the data structure
to be tuned until the one that matches the application’s requirements is found.
However, not all data structures are flexible enough to adapt at the best to these
requirements, or conversely, the search space can be so large that an optimisation
process takes too much time [Idr+18; Idr+19].

In the rest of this section, we exploit the flexible design of the PGM-index to show
that the tuning to any space-time requirements can be efficiently automated via
an optimisation strategy that: (i) given a space constraint outputs the PGM-index
that minimises its query time; or (ii) given a query-time constraint outputs the
PGM-index that minimises its space footprint.

The time-minimisation problem. According to Theorem 4.1, the query time of
a PGM-index can be described as t(ε) = δ (log2ε m) log(2ε/B), where B is the
block size of the external memory model, m is the number of segments in the
last level, and δ depends on the access latency of the memory. For the space,
we introduce si(ε) to denote the minimum number of segments needed to have
precision ε over the keys available at level i of the PGM-index and compute the
overall number of segments as s(ε) = ∑l

i=1 si(ε). By Lemma 3.1, we know that
sl(ε) = m ≤ n/(2ε) for any ε ≥ 1 and that si−1(ε) ≤ si(ε)/(2ε). As a consequence,
s(ε) ≤∑l

i=0 m/(2ε)i = (2εm− 1)/(2ε− 1).

Given a space bound smax, the “time-minimisation problem” consists of minimising
t(ε) subject to s(ε) ≤ smax.5 The main challenge here is that we do not have a closed
formula for s(ε) but only an upper bound. In practice, we can model m = sl(ε) with
a simple power law having the form aε−b, whose parameters a and b are properly
estimated on the dataset at hand. The power law covers both the pessimistic case of
Lemma 3.1 and the best case in which the dataset is strictly linear.

Clearly, the space decreases with increasing ε, whereas the query time t(ε) increases
with ε since the number of keys on which a binary search is executed at each level is
2ε. Therefore, the time-minimisation problem reduces to the problem of finding the

5For simplicity, we assume that a disk page contains exactly B keys. This assumption can be relaxed
by putting the proper machine- and application-dependent constants in front of t(ε) and s(ε).
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value of ε for which s(ε) = smax because it is the lowest ε that we can afford. Such
value of ε could be found by a binary search in the bounded interval E = [B/2, n/2],
which is derived by requiring that each model errs at least a page size (i.e. 2ε ≥ B)
since lower ε values do not save I/Os, and by observing that one model is the
minimum possible space (i.e. 2ε ≤ n, by Lemma 3.1). Furthermore, provided that
our power-law approximation holds, we can speed up the search of that “optimal” ε

by guessing the next value of ε rather than taking the midpoint of the current search
interval. In fact, we can find the root of s(ε) − smax, i.e. the value εg for which
s(εg) = smax. We emphasise that such εg may not be the solution to our problem,
as it may be the case that the approximation or the fitting of s(ε) by means of a
power-law is not precise. Thus, more iterations of the search may be needed to find
the optimal ε. Nevertheless, we guarantee to be always faster than a binary search by
gradually switching to it. Precisely, we bias the guess εg towards the midpoint εm of
the current search range via a simple convex combination of the two [Gra06].

The space-minimisation problem. Given a time bound tmax, the “space-minimisa-
tion problem” consists of minimising s(ε) subject to t(ε) ≤ tmax. As for the problem
above, we could binary search inside the interval E = [B/2, n/2] for the maximum
ε that satisfies the time constraint. Additionally, we could speed up this process
by guessing the next iterate of ε via the equation t(ε) = tmax, that is, by solving
for ε the equation δ(log2ε sl(ε)) log(2ε/B) = tmax in which sl(ε) is replaced by the
power-law approximation aε−b for proper a and b, and δ is replaced by the measured
memory latency of the given machine.

Although effective, this approach raises a subtle issue, namely, the time model could
not correctly estimate the actual query time because of hardware-dependent factors
such as the presence of several CPU caches. To further complicate this issue, we note
that both s(ε) and t(ε) depend on the power-law approximation.

For these reasons, instead of using the time model t(ε) to steer the search, we
measure and use the actual average query time t(ε) of the PGM-index over a fixed
batch of random queries. Also, instead of binary searching inside the whole E ,
we run an exponential search starting from the solution of the dominating term
c log(2ε/B) = tmax, i.e. the cost of searching the data. Finally, since t(ε) is subject
to measurement errors (e.g. due to an unpredictable CPU scheduler), we stop the
search as soon as the searched range is smaller than a given threshold.
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4.6 Experiments

We experiment with a C++ implementation of the PGM-index, publicly available
at https://github.com/gvinciguerra/PGM-index, on a machine with 202 GB of
RAM and a 2.30 GHz Intel Xeon Gold 5118 CPU. We use these sorted datasets
from [Mar+20], all containing 64-bit unsigned integer keys:

books 800M keys representing book popularity data from Amazon.

osm 800M OpenStreetMap nodes locations represented using the cell ID numbering
from Google’s S2 library.

face 200M randomly sampled Facebook user IDs.

wiki 200M timestamps of edits to Wikipedia pages.

4.6.1 Implementation notes

We store the segments of a PGM-index contiguously in level-wise order as triples with
a 64-bit unsigned integer key, a floating-point slope, and a 32-bit integer intercept.
For the levels above the last one (e.g. levels[1, 2] in Figure 4.1), we found that
setting ε to a small value (e.g. ε = 4 in the experiments below) and using a linear
search improves the query efficiency without impacting too much the space, as the
number of segments contracts rapidly at each level. Moreover, we do not perform
any bounds checking in Line 5 of Algorithm 2 by using a special segment with key
264 − 1 at the end of each level. Instead, at Line 10, we use a binary search.

For the construction, we parallelise Algorithm 1 by slicing the keys array into p

equal-sized subarrays, where p is the number of processors, and computing a
piecewise linear ε-approximation separately on each subarray. This way, we have an
embarrassingly parallel computation at the cost of adding only at most p−1 segments
compared to the sequential one (indeed, the sequential algorithm could have possibly
computed a longer segment in correspondence of the end of a subarray).

We observe here that a PGM-index can be easily modified to index an array A

with repeated keys by feeding O’Rourke’s algorithm (see Section 2.3 with pairs
(x, rank(x)), where x ranges over all the sorted and distinct keys of A. However, as a
technicality, at the end of a run of repeated keys with value x, if the next key y is not
equal to x + 1, we need to consider the additional pair (x + 1, rank(x)) so that the
output piecewise linear ε-approximation will map the keys in the interval [x + 1, y)
to their correct predecessor position rank(x).
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For the Dynamic PGM-index with base B (cf. Section 4.2), we combine the first j

sets into one larger set of size B1 + · · ·+ Bj , implemented as an array, and perform
sorted insertions there. The value j can be tuned so that the performance of an
insertion in the sorted array is better than the performance of managing j distinct
sets. Moreover, we do not associate a PGM-index to the smaller sets when a simple
binary search is more efficient than constructing and querying an index on that set
(typically, when the corresponding array fits the processor caches).

When loading an empty Dynamic PGM-index from sorted data of size n, we simply
copy the data to the ⌈logB n⌉th set and leave the other sets empty. When inserting
a key and combining several sets, we merge the sets pairwise starting from the
smallest ones, that is, we merge S1 with S2 to produce S1:2, then we merge S1:2 with
S3 to produce S1:3 and so on.

4.6.2 Static scenario

We start by evaluating the performance of some static indexing predecessor structures
built on the keys loaded contiguously in memory and interleaved with 8-byte random
payloads. We test our PGM-index, our re-implementation of a static cache-aware
version of the B+-tree named CSS-tree [RR99], and the RMI of [Kra+18] optimised
by [Mar+20].6 For the PGM-index, we vary ε on the last level of the index as
23, . . . , 212 and fix ε = 4 on the upper levels. For CSS-tree, we vary the page size so
that each node contains B = 24, . . . , 213 routing keys (i.e. a leaf node locates B keys
as the corresponding PGM-index do, since B = 2ε). For RMI, we set a number of
linear regression models in such a way that the final space occupancy matches the
one of the PGM-index, thus yielding a head-to-head comparison.

We generate a batch of 10M predecessor queries chosen uniformly at random from
the input universe7 and measure the average query time in nanoseconds and the
space occupancy of the index structure.

6We skip a direct evaluation of some learned indexes proposed recently, such as FITing-tree [Gal+19],
which is based on a sub-optimal number of segments — on average 2.20× larger than the optimal
one of PGM-index over the ε values and datasets considered here — and a space-consuming B+-tree
over the segments. Indeed, in our previous experiments [FV20b], we showed that the recursive
design of the PGM-index is superior to the ones based on binary search or multiway search trees.
We also skip Radix Spline [Kip+20], which is essentially a flat and static FITing-tree variant with a
lookup table implementing one step of length reduction (see the introduction of this chapter) to
speed up a binary search on the segments. This approach easily degenerates to a full binary search
on the segments when their keys are not uniformly scattered in U .

7This contrasts with the evaluation of [Mar+20; MD21] and our previous experiments in [FV20b],
which only tested positive lookups, i.e. equality searches of keys taken randomly from the input
array A. Neglecting the efficiency of an index on general input queries from U , especially if it is
built by learning the keys-positions mapping, could lead to poor index choices in some applications.
See the discussion in Section 2.2, and Figure 4.3 commented below.
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Figure 4.2: The space-time performance of three indexing structures — PGM-index,
linear RMI, and CSS-tree — in a static scenario with no updates.

The results in Figure 4.2 show that the PGM-index is on average 10.72× as much
compressed as and 8.23% faster than the corresponding CSS-tree (i.e. the same
setting of page size according to the equivalence B = 2ε). Compared to the Linear
RMI with the same space, PGM-index is on average 22.54% faster on books, osm,
wiki, and it is 13.20% slower on face.

We also experiment with the long-running hyperparameter search that finds ten
Hybrid RMIs (with linear and non-linear models) on the space-time Pareto frontier for
a given machine and dataset [Mar+20]. The results in the left plot of Figure 4.3 show
that these hybrid configurations improve the Pareto frontier of PGM-index.

However, even these tuned RMIs are not robust indexing choices due to the lack of
efficient worst-case bounds. Indeed, as shown in the right plot of Figure 4.3, when
an adversary issues queries for the universe keys where RMI has a large prediction

4.6 Experiments 49



200 400 600

104

105

106

107

108

Query time (ns)

In
de

x
si

ze
(b

yt
es

)

Random query workload

400 600 800 1,000 1,200
Query time (ns)

Adversarial query workload

PGM-index
Hybrid RMI

Figure 4.3: The performance of tuned Hybrid RMIs (with linear and nonlinear
models) built on the large osm dataset (800M keys). The left plot shows a random
query workload, and the right plot shows an adversarial query workload crafted for
the Hybrid RMIs. The much-degraded performance of RMI shows the importance
of designing index structures with worst-case bounds, as the PGM-index.

error, RMI gets much slower due to the increased number of binary search steps to
find the correct position.8 This complication, which has been overlooked by prior
work [Kra+18; Din+20; Mar+20], is solved by the PGM-index by providing efficient
worst-case guarantees for any input data and query keys (Theorem 4.1).

4.6.3 Dynamic scenario

We now experiment with the performance of some dynamic predecessor structures,
namely our Dynamic PGM-index, ALEX [Din+20], the ART [LKN13] engineered
by [Dau21], the B-tree engineered by [Goo17], the B+-tree engineered by [Bin18],
and the Y-fast trie engineered by [DFH21].

We take our two largest datasets, books and osm (800M keys), and for each of them,
we generate five batches of 100M operations by extracting uniformly at random 0,
25M, 50M, 75M, 100M keys to be inserted and filling the rest of the batch with query
operations (50% predecessor queries, 50% lookups). The batch is then shuffled, and
the non-extracted keys (≥ 700M) are used to bulk load each data structure. Again,
we consider a scenario with 8-byte keys associated with 8-byte random values.

8See also the poisoning attacks introduced by [KRT20], whereby an attacker inserts maliciously-
crafted keys to increase the prediction error of RMI of up to 3000×.

50 Chapter 4 Predecessor search



AL
EX AR
T

B-
tre

e
B

+ -tr
ee

PG
M

-in
de

x
Y-

fa
st

tri
e

0

100

200

300

400

500

B
ul

k
lo

ad
se

co
nd

s

books

AL
EX AR
T

B-
tre

e
B

+ -tr
ee

PG
M

-in
de

x
Y-

fa
st

tri
e

osm

Figure 4.4: The time to bulk load each dynamic predecessor structure with
over 700M sorted key-value pairs. These results are particularly interesting in
applications where an index must be rebuilt frequently.

As some of the data structures allow configuring some kind of block-size parameter,
we vary this parameter in powers-of-two as follows and show only the fastest
configuration for a given batch. For the B-tree and B+-tree, we vary the page size
from 256 to 4096 bytes. For the PGM-index, we vary the base of the logarithmic
method from 2 to 64.9 For the engineered Y-fast trie, we vary the (sorted) bucket
size from 64 to 512, as in [DFH21].

Bulk load time. As shown in Figure 4.4, the average time to bulk load a data
structure from sorted data is low for PGM-index, B-tree and B+-tree, while it is high
for Y-fast trie, ART, and ALEX, whose times are 8.07×, 16.59×, and 52.60× that of
PGM-index, respectively. This is because the more complex structures of Y-fast trie,
ART and ALEX require more computationally expensive bulk loading algorithms with
respect to the simple data copies required by PGM-index, B-tree and B+-tree.

Average latency. We show in Figure 4.5 the average latency in nanoseconds per
operation on the various query-insert batches, and we observe that:

• PGM-index is faster for insert-heavy workloads (0% to 25% queries).

• PGM-index and ART are faster for balanced workloads (50% queries).

9Here, we only vary the base of the logarithmic method and not ε (which we fix to 16 on the last
level and 4 on the upper levels) to not over-tune our data structure and keep the comparison fair.
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Figure 4.5: The average latency of some dynamic predecessor structures on various
batches of 100M query-insert operations with varying query frequency.

• ART is faster for query-heavy workloads (75% queries).

• PGM-index, ART and ALEX are faster for query-only workloads (100% queries).

Therefore, despite its algorithmic simplicity, the Dynamic PGM-index here achieves
efficient operations over a large spectrum of workloads. This is because of the
combination of the logarithmic method — which allows fast amortised inserts of
new elements — and the static PGM-indexes built on each set of the logarithmic
structure — which allows solving the multiple steps of a query to this structure effi-
ciently. Interestingly, we found that the best performance of the Dynamic PGM-index
is achieved with a logarithmic method in: (i) base 2 for workloads with 0% queries;
(ii) bases 4 and 8 for workloads with 25% queries; (iii) base 8 for workloads with
50% queries; (iv) base 16 for workloads with 75% queries.10 Therefore, as the num-
ber of queries in the workload increases, the base of the logarithmic method should
be set to a higher value, so that the number of sets to be searched decreases.

Space usage. We measure the overall space usage of each data structure after
completing each batch. Note that, unlike in Section 4.6.2 where the input data is
read-only and thus only the index size is considered, here the space usage includes
both the space of the index structure and the size of the data. Indeed, the tested data
structures use different strategies to store the data (e.g. by arranging the keys in a

10The base to be used in a query-only workload is not interesting since only one set in the Dynamic
PGM-index is non-empty and queried, i.e. the Dynamic PGM-index is equivalent to a static one.
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Figure 4.6: The overall space usage of some dynamic predecessor structures
measured after running the batches of Figure 4.5.

trie-like structure like in ART, or by using half-full nodes to accommodate insertions
like in B-tree) that impact on the overall space occupancy (other than on the query-
insert efficiency). We show the results in Figure 4.6 and observe that PGM-index is
the most space-efficient (12.90 GB on average), followed by B-tree (27.54% more
than PGM-index), ALEX (49.76% more), B+-tree (68.86% more), Y-fast trie (89.78%
more), and ART (168.17% more). This space efficiency of PGM-index is due to the
use of the logarithmic method — which saves space by not allocating half-empty
nodes/slots, as instead the other data structures do — and the use of the static
PGM-indexes — which constitute a very succinct indexing mechanism.

Range queries. After completing each query-insert batch, we present each dynamic
predecessor structure with three batches containing 50M range queries, each giving
result sizes of 10, 1K and 100K elements, respectively. All the data structures return
results sorted by key. Figure 4.7 shows the average range query time for each result
size.11 We observe that for a small range size (10 results) all data structures take
from about 2 to 4 µs and ALEX is the fastest. For a medium range size (1K results),
Y-fast trie is the fastest (7.00 µs on average), followed by PGM-index (65.26% more
than Y-fast trie), and ALEX (557.90% more). For large range sizes (100K results),
Y-fast trie is still the fastest (609.17 µs on average), followed by PGM-index (2.95%
more than Y-fast trie), and ALEX (634.88% more).

11We compute the average over the range query times of each dynamic predecessor structure at the
state it is after running the query-insert batches of Figure 4.5. We exclude the query-only batch
(100% queries) from this computation of the average.

4.6 Experiments 53



0

2

4

R
an

ge
qu

er
y

ti
m

e
(µ

s)
books, batch 10 osm, batch 10

0

50

100

150

R
an

ge
qu

er
y

ti
m

e
(µ

s)

books, batch 1K osm, batch 1K

AL
EX AR
T

B-
tre

e
B

+ -tr
ee

PG
M

-in
de

x
Y-

fa
st

tri
e

0

5

10

15

R
an

ge
qu

er
y

ti
m

e
(m

s)

books, batch 100K

AL
EX AR
T

B-
tre

e
B

+ -tr
ee

PG
M

-in
de

x
Y-

fa
st

tri
e

osm, batch 100K

Figure 4.7: The range query time of some dynamic predecessor structures on
two datasets (which correspond to the two columns) and three range result sizes
(which correspond to the three rows).
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4.7 The PGM-index software library

In this section, we describe the PGM-index software library, which is publicly avail-
able at https://pgm.di.unipi.it. The library is written in C++17, and it also
provides a C interface to ease the interoperability with (and the creation of wrappers
for) other programming languages.12

The main classes implemented in the library are PGMIndex, CompressedPGMIndex,
DynamicPGMIndex, which correspond to the data structures previously described in
Sections 4.1 to 4.3, respectively.

An example of usage of the PGMIndex class is given in Listing 4.1. Specifically, Lines 9
to 11 create, fill and sort a vector data of random integers. Line 14 constructs a
PGM-index on data with ε = 128 on the last level and ε′ = 4 on the upper levels.
Lines 17 and 18 use the PGM-index to find the range of positions where a query key
q can be found in data. Lines 19 to 21 perform the final O(log ε)-time binary search
on data[range.lo, range.hi− 1] and print the result.

1 # include <vector >
2 # include <cstdlib >
3 # include <iostream >
4 # include <algorithm >
5 # include "pgm/ pgm_index .hpp"
6
7 int main () {
8 // Generate some random data
9 std :: vector <int > data (1000000);

10 std :: generate (data.begin (), data.end (), std :: rand );
11 std :: sort(data.begin (), data.end ());
12
13 // Construct the PGM -index
14 pgm :: PGMIndex <int , 128, 4> index(data );
15
16 // Query the PGM -index
17 auto q = 42;
18 auto range = index. search (q);
19 auto lo = data.begin () + range.lo;
20 auto hi = data.begin () + range.hi;
21 std :: cout << *std :: lower_bound (lo , hi , q);
22
23 return 0;
24 }

Listing 4.1: Example of usage of the PGMIndex class.

12For example, the library was used to create the PyGM package for Python 3, which provides sorted
set and list containers backed by the PGM-index for efficient query operations. PyGM is available
at https://github.com/gvinciguerra/PyGM.
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Additionally, the library provides several implementation variants of PGMIndex,
which replace the recursive structure on the last-level segments (e.g. levels[1, 2] in
Figure 4.1) with other techniques, as detailed below.

• The OneLevelPGMIndex class, which uses a binary search on the segments.

• The BucketingPGMIndex class, which uses a table T of a user-given size |T |
implementing one step of length reduction to possibly reduce the number of
binary search steps on the segments, i.e. a table T such that the segment
responsible for a query key q can be found after a binary search restricted to
the positions given by T [i] and T [i + 1] for i = ⌊q/(u/|T |)⌋.13

• The EliasFanoPGMIndex class, which uses Lemma 4.1 to store the segments’
keys in O(m log u

m) bits and finds the segment responsible for a query key
in O(min{log m, log u

m}) time via the well-known search algorithm [Nav16,
§4.4.2].

The library also provides the MultidimensionalPGMIndex class, which implements
a data structure for orthogonal range queries in k dimensions, that is, a data
structure that stores a set S ⊆ Uk and answers reporting queries of the kind S ∩Q,
where Q = [a1, b1] × · · · × [ak, bk] is a given k-dimensional query rectangle (with
0 ≤ ai ≤ bi < u for i = 1, . . . , k). Specifically, the MultidimensionalPGMIndex
transforms and sorts the input points using Morton codes14 and implements the
orthogonal range query using a combination of the PGM-index and the algorithm of
[TH81, §4] to efficiently locate the elements in S ∩Q.

Finally, we mention that the library also provides:

1. an implementation of the tuner described in Section 4.5 (under the tuner/
directory of the GitHub repository);

2. some benchmarking code (under the benchmark/ directory of the GitHub
repository) to evaluate and plot the space-time efficiency of the PGM-index
variants described above on user-given data and queries;

3. a MappedPGMIndex class to ease the creation of a memory-mapped file backed
by the PGM-index.

13Observe that when both the universe size u and |T | are powers of two, i.e. u = 2a and |T | = 2b

for some a ≥ b, the computation of i reduces to i = ⌊q/2a−b⌋, which involves a simple bit shift
operation.

14The Morton or z-order code of a k-dimensional point is simply the result of interleaving the
binary representations of its k coordinates. For example, the three-dimensional point (4, 7, 1) =
(100, 111, 001) is encoded as 011 010 110 = 214.
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4.8 Summary

We designed the PGM-index, a data structure for predecessor search that uses a
recursive structure based on piecewise linear ε-approximations to achieve efficient
space-time trade-offs, especially in the external memory model (Theorems 4.1
and 4.3). For particular kinds of input data, we showed that the PGM-index improves
the space of the de facto standard solution in this scenario, the B-tree (Corollary 4.1).
We also compressed the segments at the core of the PGM-index (Theorems 4.4
and 4.5) and made the query time of the PGM-index bounded by the entropy of a
given query distribution (Theorem 4.6). Finally, our large set of experiments showed
that: (i) in the static setting, the PGM-index provides robust query time performance
compared to other learned methods thanks to its worst case bounds, and that it is
10.72× as much compressed as and 8.23% faster than static and cache-aware B+-tree
having the same theoretical guarantee on the query time; (ii) in the dynamic setting,
the PGM-index provides the fastest performance in insert-heavy workloads while
always being the most space-efficient when compared to five known predecessor
structure implementations.

A part of the results in this chapter appeared in [FV20b]. The PGM-index library is
publicly available at https://pgm.di.unipi.it.
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Rank/select dictionaries 5
In this chapter, we consider the problem of representing, in compressed form,
an ordered dictionary A of n elements drawn from the integer universe [u] =
{0, . . . , u− 1} while supporting the following operations:

• rank(x). Given x ∈ [u], return the number of elements in A that are less than
or equal to x;

• select(i). Given i ∈ {1, . . . , n}, return the ith smallest element in A.

This problem is intimately related to the predecessor search problem we saw in
Chapter 4. Indeed, to return the predecessor of x ∈ A, it suffices to execute
y = select(rank(x)). But here, compared to Chapter 4, we have an additional
requirement to represent A in compressed form, while still being able to access its
elements via select and to perform query operations via rank.

Rank/select dictionaries are at the heart of virtually any compact data struc-
ture [Nav16], such as text indexes [FM05; GV05; NM07; MN07; Gog+19;
GNP20], succinct trees and graphs [MR97; RRS07], hash tables [Bel+08], per-
mutations [BN09], etc. Unsurprisingly, the literature is abundant in solutions, as
we will review in Section 5.1. Yet, the problem of designing theoretically and
practically efficient rank/select structures is anything but closed. The reason is
threefold. First, there is an ever-growing list of applications of compact data struc-
tures (in bioinformatics [Fer+18; Mäk+15], information retrieval [Nav14], and
databases [AKS15; Ram18], just to mention a few) each having different character-
istics and requirements on the use of computational resources, such as time, space,
and energy consumption. Second, the hardware is evolving [HP19], sometimes
requiring new data structuring techniques to fully exploit it, e.g. larger CPU registers,
new instructions, parallelism, next-generation memories such as PMem. Third, data
may present different kinds of regularities, which require different techniques that
exploit them to improve the space-time performance.

It is largely this last reason to motivate this chapter. That is, given the fruitful
exploitation of the approximate linearities in the keys-position Cartesian plane for
the predecessor search problem (Chapter 4), can we follow a similar approach to
build novel efficient rank/select dictionaries?

59



In the rest of this chapter, which is based on [BFV21a; BFV21b], we first review some
known rank/select dictionaries (Section 5.1). After, we introduce our novel lossless
compression scheme based on piecewise linear ε-approximations (Section 5.2) and
add proper algorithms and data structures to support fast rank and select operations
on it (Section 5.3). We then design and analyse an algorithm that minimises
the space occupancy of our compression scheme (Section 5.5). We also consider
the combination of our approach with hybrid solutions that partition the datasets
into chunks and apply the best encoding to each chunk (Section 5.6). Finally,
we demonstrate with a large set of experiments that our approach provides new
interesting space-time trade-offs with respect to several well-established rank/select
structures implementations (Section 5.7).

Throughout this chapter, we assume the standard word RAM model of computation
with word size w = Θ(log u) and w = Ω(log n).

5.1 A review of known rank/select dictionaries

Existing rank/select dictionaries differ by the way they encode A and how they use
redundancy to squeeze the space and still support fast operations.

In the most basic case, A is represented via its characteristic bitvector B, namely
a bitvector of length u such that B[i] = 1 if i ∈ A, and B[i] = 0 otherwise, for
0 ≤ i < u. Then, rank(x) is the number of 1s in B[0, x], and select(i) is the position
of the ith 1 in B. One can also be interested in rank0 and select0, which look instead
for the 0s in the bitvector, but it holds rank0(i) = i − rank(i), while select0 can be
reduced to select via other known reductions [Ram16].

It is long known that u + o(u) bits are sufficient to have constant-time rank and
select [Cla96; Mun96]. Provided that we keep B in plain form and look for
constant-time operations, the best that we can aim for the redundancy term o(u) is
Θ(u log log u/ log u) bits [Gol07]. Later, optimal trade-offs were also given in terms
of the density of 1s in B [Gol+14] or for the cell-probe model [PV10; Yu19].

Practical implementations of rank/select on plain bitvectors have been extensively
studied and evaluated experimentally [GP14; Gon+05; NP12; OS07; Vig08].

If A is sparse, i.e. B contains a few 0s or 1s, then it may be convenient to
switch to compressed representations. The information-theoretic minimum space
to store A is B = ⌈log

(u
n

)⌉, which may be much smaller than u. The value B is
related to the (empirical) zero-order entropy of B, H0(B), defined as uH0(B) =
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n log u
n + (u − n) log u

u−n . In fact, B = uH0(B) − O(log u). Here, the best up-
per bound on the redundancy was attained by [Pǎt08], whose solution takes
B+u/( log u

t )t +O(u3/4 log u) bits and supports both rank and select in O(t) time, that
is, constant-time operations in B +O(u/ poly log u) bits. This essentially matches
the lower bounds provided in [PV10]. A widely known solution for a sparse A

is the RRR encoding [RRS07], which supports constant-time rank and select in
B + O(u log log u/ log u) bits of space. There are also representations bounded by
the kth order entropy of B, defined as uHk(B) = ∑

x∈{0,1}k |Bx|H0(Bx) where Bx

is the bitvector concatenating the bits immediately following an occurrence of x

in B. For example, the solution of [SG06] achieves constant-time operations in
uHk(B) +O(u(log log u + k + 1)/ log u) bits.

To further reduce the space, one has to give up the constant time for both operations.
An example is given by the Elias-Fano representation [Eli74; Fan71], which supports
select in O(1) time and rank in O(log u

n) time while taking n log u
n + 2n + o(n) bits

of space [Nav16, §4.4]. Its implementations and refinements proved to be very
effective in a variety of contexts [OS07; OV14; PV17; Vig08; Vig13].

Another compressed representation for A is based on gap encoding. In this case,
instead of B or the zero-order entropy, it is common to use more data-aware meas-
ures [AR19; Fos+06; Gup+07; MN07; SG06]. Consider the gaps gi between
consecutive integers in A taken in sorted order, i.e. gi = select(i) − select(i − 1),
and suppose we could store each gi in ⌈log(gi + 1)⌉ bits. Then the gap measure is
defined as gap(A) = ∑

i⌈log(gi + 1)⌉. An example of a data-aware structure whose
space occupancy is bounded in terms of gap is presented in [Gup+07], which takes
gap(A)(1 + o(1)) bits while supporting select in O(log log n) time and rank in time
matching the optimal predecessor search bounds [PT06; NR20]. Another example
is given in [MN07] taking gap(A) +O(n) + o(u) bits and supporting constant-time
operations. Important ingredients of these gap-based data-aware structures are
self-delimiting codes such as Elias γ- and δ-codes [WMB99].

Recent work [AR19] explored further interesting data-aware measures for bounding
the space occupancy of rank/select dictionaries that take into account runs of
consecutive integers in A. They introduced data structures supporting constant-time
rank and select in a space bounded by these new data-aware measures. This proposal
is mainly theoretical, and indeed the authors evaluated only its space occupancy.
A more practical approach, described in [Arr+18; AW20], combines gap and run-
length encoding by fitting as many gaps gi as possible within a single 32-bit word.
This is done via a 4-bit header indicating how the remaining 28 bits must be decoded
(e.g. one gap of 28 bits, two gaps of 14 bits each, etc.).
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5.2 Compressing via linear approximations

Let us assume that A = {x1, x2, . . . , xn} is a sorted sequence of n distinct integers.
Our idea is to first map A to a Cartesian plane, similarly to what we have done
in Section 2.1 but with the key-position axes swapped. Specifically, we map each
element xi ∈ A to a point (i, xi) in the Cartesian plane, for i = 1, 2, . . . , n.

It is easy to see that any function f that passes through all the points in this plane
can be thought of as an encoding of A because we can recover xi by querying f(i).
Clearly, f should be fast to be computed and occupy little space.

Here, we aim at implementing f via a sequence of segments. Segments capture
certain data patterns naturally. Any run of consecutive and increasing integers, for
example, can be encoded by one segment with slope 1. Generalising, any run of
increasing integers with a constant gap g can be encoded by one segment with
slope g. Slight deviations from these data patterns can still be captured if we allow a
segment to make some “errors” in approximating xi at position i, provided that we
fix these errors by storing some additional information.

We now adapt the Definition 2.1 of piecewise linear ε-approximation to the Cartesian
plane with swapped axes we are considering here.1

Definition 5.1. A piecewise linear ε-approximation for the integer sequence A =
{x1, x2, . . . , xn} is a partition of A into subsequences such that each subsequence
xi, xi+1, . . . , xj of the partition is covered by a segment (i.e. a linear model) f such
that |f(k)− xk| ≤ ε for each k ∈ [i, j].

Again, we use O’Rourke’s algorithm (Lemma 2.1) to compute a piecewise linear
ε-approximation for A with the least amount of segments in O(n) time.

We represent the jth segment as the triple sj = (rj , αj , βj), where αj is the slope,
βj is the intercept, and rj is the abscissa of the point that started the segment. If
ℓ is the number of segments forming the piecewise linear ε-approximation, we set
rℓ+1 = n and observe that r1 = 1. The x-values rjs partition the universe [n] in ℓ

ranges so that, for any integer i between rj and rj+1 (non-inclusive), we use the
segment sj to approximate the value xi as follows:

fj(i) = (i− rj) · αj + βj .

1Although we reuse the name piecewise linear ε-approximation, the reader must not confuse the one
here with the one used previously in Chapters 2 to 4. Here, the ε-guarantee is on the value of the
keys and not on their position in the sorted order. Moreover, here we are not interested in the keys
belonging to U \ A.
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Figure 5.1: The LA-vector encoding of A = {3, 6, 10, 15, 18, 22, 40, 43, 47, 53} for
c = 3 is given by the two segments s1, s2 and the array C. A segment sj =
(rj , αj , βj) approximates the value of an item with rank i via fj(i) = (i−rj)·αj +βj ,
and C corrects the approximation. For example, x5 = ⌊f1(5)⌋+ C[5] = 20− 2 = 18
and x8 = ⌊f2(8)⌋+ C[8] = 43 + 0 = 43.

But fj(i) is an inexact approximation of xi bounded by ε. Then, in order to turn
it into a lossless representation, we complement the values returned by fj with
an array C[1, n] of integers whose modulo is bounded by ε. Precisely, each C[i]
represents the small “correction value” xi − ⌊fj(i)⌋, which belongs to the set {−ε,

−ε + 1, . . . ,−1, 0, 1, . . . , ε}. If we allocate c ≥ 2 bits for each correction in C, then
the piecewise linear ε-approximation is allowed to err by at most ε = 2c−1 − 1. We
also consider the case c = 0, for which we set ε = 0. We ignore the case c = 1,
because one bit is not enough to distinguish corrections in {−1, 0, 1}.

The vector C completes our encoding, which we name linear approximation vector
(LA-vector) and illustrate in Figure 5.1. Recovering the original sequence A is
as simple as scanning the segments sj of the piecewise linear ε-approximation
and writing the value ⌊fj(i)⌋ + C[i] = xi to the output, for j = 1, . . . , ℓ and for
i = rj , . . . , rj+1 − 1. This process, formalised in Algorithm 3, is appealing in practice
because the array C contains tightly-packed integers that are accessed sequentially,
and the computation of fj is fast because its values are loaded into three registers
when sj is first accessed. Moreover, there are no data dependencies among the
iterations (as it happens for example when integers are delta-coded and a prefix
sum is needed).

Recovering a single integer xi requires first the identification of the segment sj that
includes the position i, and then the evaluation of ⌊fj(i)⌋+C[i]. A binary search over
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Algorithm 3 Decompression.

Input: Piecewise linear ε-approximation {s1, . . . , sℓ}, corrections C[1, n]
Output: Uncompressed set A

1: out← an empty array of size n
2: for all segments sj = (rj , αj , βj) in the PLA do
3: for i← rj to rj+1 − 1 do
4: out[i]← ⌊fj(i)⌋+ C[i], where fj = (i− rj) · αj + βj

5: return out

the starting positions rj of the segments in the piecewise linear ε-approximation
would be enough and takes O(log ℓ) time, but we will aim for something more
sophisticated in terms of algorithmic design and engineering to squeeze the most
from this novel approach, as commented in the following sections.

5.2.1 On compression effectiveness

Two counterpoising factors influence the effectiveness of the compressed space
occupancy of the LA-vector.

1. How the integers in A map on the Cartesian plane, and thus how many
segments they require for a lossy ε-approximation. The larger is ε, the smaller
is “expected” to be the number ℓ of these segments.

2. The value of the parameter c ≥ 0, which determines the space occupancy of
the array C, having size nc bits. From above, we know that ε = max(0, 2c−1 −
1), so the smaller is c, the smaller is the space occupancy of C, but the
larger is “expected” to be the number ℓ of segments of the piecewise linear
ε-approximation built for A.

We say “expected” because ℓ depends on the distribution of the points (i, xi) on the
Cartesian plane. In the best scenario, the points lie on one line, so ℓ = 1 and we can
set c = 0. The more these points follow a linear trend, the smaller c can be chosen
and, in turn, the smaller is the number ℓ of segments approximating these points with
error ε. Although in the worst case it holds ℓ ≤ min{u/(2ε), n/2}, because of a simple
adaptation of Lemma 3.1, we will show in Section 5.4 that for sequences drawn from
a distribution with finite mean and variance there are tighter bounds on ℓ. This leads
us to argue that the combination of the piecewise linear ε-approximation and the
array C, on which the storage scheme of the LA-vector hinges upon, is an interesting
algorithmic tool to design novel compressed rank/select dictionaries.

64 Chapter 5 Rank/select dictionaries



At this point, it is useful to formally define the interplay among A, c and ℓ. We
argue that the number ℓ of segments of the optimal piecewise linear ε-approximation
(namely the one using the smallest ℓ) can be thought of as a new compressibility
measure for the information present in A, possibly giving some insights (such as the
degree of approximate linearity of the data) that the classical entropy measures do
not explicitly capture. In the following, we assume c ≤ log u to avoid the case in
which nc exceeds the O(n log u) bits needed by an explicit representation of A.

Definition 5.2. Let A = {x1, x2, . . . , xn} be a sorted sequence of n distinct integers
drawn from the universe [u]. Given an integer parameter c ∈ {0, . . . , log u}, we
define ℓ as the number of segments which constitute the optimal piecewise linear ε-
approximation of maximum error ε = max(0, 2c−1 − 1) computed on the set of points
{(i, xi) | i = 1, . . . , n}.

We are ready to compute the space taken by the LA-vector. As far as the represent-
ation of a segment sj = (rj , αj , βj) is concerned, we note that: (i) the value rj is
an abscissa in the Cartesian plane, thus it can be represented in log n bits;2 (ii) the
slope αj can be encoded as a rational number with a numerator of log u bits and a
denominator of log n bits [ORo81; Xie+14]; (iii) the intercept βj is an ordinate in
the plane, thus it can be represented in log u bits. Therefore, the overall cost of the
piecewise linear ε-approximation is 2ℓ(log n + log u) bits. Summing the nc bits taken
by C gives our first result.

Theorem 5.1. Let A be a set of n integers drawn from the universe [u]. Given
integers c and ℓ as in Definition 5.2, a plain implementation of the LA-vector takes
nc + 2ℓ(log n + log u) bits of space.

We can further improve the space taken by the segments as follows. The rjs
form an increasing sequence of ℓ positive integers bounded by n. The βjs form
an increasing sequence of ℓ positive integers bounded by u.3 Using the Elias-
Fano representation (Lemma 4.1), we reduce the space of the two sequences to
ℓ log n

ℓ + ℓ log u
ℓ + 4ℓ + o(ℓ) = ℓ(log un

ℓ2 + 4 + o(1)) bits. Then, accessing rj or
βj amounts to call the constant-time select(j) on the corresponding Elias-Fano
compressed sequence. Summing the nc bits taken by C and the ℓ(log n + log u) bits
taken by the αjs gives our second result.

2For ease of exposition, we assume that logarithms hide their ceiling and thus return integers.
3This is because βj is the ordinate where sj starts, i.e. βj = fj(rj) (see Figure 5.1 and the definition

of fj). In the text, we referred to βj as the “intercept”, but this is improper because βj is not the
ordinate of the intersection between fj and the y-axis.
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Theorem 5.2. Let A be a set of n integers drawn from the universe [u]. Given integers
c and ℓ as in Definition 5.2, there exists a more compressed version of the LA-vector
that takes nc + ℓ(2 log un

ℓ + 4 + o(1)) bits of space.

Finally, we mention that when multiple segments share the same or similar slope, it
may be beneficial to compress the αjs with Theorem 4.5.

5.2.2 Entropy-coding the corrections

In this section, we show how to further reduce the space of the LA-vector by entropy-
coding the vector of corrections C.

Regard C as a string of length n from an integer alphabet Σ = {−ε,−ε + 1, . . . , ε},
and let nx denote the number of occurrences of a symbol x in C. The zero-order
entropy of C is defined as

H0(C) =
∑
x∈Σ

nx

n
log n

nx
.

The value nH0(C) is the output size of an ideal compressor that uses − log nx
n bits for

coding the symbol x unambiguously [KM99; CT06]. In order to further squeeze the
output size, one could take advantage not only of the frequency of symbols but also
of their preceding context in C. Let Cy be the string of length |Cy| that concatenates
all the single symbols following each occurrence of a context y inside C. The kth
order entropy of C is defined as

Hk(C) = 1
n

∑
y∈Σk

|Cy|H0(Cy).

A well-known data structure achieving zero-order entropy compression is the wavelet
tree [GGV03] with the bitvectors stored in its nodes compressed using RRR [RRS07].
Considering the LA-vector of Theorem 5.2 but compressing C via this approach (see
also [NM07, Theorem 8]), we obtain:

Theorem 5.3. Let A be a set of n integers drawn from the universe [u]. Given integers
c and ℓ as in Definition 5.2, there exists a zero-order entropy-compressed version of the
LA-vector for A that takes nH0(C) + o(nc) + ℓ(2 log un

ℓ + 4 + o(1)) bits of space, and
O(c) time to access a position in C, where C is the vector of corrections.

A well-performing high-order entropy-compressed data structure over strings drawn
from an integer alphabet is the alphabet-friendly FM-index [Fer+04; FV07]. Using
the alphabet-friendly FM-index to store C, we obtain:
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Theorem 5.4. Let A be a set of n integers drawn from the universe [u]. Given integers
c and ℓ as in Definition 5.2, there exists a kth order entropy-compressed version of
the LA-vector for A that takes nHk(C) + o(nc) + ℓ(2 log un

ℓ + 4 + o(1)) bits of space,
and O(c(log1+τ n)/ log log n) time to access a position in C, where C is the vector of
corrections, and τ > 0 is an arbitrary constant.

To get a practical sense of the real compression achieved by the above two entropy-
compressed versions of the LA-vector, we compare experimentally the space taken
by the uncompressed corrections (as adopted in the plain LA-vector) with the space
taken by (i) a Huffman-shaped wavelet tree with RRR-compressed bitvectors on C

(implementing the solution in Theorem 5.3), and (ii) a compressed suffix array based
on a Huffman-shaped wavelet tree with RRR-compressed bitvectors on the Burrows-
Wheeler Transform of C (implementing the solution in Theorem 5.4). We denote the
space taken by these two choices by wt_huff(C) and csa_wt(C), respectively, given
the name of the corresponding classes in the sdsl library [GP14]. For csa_wt(C),
we do not take into account the space taken by the sampled suffix array because
we do not need to support the locate query, which returns the list of positions in C

where a given pattern string occurs. Rather, to get individual corrections from C, we
need the sampled inverse suffix array, which indeed we store and account for in the
space occupancy of csa_wt(C).

Figure 5.2 shows the results with a value c = 7 on four real-world datasets, described
in detail in Section 5.7. For the DNA dataset, there is no significant difference
between the plain corrections and the zero-order entropy-coder wt_huff(C). Instead,
the high-order entropy-coder csa_wt(C) is 33% smaller. For the other three datasets
(5GRAM, URL, and GOV2), both wt_huff(C) and csa_wt(C) are up to 56% and
72% smaller than the plain corrections, respectively. This shows that there is some
statistical redundancy within the array of corrections C that the LA-vector could
deploy to squeeze its space occupancy further.

Another important issue to investigate concerns the impact on the compression of
C that is induced by changing the slopes of the segments in the optimal piecewise
linear ε-approximation computed for LA-vector. Intuitively, as depicted in Figure 5.3,
different slope-intercept pairs satisfying the same ε-bound generate different vectors
C with different entropies. As a consequence, instead of picking a random slope-
intercept pair within the ones that are ε-approximation, one can choose the slope-
intercept pair minimising the entropy of C.

For the experiment in Figure 5.2, we adopted the strategy that always chooses
the maximum slope among the ε-approximate segments for A. In Figure 5.4, we
compare this strategy, which we call mmax, with two other strategies: (i) mmid,
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Figure 5.2: The space needed by the plain corrections C, zero-order entropy-coded
corrections wt_huff(C), and the high-order entropy-coded corrections csa_wt(C)
in an LA-vector with c = 7. Next to each dataset name, we show the density value
n/u as a percentage.

which chooses the average slope between the smallest and the largest feasible slopes,
and (ii) best, a heuristic that selects nine slopes at regular intervals between the
smallest and the largest feasible slopes and picks the one minimising H0(C). For
the DNA and 5GRAM datasets, there is no noticeable improvement in changing the
slope of the segments of the LA-vector. Instead, for URL and GOV2, changing the
slope of each segment from mmax to mmid or best reduces H0(C). Of course, since
the choice best targets only the zero-order entropy of the corrections, the plots show
little or no reduction of Hk(C).

To sum up, we can further reduce the space occupancy of the LA-vector by entropy-
coding its correction vector C. This reduction is particularly interesting in applica-
tions in which the LA-vector is used as an archival method, that is, when efficient
random access and queries are not required. In the following, we concentrate on
how to support efficient select and rank queries over A, so we explore the variant of
the LA-vector in which C is kept uncompressed.
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Figure 5.3: Three possible slopes, mmin, mmid and mmax, for a segment encoding
the set A = {3, 6, 10, 15, 18, 22} with c = 3. Each slope generates a different
vector C with a different entropy: H0(Cmmin) = 2.58, H0(Cmmid) = 0.65, and
H0(Cmmax) = 2.25.
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Figure 5.4: A different choice of the slope of the segments in an LA-vector may
yield a reduced space occupancy of the entropy-coded correction vector C. Here
we show three choices: mmax, mmid and best (see Section 5.2.2).
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5.3 Supporting rank and select

To answer select(i) on the LA-vector (either on the plain implementation of The-
orem 5.1 or the compressed implementation of Theorem 5.2), we build a predecessor
structure D on the set R = {rj | 1 ≤ j ≤ ℓ} and proceed in three steps. First, we
use D to retrieve the segment sj in which i falls into via j = pred(i). Second, we
compute fj(i), i.e. the approximate value of xi given by the segment sj . Third, we
read C[i] and return the value ⌊fj(i)⌋+ C[i] as the answer to select(i). The last two
steps take O(1) time. Treating D as a black box yields the following result.

Lemma 5.1. The LA-vector supports select queries in t + O(1) time and b bits of
additional space, where t is the query time and b is the occupied space of a predecessor
structure D constructed on a set of ℓ integers over the universe [n].

If D is represented as the characteristic bitvector of the set R augmented with a data
structure supporting constant-time predecessor queries (or rank queries, as termed
in the case of bitvectors [Nav16]), then we achieve constant-time select by using
only n + o(n) additional bits, i.e. about one bit per integer of A more than what
Theorem 5.1 requires. Note that this bitvector encodes R, so that the ℓ log n bits
required in Theorem 5.1 for the representation of the rjs can be dropped.

Corollary 5.1. Let A be a set of n integers drawn from the universe [u]. Given integers
c and ℓ as in Definition 5.2, there exists a compressed representation of the LA-vector
for A that takes n(c + 1 + o(1)) + ℓ(2 log u + log n) bits of space while supporting select
in O(1) time.

Let us compare the space occupancy achieved by the compressed LA-vector of
Corollary 5.1 to the one of Elias-Fano, namely n(log u

n+2)+o(n) bits (see Lemma 4.1),
as both solutions support constant-time select. The inequality turns out to be

ℓ ≤ n (log 1
d + o(1))

2 log n
d + log n

= O
(

n

log n

)
,

where d = n/u denotes the density of 1s in B.

To solve rank(x), it would be sufficient to perform a binary search on [n] for the
largest i such that select(i) ≤ x. This naïve implementation takes O(t log n) time,
because of the implementation of select in O(t) time by Theorem 5.1.

We can easily improve this solution to O(log ℓ + log n) time as follows. First, we
binary search on the set of ℓ segments to find the segment sj that contains x or its
predecessor. Formally, we binary search on the interval [1, ℓ] to find the largest j such
that select(rj) = ⌊fj(rj)⌋+C[rj ] ≤ x. Second, we binary search on the rj+1−rj ≤ n
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Algorithm 4 Rank implementation by Lemma 5.2.

Input: x, piecewise linear ε-approximation {s1, s2, . . . , sℓ}, corrections C[1, n]
Output: Returns rank(x)

1: Find max j ∈ [1, ℓ] such that ⌊fj(rj)⌋+ C[rj ] ≤ x by binary search
2: pos ← ⌊(x− βj)/αj⌋+ rj

3: err ← ⌈ε/αj⌉, where ε = max(0, 2c−1 − 1)
4: lo ← max{pos − err , rj}
5: hi ← min{pos + err , rj+1}
6: Find max i ∈ [lo, hi] such that ⌊fj(i)⌋+ C[i] ≤ x by binary search
7: return i

integers compressed by segment sj to find the largest i such that ⌊fj(i)⌋+ C[i] ≤ x.
Finally, we return i as the answer to rank(x).

Surprisingly, we can further speed up rank queries without adding any redundancy
on top of the encoding of Theorem 5.1. The key idea is to narrow down the
second binary search to a subset of the elements covered by sj (i.e. a subset of the
ones in positions [rj , rj+1 − 1]), which is determined by exploiting the fact that sj

approximates all these elements by up to an additive term ε. Technically, we know
that |fj(i) − xi| ≤ ε, and we aim to find i such that xi ≤ x < xi+1. Hence we can
narrow the range to those i ∈ [rj , rj+1 − 1] such that fj(i)− ε ≤ x < fj(i + 1) + ε.
By expanding fj(i) = (i− rj) · αj + βj , noting that f is linear and increasing, we get
all candidate i as the ones satisfying

(i− rj) · αj + βj − ε ≤ x < (i + 1− rj) · αj + βj + ε.

By solving for i, we get

x− βj

αj
+ rj −

(
ε

αj
+ 1

)
< i ≤ x− βj

αj
+ rj + ε

αj
.

Since i is an integer, we can round the left and the right side of the last inequality,
and then we set pos = ⌊(x− βj)/αj⌋+ rj and err = ⌈ε/αj⌉, so that the searched
position i falls in [pos − err , pos + err ].

The pseudocode of Algorithm 4 exploits these ideas to perform a binary search on the
first integers compressed by the segments (Line 1), to compute the approximate rank
and the corresponding approximation error (Lines 2–3), and finally to binary search
on the restricted range specified above (Lines 4–6). As a final note, we observe that
αj ≥ 1 for every j, because xi ∈ A are increasing, and thus the segments have a
slope of at least 1. Consequently, ε/αj ≤ ε and the range on which we perform
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the second binary search has size 2ε < 2c, thus this second binary search takes
O(log ε

αj
) = O(c) time.

Lemma 5.2. The LA-vector supports rank queries in O(log ℓ + c) time and in no
additional space.

Note that Lemma 5.2 applies to: (i) the plain LA-vector representation provided in
Theorem 5.1 (ii) the compressed LA-vector representation provided in Theorem 5.2
(the one that compresses βjs and rjs), (iii) the representation provided in Lemma 5.1
(the one supporting select in parametric time t), and (iv) the representation provided
in Corollary 5.1 (the one supporting select in constant time).

We can improve the bound of Lemma 5.2 by replacing the binary search at Line 1 of
Algorithm 4 with the following predecessor data structure.

Lemma 5.3 ([PT06]). Given a set Q of q integers over a universe of size u, let us define
a = log s log u

q , where s log u is the space usage in bits chosen at building time. Then,
the optimal predecessor search time is

PT(u, q, a) = Θ(min{ log q/ log log u,

log log(u/q)
a ,

log log u
a

/
log( a

log q · log log u
a ),

log log u
a

/
log(log log u

a

/
log log q

a )}).

Let T = {select(rj) | 1 ≤ j ≤ ℓ} be the subset of A containing the first integer
covered by each segment. We sample one element of T out of Θ(2c) and insert the
samples into the predecessor data structure of Lemma 5.3 so that s = q = ℓ/2c and
thus a = log log u. Then, we replace Line 1 of Algorithm 4 with a predecessor search
followed by an O(c)-time binary search in-between two samples.

Corollary 5.2. The LA-vector supports rank queries in PT(u, ℓ/2c, log log u)+O(c) time
and O((ℓ/2c) log u) bits of additional space.

We can restrict our attention to the first two branches of the min-formula describing
the PT term in Lemma 5.3, as the latter two are instead relevant for universe sizes
that are super-polynomial in q, i.e. log u = ω(log q). The time complexity of rank in
Corollary 5.2 then becomes O(min{logw

ℓ
2c , log log u

ℓ } + c), where w = Ω(log u) is
the word size of the machine.
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5.4 Special sequences

We now combine the results of Chapter 3 with the ones achieved by the LA-vector.
Specifically, by plugging the bound on the number of segments ℓ of Theorem 3.4 into
the constant-time select of Corollary 5.1 and the rank implementation of Corollary 5.2,
we obtain the following result.

Theorem 5.5. Under the assumptions of Theorem 3.4, there exists a compressed version
of the LA-vector for A that supports rank in PT(u, nσ2

µ223c−2 , log log u) +O(c) time and

select in O(1) time within n[c + 1 + o(1) + ((2 + 1/2c) log u + log n) σ2

µ222c−2 ] bits of
space with high probability.

We stress the fact that the data structure of Theorem 5.5 is deterministic. In fact, the
randomness is over the gaps between consecutive integers of the input data, and
the result holds for any probability distribution as long as the mean and variance
are finite. Moreover, according to the experiments in Section 3.4, the hypotheses of
Theorem 5.5 are very realistic in several applicative scenarios.

Having said that, we observe that the hypothesis “ε = 2c−1 − 1 is sufficiently larger
than σ/µ” implies that the ratio σ/(µ2c−1) is much smaller than 1. Hence, it is
reasonable to assume that the space bound in Theorem 5.5 is dominated by the
term n(c + 1) which is independent of the universe size while still ensuring constant
time select and fast rank operations. If we compare the factor c + 1 present in the
space bound of the LA-vector with the factor log u

n present in the space bound of
Elias-Fano, we notice that the latter gets larger as the data is sparse (n≪ u). On the
other hand, the time complexity of select is constant in both cases, whereas our rank
is faster whenever log nσ

µ is asymptotically smaller than log u
n , which is indeed for

u = ω(n2σ/µ).

In general terms, some results of the previous sections, such as Corollary 5.1 and
Lemma 5.2, showed that our LA-vector is better than Elias-Fano whenever ℓ =
O(n/ log n). Since Theorem 3.4 proves that ℓ = Θ(n/ε2) for a large class of input
sequences, we can derive that for such sequences our solution is better than Elias-
Fano if ε = ω(

√
log n).

5.5 On optimal data partitioning to improve space

So far, we assumed a fixed number of bits c ≥ 0 for each of the n corrections in the
LA-vector, which is equivalent to saying that the ℓ segments in the piecewise linear
ε-approximation guarantee the same error ε = max(0, 2c−1 − 1) over all the integers
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in the input set A. However, the input data may exhibit a variety of regularities
that allow to compress it further if we use a different c for different partitions of A.
The idea of partitioning data to improve its compression has been studied in the
past [BFG03; FNV11; OV14; SV10; WMB99], and it will be further developed in this
section with regard to our piecewise linear approximations.

We reduce the problem of minimising the space of our rank/select dictionary to
a single-source shortest path problem over a properly defined weighted Directed
Acyclic Graph (DAG) G defined as follows. The graph has n vertices, one for each
element in A, plus one sink vertex denoting the end of the sequence. An edge (i, j)
of weight w(i, j, c) indicates that there exists a segment compressing the integers
xi, xi+1, . . . , xj−1 of A by using w(i, j, c) = (j − i) c + κ bits of space, where c is the
bit-size of the corrections, and κ is the space taken by the segment representation
in bits (e.g. using the plain encoding of Theorem 5.1 or the compressed encoding
of Theorem 5.2). We consider all the possible values of c except c = 1, because
one bit is not enough to distinguish corrections in {−1, 0, 1}. Namely, we consider
c ∈ {0, 2, 3, . . . , cmax}, where cmax = O(log u) is defined as the correction value
that produces one single segment on A. Since each vertex is the source of at most
cmax edges, one for each possible value of c, the total number of edges in G is
O(n cmax) = O(n log u). It is not difficult to prove the following:

Fact 5.1. The shortest path from vertex 1 to vertex n + 1 in the weighted DAG G
defined above corresponds to the piecewise linear ε-approximation for A whose cost is
the minimum among the PLAs that use a different error ε on different segments.

Fact 5.1 provides a solution to the rank/select dictionary problem which minimises
the space occupancy of the approaches stated in Theorems 5.1 and 5.2.

Since G is a DAG, the shortest path can be computed in O(n log u) time by taking
the vertices in topological order and by relaxing their outgoing edges [Cor+09,
§24.2]. However, one cannot approach the construction of G in a brute-force
manner because this would take O(n2 log u) time and O(n log u) space, as each of
the O(n log u) edges requires computing a segment in O(j − i) = O(n) time with
the algorithm of O’Rourke (Lemma 2.1).

To avoid this prohibitive cost, we propose an algorithm that computes a solution on
the fly by working on a properly defined graph G′ derived from G, taking O(n log u)
time and O(n) space. This reduction in both time and space complexity is crucial
to make the approach feasible in practice. Moreover, we will see that the obtained
solution is not “too far” from the one given by the shortest path in G.
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Consider an edge (i, j) of weight w(i, j, c) in G, which corresponds to a segment
compressing the integers xi, xi+1, . . . , xj−1 of A by using w(i, j, c) bits of space.
Clearly, the same segment compresses any subsequence xa, xa+1 . . . , xb−1 of xi, . . . ,

xj−1 still using c bits per correction. Therefore, the edge (i, j) “induces” sub-edges
of the kind (a, b), where i ≤ a < b ≤ j, of weight w(a, b, c). We observe that the
edge (a, b) may not be an edge of G because a segment computed from position a

with correction size c could end past b, thus including more integers on its right.
Nonetheless this property is crucial to define our graph G′.

The vertices of G′ are the same as the ones of G. For the edges of G′, we start from
the subset of edges of G that correspond to the segments in the PLAs built for the
input set A for all the values of c = 0, 2, 3, . . . , cmax. We call these, the full edges of
G′. Then, for each full edge (i, j), we generate the prefix edge (i, i + k) and the suffix
edge (i + k, j), for all k = 1, . . . , j − i. This means that we are “covering” every full
edge with all of its possible “splits” in two shorter edges having the same correction
c as (i, j). The total size of G′ is still O(n log u).

We are now ready to show that the graph G′ has a path whose weight is just an
additive term far from the weight of the shortest path in G. (Notice that this contrasts
with the approaches that obtain a multiplicative approximation factor [FNV11;
OV14].)

Lemma 5.4. There exists a path in G′ from vertex 1 to vertex n + 1 whose weight is
at most κℓ bits larger (in an additive sense) than the weight of the shortest path in G,
where κ is the space taken by a segment in bits, and ℓ is the number of edges in the
shortest path of G.

Proof. We show that a generic edge (i, j) of weight w(i, j, c) = (j − i)c + κ in G
can be decomposed into at most two edges of G′ whose total weight is at most
w(i, j, c) + κ. The statement will then follow by recalling that ℓ is the number of
edges in the shortest path of G.

Consider the piecewise linear ε-approximation for A with the same correction size c

as (i, j). This piecewise linear ε-approximation has surely one segment that either
starts from i or overlaps i. In the former case we are done because the segment
corresponds to the edge (i, j), which appears in G′ as a full edge. In the latter case,
the segment corresponds to a full edge (x, y) such that x < i < y < j, and it is
followed by a segment that corresponds to a full edge (y, z) such that z > j, as
shown in the following picture. In fact, y cannot occur after j otherwise the segment
corresponding to the edge (i, j) would be longer, because the length of a segment in
a piecewise linear ε-approximation is maximised.
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Given this situation, we decompose the edge (i, j) of G into: the suffix edge (i, y)
of (x, y), and the prefix edge (y, j) of (y, z). Both edges (i, y) and (y, j) belong to
G′ by construction, they have correction size c, and their total weight is w(i, y, c) +
w(y, j, c) = (y− i)c + κ + (j − y)c + κ = (j − i)c + 2κ. Since w(i, j, c) = (j − i)c + κ,
the previous total weight can be rewritten as w(i, j, c) + κ, as claimed.

We now describe an algorithm that computes the shortest path in G′ without gen-
erating the full graph G but expanding G′ incrementally so to use O(n) working
space. The algorithm processes the vertices of G from left to right, while maintaining
the following invariant: for i = 1, . . . , n + 1, each processed vertex i is covered by
one segment for each correction size c, and all these segments form the frontier
set J .

We begin from vertex i = 1 and compute the cmax segments that start from i and
have any possible correction size c = 0, 2, 3, . . . , cmax . We set J as the set of these
segments. As in the classic step of the shortest path algorithm for DAGs, we do a
relaxation step on all the (full) edges (i, j), where j is the set of ending positions of
the segments in J , that is, we test whether the shortest path to j found so far can
be improved by going through i (initially, the shortest-path estimates are set to∞
for each vertex) and update such shortest path accordingly [Cor+09, §24.2]. This
completes the first iteration.

At a generic iteration i, we first check whether there is a segment in J that ends
at i. If so, we replace that segment with the longest segment starting at i and
using the same correction size, computed as usual using the algorithm of O’Rourke.
Afterwards, for each full edge (a, b) that corresponds to a segment in J , we first
relax the set of prefix edges of the kind (a, i), then we relax the set of suffix edges of
the kind (i, b). This is depicted in Figure 5.5.

Theorem 5.6. There exists an algorithm that in O(n log u) time and O(n) space
outputs a path from vertex 1 to vertex n + 1 whose weight is at most κℓ bits larger (in
an additive sense) than the shortest path of G, where κ is the space taken by a segment
in bits, and ℓ is the number of edges in the shortest path of G.

Proof. It is easy to see that the algorithm finds the shortest path in G′. Indeed, it
computes and relaxes: (i) the full edges of G′ corresponding to the segments in a
piecewise linear ε-approximation with correction size c when updating the frontier
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Figure 5.5: The algorithm of Theorem 5.6 keeps a frontier with the segments (in
orange) crossing the processed vertex i for each value of the correction size c (here
cmax = 5). For each segment with endpoints ac and bc, which corresponds to a full
edge (ac, bc) with correction size c, the algorithm relaxes the prefix edge (ac, i) and
the suffix edge (i, bc).

set J; and (ii) all prefix (resp. suffix) edges ending (resp. beginning) at a vertex i

when this vertex is processed. Therefore, the algorithm relaxes all the edges of G′

and, according to Lemma 5.4, it finds a path whose weight is the claimed one.

As far as the space occupancy is concerned, the algorithm uses O(n + |J |) = O(n +
log u) = O(n) space at each iteration, since the size of the frontier set is |J | =
cmax = O(log u). The running time is O(|J |) = O(log u) per iteration, plus the cost
of replacing a segment in J when it ends before the processed vertex, i.e. the cost of
computing a full edge. This latter cost is O(n) time for any given value of c and over
all n elements (namely, it is O(1) amortised time per processed element [ORo81]),
thus O(n log u) time over all the values of c.

Given Theorem 5.6, the piecewise linear ε-approximation computed by our algorithm
can be used to design a rank/select dictionary which minimises the space occupancy
of the solutions based on the approaches of Theorems 5.1 and 5.2. Section 5.7 will
experiment with this approach.

5.6 On hybrid rank/select dictionaries

As recalled in Section 5.1, the literature offers a plethora of compressed rank/select
dictionaries. Some take into account the statistical or the combinatorial properties
of the input, others exploit the compressibility of clusters of consecutive integers.
The compression scheme introduced in this chapter, on the other hand, exploits the
“geometric properties” of the input data by accommodating their slight deviations
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from linear trends with the use of small correction values. The choice of the
best compression scheme in terms of space occupancy heavily depends on the
characteristics of the input data, and thus it is reasonable to expect the best gains in
space if we design hybrid solutions that combine several different approaches [AR19;
OV14; SV10].

In the following, we combine the ideas of Section 5.5 with the hybrid rank/select
dictionary of [OV14] and thus design an improved hybrid rank/select dictionary.
This uses a two-level scheme in which the lower level stores A, properly partitioned
into chunks (as detailed below), and the upper level stores, for each lower-level
chunk xi, xi+1, . . . , xj , the integer xi = select(i), the length j − i + 1, and a pointer
to the encoding in the lower level. Therefore, the amount of bits stored in the upper
level for each chunk is upper bounded by F = log u + 2 log n.

Following [OV14], we assign to a generic chunk xi, xi+1, . . . , xj a cost w(i, j) given
by the sum of F and a cost that depends on the encoding of the elements in that
chunk. If u′ = xj − xi is the universe size, and n′ = j − i + 1 is the number of
elements in the chunk, then the cost of that encoding is the minimum of:

• 0 bits, if u′ = n′ and thus the chunk is a run (R) of consecutive integers in
which rank/select can be computed in constant time from xi and i.

• u′ + o(u′) bits, if we use a characteristic bitvector (BV) of size u′ augmented
with the information to support rank and select in constant time.

• n′(⌈log u′
n′ ⌉ + 2) bits, if we use Elias-Fano (EF), which supports select in

O(1) time and rank in O(log u′
n′ ) time.

• n′c + w + c + log cmax bits, if there exists one single segment approximating
all elements of the chunk with correction size c. In this case, select takes
O(1) time and rank takes O(c) time.

Note that the last cost slightly differs from the one in Theorem 5.1. Similarly
to Theorem 5.1, we use n′c bits for the vector of corrections. Differently from
Theorem 5.1, we use c bits to encode the intercept instead of log n bits because the
intercept value is guaranteed to be at most ε far from the value i (which is already
stored in the upper level of the two-level structure), and thus it can be encoded by
shifting i by an amount stored in c = Θ(log ε) bits. Also, we encode the slope in a
word of w bits. Finally, since we need to keep the value c (which possibly changes for
each segment), we use additional log cmax bits per segment, where cmax = O(log u)
is defined as in Section 5.5 as the minimum correction value that produces one
single segment on A.
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The overall cost in bits of the two-level structure corresponding to a partition
P of A into k chunks with endpoints 1 = i0, i1, . . . , ik = n is given by w(P ) =∑k−1

h=0 w(ih, ih+1 − 1). To solve the problem of finding an optimal partition P that
minimises w(P ), we slightly alter the algorithm of [FNV11; OV14] to consider also an
encoding via segments. The algorithm of [FNV11; OV14] finds in O(n log1+ϵ

1
ϵ ) time

and O(n) space a partition whose cost is only 1 + ϵ times larger than the optimal
one, for any given ϵ ∈ (0, 1). This is done via a left-to-right scan of A, hence for
i = 1, . . . , n, that keeps O(log1+ϵ

1
ϵ ) sliding windows that start all from i and are

such that the kth window covers a chunk [i, j] such that either w(i, j) ≤ F (1 + ϵ)k <

w(i, j + 1) or j = n.

A crucial property used in [OV14] is that computing w(i, j) for the first three encoders
above (namely, EF, BV, and R) takes constant time. Instead, computing whether
there is a segment approximating the integers in a chunk requires O(n′) time. Since
we need to compute a segment for each value of c ∈ {0, 2, 3, . . . , cmax}, computing
the (1 + ϵ)-optimal partition P minimising w(P ) takes O(cmax n2 log1+ϵ

1
ϵ ) time and

O(n) space in the presence of segments, where cmax = O(log u).

In Section 5.7.4, we experiment with an approach that uses the greedy algorithm
of Section 5.5 to compute a partition in O(cmax n log1+ϵ

1
ϵ ) time and O(n + cmax) =

O(n) space. It operates by keeping a frontier of cmax segments that overlap the
corresponding window and by updating the frontier when the window moves, as we
have seen in Section 5.5 (see the example in Figure 5.5).

5.7 Experiments

All our experiments were run on a machine with 40 GB of RAM and a 2.40 GHz
Intel Xeon E5-2407v2 CPU.

5.7.1 Implementation notes

The implementation of our LA-vector is done in C++, and its code is available
at https://github.com/gvinciguerra/la_vector. In the following, we will use
the notation la_vector<c>, where c is the correction size, to refer to our plain
dictionary described in Sections 5.2 and 5.3, and use la_vector_opt to denote our
space-optimised dictionary described in Section 5.5.

We store the segments triples sj = (rj , αj , βj) as an array of structures with memory-
aligned fields. This allows for better locality and aligned memory accesses. Since in
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practice the segments are few (see Figure 5.6) and fit the last-level cache, we avoid
complex structures on top of the rjs and the select(rj)s (as suggested by Corollar-
ies 5.1 and 5.2 to asymptotically speed up select and rank, respectively).

To further speed up rank and select, we introduce two small tables of size 216

each that allow accessing in one hop a narrower range of segments to binary
search on. These two tables use fixed-size cells of ⌈log ℓ⌉ bits, because they index
segments. Specifically, the table T1 of size 216 partitions the n keys into blocks of size
d1 = ⌈n/216⌉, so that T1[k] points to the segment covering the first key of the kth
block. This way, a select(i) query can be answered by binary searching the segments
between positions T1[k] and T1[k + 1], where k = ⌊i/d1⌋ is the index of the block
containing the ith key. Similarly, the small table T2 of size 216 partitions the universe
into blocks of size d2 = ⌈u/216⌉, so that T2[y] points to the segment covering the first
position of block y. This way, a rank(x) query can be answered by binary searching
the segments between positions T2[y] and T2[y + 1], where y = ⌊x/d2⌋ is the index
of the block containing value x.

We introduce two other algorithm engineering tricks. The first one is to copy the
first correction C[rj ] into the segment sj structure. This improves the spatial locality
of Line 1 in Algorithm 4, because both C[rj ] and the values needed to compute
fj(rj) are stored nearby. The second trick is a two-level layout for C that reduces
the number of cache misses of Line 6 in Algorithm 4. Specifically, we split C into
an array C1 storing all the corrections C[i] such that i is a multiple of an integer d,
and an array C2 containing the remaining corrections. Note that because of this
split, we must slightly alter select(i) so that it accesses C1[⌊i/d⌋] if i mod d = 0, and
C2[i − ⌊i/d⌋] otherwise. Then, we modify Line 6 to perform two binary searches.
The first one touches only the C[i]s such that i mod d = 0. The second one touches
the Θ(d) correction values in C2 in-between two consecutive positions found by the
first binary search. Experimentally, we found that the best performance is achieved
when d is roughly four cache lines of correction values (i.e. d = ⌈4 · 512/c⌉ in our
machine with 512-bit cache lines).

5.7.2 Baselines and datasets

We use the following rank/select dictionaries from the Succinct Data Structures
Library (sdsl) [Gog+14]:

sd_vector: the Elias-Fano representation for increasing integer sequences with
constant-time select [OS07].
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rrr_vector<t>: a practical implementation of the H0-compressed bitvector of Ra-
man, Raman and Rao with t-bit blocks [CN08; RRS07].

enc_vector<γ/δ, s>: it encodes the gaps between consecutive integers via either
Elias γ- or δ-codes. Random access is implemented by storing, with sample
rate s, an uncompressed integer and a bit-pointer to the beginning of the code
of the following gap. We implemented rank via a binary search on the samples,
followed by the sequential decoding and prefix sum of the gaps in-between
two samples.

We also use the following rank/select dictionaries from the Data Structures for
Inverted Indexes (ds2i) library [OV14]:

uniform_partitioned: it divides the input into fixed-sized chunks and encodes
each chunk with Elias-Fano.

opt_partitioned: it divides the input into variable-sized chunks and encodes each
chunk with Elias-Fano. The endpoints are computed by a dynamic program-
ming algorithm that minimises the overall space.

In both structures above, endpoints and boundary values of the chunks are stored
in a separate Elias-Fano data structure. For a fair comparison, we disallow the
use of encoding schemes for chunks different from Elias-Fano, and we defer the
experimentation of such hybrid rank/select dictionaries to Section 5.7.4.

To widen our experimental comparison, we also use:

rle_vector<b>: it implements a run-length encoding of the input bitvector by
alternating the lengths of runs of 0s and 1s, coded in VByte (but over nibbles).
To support efficient operations, two separate sd_vectors store, for each b-byte
block, the position and the rank of the first 1-bit in the block. [Mäk+10].4

s18_vector<b>: it uses gap and run-length encoding to compress the input bitvector
via a sequence of 32-bit codes. To support efficient operations, it stores rank
and select samples every b codes [AW20].

We test lists of integers originating from different applications. We select these lists
so that their density n/u vary significantly, viz. up to three orders of magnitude. The
universe size u never exceeds 232 − 1, because the implementations in ds2i only
support 32-bit integers. We use the following datasets, whose characteristics are
summarised in Table 5.1.

4The implementation of rle_vector is available at https://github.com/vgteam/sdsl-lite.
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Table 5.1: Characteristics of the datasets

Dataset Density n/u n (M) u (M) Size in MiB

GOV2 AVG +10M (53.0%) 53.04% 13.06 24.62 49.81
GOV2 AVG 1M-10M (13.4%) 13.37% 3.29 24.62 12.56
GOV2 AVG 100K-1M (1.3%) 1.29% 0.31 24.56 1.20

URL (5.6%) 5.58% 57.97 1039.92 221.16
URL (1.3%) 1.30% 13.55 1039.91 51.72
URL (0.4%) 0.36% 3.73 1039.86 14.23

5GRAM (9.8%) 9.85% 145.39 1476.73 554.64
5GRAM (2.0%) 1.98% 29.19 1476.72 111.80
5GRAM (0.8%) 0.76% 11.21 1476.68 42.79

DNA (30.0%) 30.02% 300.23 999.99 1145.32
DNA (6.0%) 6.00% 60.03 999.99 229.00
DNA (1.2%) 1.20% 12.00 999.99 45.79

GOV2 is an inverted index built on a collection of about 25M .gov sites, in which
document identifiers were assigned according to the lexicographic order of
their URLs [OV14]. In Figures 5.2, 5.4 and 5.6, we use the longest inverted
list which has a density of 76.6%. In Figures 5.7 and 5.8, we instead test all
solutions over each list separately and average the results over lists of lengths
100K–1M, 1M–10M and > 10M. This grouping of lists by length induces an
average density of 1.29%, 13.37% and 53.04%, respectively.

URL is a text file of 1.03 GB containing URLs originating from three sources,
namely a human-curated web directory, global news, and journal articles’
DOIs.5 On this file, we first applied the Burrows-Wheeler Transform (BWT),
as implemented by [FGM12], and then we generated three integer lists by
enumerating the positions of the ith most frequent character in the resulting
BWT. The different list sizes (and densities) were achieved by properly setting i,
and they were 3.7M (0.36%), 13M (1.30%) and 57M (5.58%).

5GRAM is a text file of 1.4 GB containing 60M different five-word sequences
occurring in books indexed by Google.6 As for URL, we first applied the BWT
and then generated three integer lists of sizes (densities): 11M (0.76%), 29M
(1.98%) and 145M (9.85%).

DNA is the first GB of the human reference genome.7 We generated an integer list

5Available at https://kaggle.com/shawon10/url-classification-dataset-dmoz, https://doi.
org/10.7910/DVN/ILAT5B, and https://archive.org/details/doi-urls, respectively.

6Available at https://storage.googleapis.com/books/ngrams/books/datasetsv3.html.
7Available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39.
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Figure 5.6: The ratio between the number of segments ℓ and the size n of the
largest datasets at different correction sizes c.

by enumerating the positions of the A nucleobase. Different densities were
achieved by randomly deleting an A-occurrence with a fixed probability. The
list sizes (and densities) are 12M (1.20%), 60M (6.00%) and 300M (30.02%).

As a first experiment, we show in Figure 5.6 that the number of segments ℓ in the
piecewise linear ε-approximation of the various datasets is orders of magnitude
smaller than the input size. These figures make our approach very promising. The fol-
lowing experiments will assume c ≥ 6 for la_vector<c> because, on these datasets,
smaller values of c make ℓ too large, and thus the space occupied by the segments
becomes significantly larger than the space taken by the correction array C.

5.7.3 Experiments on rank and select

We now experiment with the time and space performance of rank/select dictionaries
by running them on each dataset (of size n) with a batch of 0.2n random queries. For
clarity of the plots, we only show the implementations that use less than 16 bits per in-
teger and whose average query time is not too high with respect to the others.

Performance of select. Figure 5.7 shows the results for select. We notice that our
la_vector<c> variants consistently provide the best time performance. This comes
at the cost of requiring c bits per integer, plus the cost of storing the segments. For
very low densities (plots in the first column) and low values of c, the overhead due
to the segments may exceed C (see e.g. 5GRAM and DNA, where the set of LA-vector
configurations is U-shaped). This unlucky situation is solved by la_vector_opt,
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which avoids the tuning of c by computing the piecewise linear ε-approximation
that minimises the overall space, possibly adopting different c for different segments.
Note that la_vector_opt is always faster than the plain Elias-Fano encoding (i.e.
sdsl::sd_vector), except for large densities in DNA (i.e. 30%), and it is also more
compressed on the GOV2, 5GRAM and URL datasets.

The other Elias-Fano encodings are generally fast as well, with ds2i::uniform_-
partitioned and opt_partitioned being more compressed but roughly 50 ns
slower than sdsl::sd_vector due to the use of a two-level structure. In any case,
our la_vector_opt and la_vector<c> are not dominated by these advanced Elias-
Fano variants over all the datasets, except for large densities in DNA.

For what concerns sdsl::enc_vector and sdsl::rrr_vector, they are pretty slow
although offering very good compression ratios. The slow performance of select in
the latter is due to its implementation via a combination of a binary search on a
sampled vector of ranks plus a linear search in-between two samples.

The same goes for s18_vector, which is very succinct but not fast, in fact, it is only
on the Pareto frontier of the URL dataset.

Finally, we notice that rle_vector is dominated in time and space by some other
data structure on all the datasets except for URL (0.4%).

Performance of rank. Figure 5.8 shows the results for rank. We observe that
sdsl::rrr_vector and sdsl::sd_vector achieve the best time performance with
LA-vector following closely, i.e. within 120 ns or less. However, at low densities
(first column of Figure 5.8), sdsl::rrr_vector has a very poor space performance,
more than 10 bits per integer.

Not surprisingly, sdsl::enc_vector< ·, s> has often the slowest rank, because it
performs a binary search on a vector of n/s samples, followed by the linear decoding
and prefix sum of at most s gaps coded with γ or δ.

s18_vector is very succinct but not fast, in fact, it is only on the Pareto frontier of
the URL dataset, as it occurred for the select query.

rle_vector is dominated in time and space by some other data structure on all the
datasets except for URL (0.4%), as it occurred for the select query.

Note that for GOV2, URL and 5GRAM our la_vector_opt falls on the Pareto frontier
of Elias-Fano approaches thus offering an interesting space-time trade-off also for
the rank query.
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Figure 5.7: Space-time performance of the select query.
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Figure 5.8: Space-time performance of the rank query.
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Discussion on the space-time performance. Overall, from the experiments above,
we observe that:

• sdsl::rrr_vector provides the fastest rank but the slowest select. Its space is
competitive with other implementations only for moderate and large densities
of 1s.

• The Elias-Fano approaches provide fast rank and moderately fast select in
competitive space. In particular, the plain Elias-Fano (sdsl::sd_vector)
offers fast operations but in a space competitive with other structures only
on DNA; while the partitioned variants of Elias-Fano implemented in ds2i
offer the best compression but at the cost of slower rank and select. On low
densities of the DNA datasets (i.e. 6.0% and 1.2%) the implementations of
ds2i provide the best time and space performance.

• sdsl::enc_vector< ·, s> provides a smooth space-time trade-off controlled by
the s parameter, but it has non-competitive rank and select operations.

• s18_vector is very succinct but provides generally slow rank and select opera-
tions. It is only on the Pareto frontier of the URL datasets.

• rle_vector is only on the Pareto frontier of URL (0.4%).

• Our la_vector<c> offers the fastest select, competitive rank, and a smooth
space-time trade-off controlled by the c parameter, where values of c ≥ 6 were
found to “balance” the cost of storing the corrections and the cost of storing the
segments. Our space-optimised la_vector_opt in most cases (i) dominates
the space-time performance of la_vector<c>; (ii) offers a select which is faster
than all the other tested approaches; (iii) offers a rank which is on the Pareto
frontier of Elias-Fano approaches.

Finally, for the construction times over the various datasets, we report that our
la_vector<c> (we averaged over the values of c used in Figures 5.7 and 5.8) builds
1.41× faster than sdsl::enc_vector, 2.45× faster than sdsl::rrr_vector, 9.74×
faster than s18_vector, and 1.89× slower than sdsl::sd_vector. The space-
optimised la_vector_opt instead builds 82.18× slower than the plain la_vector<c>,
and 2.41× slower than the homologous space-optimised Elias-Fano (i.e. ds2i::opt_-
partitioned). Future work is needed to improve the construction performance of
la_vector_opt.
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Table 5.2: Number of chunks in the hybrid approach of Section 5.6 that are better
compressed by a segment (plus corrections).

Dataset Number of
chunks that

use a segment

% of chunks
that use a
segment

% elements
encoded with

a segment

GOV2 AVG +10M (53.0%) 2217 11.21% 12.43%
GOV2 AVG 1M-10M (13.4%) 424 4.57% 9.53%
GOV2 AVG 100K-1M (1.3%) 44 2.74% 4.91%

URL (5.6%) 30396 15.35% 22.69%
URL (1.3%) 7356 10.02% 9.99%
URL (0.4%) 2093 26.76% 54.97%

5GRAM (9.8%) 31911 8.44% 14.44%
5GRAM (2.0%) 5640 5.10% 13.49%
5GRAM (0.8%) 1640 3.41% 6.88%

DNA (30.0%) 215 0.03% 0.01%
DNA (6.0%) 0 0% 0%
DNA (1.2%) 0 0% 0%

5.7.4 Experiments on hybrid rank/select dictionaries

We evaluate the hybrid structure of Section 5.6 that combines segments, Elias-
Fano (EF), plain bitvectors (BV), and runs (R) of consecutive integers. We look in
particular at how many chunks and how many integers are encoded via segments,
and thus the impact of our “geometric” approach on the hybrid rank/select dictionary
of [OV14].

From the results in Table 5.2, we notice that the segments are chosen as encodings
of the chunks in all the datasets except for DNA (6.0%) and DNA (1.2%). The
overall amount of chunks that use segments is below 16% except for URL (0.4%),
where the number of chunks that use segments is very large, namely 26.76%.

As far as the percentage of integers encoded with each compression scheme is
concerned, Figure 5.9 shows that segments are often selected as the best compression
scheme for a substantial part of every dataset. In particular, half of the URL
(0.4%) dataset is encoded with segments. Therefore, we argue that our “geometric”
approach can compete with well-established succinct encoding schemes.

Looking at Figure 5.9, it is also clear that segments mainly substitute the run
encoding (R). This could seem counter-intuitive since R uses 0 bits of space. But this
can be explained by the fact that, for each chunk, we need to store some metadata
(namely the first integer of the chunk, its length, and a pointer), and thus we can get
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Figure 5.9: Percentage of integers encoded with each compression scheme

better compression by reducing the overall number of chunks, as the introduction
of segments does. For example, consider a characteristic bitvector composed of x

equally long runs of 1 that are separated by a single 0. R would need x chunks to
encode that and so x sets of metadata. Instead, just one segment is able to represent
the x runs using a few bits per integer and just 1 set of metadata. Indeed, once we
introduce the segments as an encoding scheme, the total number of chunks always
decreases, up to 15%. A situation similar to the previous example often happens in
the BWT of high repetitive texts, and this explains the high presence of our encoding
scheme in the URL and 5GRAM datasets.

Overall, the hybrid structure of Section 5.6 that combines segments, EF, BV, and R
is able to use up to 1.34% less space and be just 6.5% slower on average both on
rank and select than the hybrid solution without the segments. The space reduction
on these datasets may not seem very impressive, but we remind the reader that the
improved solution uses state-of-the-art encoders and thus it is already very squeezed.
Finally, we observe that our hybrid solution turns out to be slightly slower because
of the few more mathematical operations needed to work on segments in the place
of R.
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5.8 Summary

We focused on the problem of representing a compressed dictionary of integers while
supporting rank and select operations, which are at the heart of virtually any compact
data structure. We revisited this problem by proposing a novel learning-based
compression scheme based on piecewise linear ε-approximations augmented with
correction values. We named it LA-vector. By adding proper algorithms and data
structures to this compressed representation, we showed how to support efficient
rank and select operations. We also designed a piecewise linear ε-approximation
construction algorithm that uses different ε values for different chunks of the input
data with the objective of minimising the overall space occupancy of the LA-vector.
A comparison of LA-vector with some other well-engineered compressed rank/select
dictionaries showed new space-time trade-offs.

The results in this chapter appeared in [BFV21a]. The source code of the LA-vector
is publicly available at https://github.com/gvinciguerra/la_vector.
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Repetition- and
linearity-aware rank/select
dictionaries

6

In the previous chapter, we have seen how piecewise linear ε-approximations can
be used to capture the approximate linearity of the data and how this kind of data
regularity allows designing novel succinct rank/select dictionaries. Yet, as we are
about to see, piecewise linear ε-approximations may not consume all the possible
redundancies in the data, that is, there might still be some sources of compressibility
that allows squeezing further bits from the compressed representation.

One fundamental source of compressibility that piecewise linear ε-approximations
are oblivious to is the so-called repetitiveness [Nav20]. To clarify, suppose the input
elements of the dictionary are stored in a sorted array A, and consider the gap-string
S[1, n] defined as S[i] = A[i]−A[i−1] (we let A[0] = 0). Say that the substring S[i, j]
has been encountered earlier at S[i′, i′ + j − i] (we write S[i, j] ≡ S[i′, i′ + j − i]).
Then, instead of finding a new set of segments ε-approximating the subarray A[i, j],
we can use the segments ε-approximating the subarray A[i′, j′] properly shifted.
Note that, even if A[i′, j′] is covered by many segments, the same shift will transform
all of them into an approximation for A[i, j] (see example in Figure 6.1). Therefore,
in this case, we would need to store only the shift and the reference to the segments
of A[i′, j′].

The LA-vector of Chapter 5 is unable to take advantage of such regularities. For
instance, in the extreme case where A consists of the concatenation of a small
subarray A′ shifted by some amounts ∆is for k times, that is A = A′, A′ + ∆1, A′ +
∆2, . . . , A′ + ∆k−1, the overall cost of representing A with an LA-vector will be
roughly k + 1 times the cost of representing A′.

At the opposite end, consider a binary order-h De Bruijn sequence B[1, 2h], that
is, a sequence in which each subsequence of length h occurs exactly once. Define
A[i] = 2i+B[i]. Then, the line with slope 2 and intercept 0 is a linear approximation
of the entire array A with ε = 1. At the same time, in the gap-string S[i] =
A[i] − A[i − 1] = 2 + B[i] − B[i − 1], we would not find repetitions longer than
h− 1.
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Figure 6.1: The points in the top-right circle follows the same “pattern” (i.e. the
same distance between consecutive points) of the ones in the bottom-left circle. A
piecewise linear ε-approximation for the top-right set can be obtained by shifting
the segments for the bottom-left set.

These examples show that the approximate linearity and the repetitiveness of a
string are different proxies of its compressibility and therefore it is interesting to
take both of them into account, as we do in this chapter.

We do so by building on two known repetition-aware compression methods. The first
method is Lempel-Ziv (LZ) parsing [LZ76; ZL77], which is one of the best-known
approaches to exploit repetitiveness [Nav20]. The second method is the block
tree [Bel+21], which is a recently proposed query-efficient alternative to LZ-parsing
and grammar-based representations [Bel+15] suitable also for highly repetitive
inputs since its space usage can be bounded in terms of the string complexity
measure δ, defined as max{S(k)/k | 1 ≤ k ≤ n}, where S(k) is the number of
distinct length-k substrings of S [Ras+13; KNP20; Nav20].

In the rest of this chapter, which is based on [FMV21], we first introduce novel LZ
parsings whose phrases combine backward copies with segments. The resulting rep-
resentation takes a space bounded by the kth order entropy of the gap-string S,1 and
it supports rank and select in polylogarithmic time (Section 6.1). Then, we orches-
trate block trees with segments and introduce another repetition- and linearity-aware
data structure whose space-time performance is bounded by the string complexity
measure δ (Section 6.2). Finally, we experiment with an implementation of this last
result and compare it with the LA-vector and the block tree (Section 6.3).

1Let Σ be the set containing the distinct gaps occurring in S. The zero-order entropy of S is
defined as H0(S) =

∑
x∈Σ

nx
n

log n
nx

. The kth order entropy of S is defined as Hk(S) =
1
n

∑
y∈Σk |Sy|H0(Sy), where Sy denotes the string of length |Sy| consisting of the concatena-

tion of the single gaps following each occurrence of a substring y inside the gap-string S.
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6.1 Two novel LZ-parsings: LZε and LZρ
ε

Assume that A contains distinct positive elements and consider the gap-string S[1, n]
defined as S[i] = A[i]−A[i− 1], where A[0] = 0. To make the LA-vector repetition-
aware, we parse S via a strategy that combines linear ε-approximation with LZ-end
parsing [KN13].

Formally, the LZ-end parsing of a text T [1, n] is a sequence f1, f2, . . . , fz of phrases,
such that T = f1f2 · · · fz, built as follows. If T [1, i] has been parsed as f1f2 · · · fq−1,
the next phrase fq is obtained by finding the longest prefix of T [i + 1, n] that appears
also in T [1, i] ending at a phrase boundary, i.e. the longest prefix of T [i + 1, n] which
is a suffix of f1 · · · fr for some r ≤ q − 1. If T [i + 1, j] is the prefix with the above
property, the next phrase is fq = T [i + 1, j + 1] (notice the addition of T [j + 1] to
the longest copied prefix). The occurrence in T [1, i] of the prefix T [i + 1, j] is called
the source of the phrase fq.

We generalise the phrases of the LZ-end parsing in a way that they are a “combination”
of a backward copy ending at a phrase boundary (as in the classic LZ-end), computed
over the gap-string S, plus a segment covering a subarray of A with an error of at
most ε (unlike classic LZ-end, which instead adds a single trailing character). We
call this parsing the LZε parsing of S.

Suppose that LZε has partitioned S[1, i] into Z[1], Z[2], . . . , Z[q − 1]. We determine
the next phrase Z[q] as follows (see Figure 6.2):

1. We compute the longest prefix S[i + 1, j] of S[i + 1, n] that is a suffix of the
concatenation Z[1] · · ·Z[r] for some r ≤ q − 1 (i.e. the source must end at a
previous phrase boundary).

2. We find the longest subarray A[j, h] that may be ε-approximated linearly, as
well as the slope and intercept of such approximation. Note that using the
algorithm of Lemma 2.1 the time complexity of this step is O(h− j), i.e. linear
in the length of the processed array.

The new phrase Z[q] is then the substring S[i+1, j] ·S[j +1, h]. If h = n, the parsing
is complete. Otherwise, we continue the parsing with i ← h + 1. As depicted in
Figure 6.2, we call S[i + 1, j] the head of Z[q] and S[j + 1, h] the tail of Z[q]. Note
that the tail covers also the value A[j] corresponding to the head’s last position S[j].
When S[i + 1, j] is the empty string (e.g. at the beginning of the parsing), the head
is empty, and thus no backward copy is executed. In the worst case, the longest
subarray we can ε-approximate has length 2, which nonetheless guarantees that
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i j h

Head of Z[q]
The longest prefix

S[i + 1, j] that is a suffix of
Z[1] · · · Z[r], for some r < q

Tail of Z[q]
Associated to a segment
⟨mq, rq⟩ covering A[j, h].

Figure 6.2: Computation of the next phrase Z[q] in the parsing of the gap-
string S of the array A, where the prefix S[1, i] has already been parsed into
Z[1], Z[2], . . . , Z[q − 1].

Z[q] is nonempty. In practice, on the datasets of Section 5.7.2, the average segment
length ranges from 76 when ε = 31 to 1480 when ε = 511.

If the complete parsing consists of λ phrases, we store it using:

• An integer vector PE[1, λ] (Phrase Ending position) such that h = PE[q] is the
ending position of phrase Z[q], that is, Z[q] = S[i+1, h], where i = PE[q−1]+1.

• An integer vector HE[1, λ] (Head Ending position) such that j = HE[q] is the
last position of Z[q]’s head. Hence, Z[q]’s head is S[PE[q − 1] + 1, HE[q]], and
Z[q]’s tail is S[HE[q] + 1, PE[q]].

• An integer vector HS[1, λ] (Head Source) such that r = HS[q] is the index of the
last phrase in Z[q]’s source. Hence, the head of Z[q] is a suffix of Z[1] · · ·Z[r].
If the head of Z[q] is empty then HS[q] = 0.

• A vector of pairs TL[1, λ] (Tail Line) such that TL[q] = ⟨αq, βq⟩ are the coef-
ficients of the segment associated to the tail of Z[q]. By construction, such
segment provides a linear ε-approximation for the subarray A[HE[q], PE[q]].

• A vector of arrays TC[1, λ] (Tail Corrections) such that TC[q] is an array of
length PE[q]−HE[q]+1 providing the corrections for the elements in the subar-
ray A[HE[q], PE[q]] covered by Z[q]’s tail. By construction, such corrections are
smaller than ε in modulus.

Using the values in TL and TC we can recover the subarrays A[j, h] corresponding
to the phrases’ tails. We show that using all the above vectors we can recover the
whole array A.

Lemma 6.1. Let S[i + 1, j] denote the head of phrase Z[q], and let r = HS[q] and
e = PE[r]. Then, for t = i + 1, . . . j, it holds

A[t] = A[t− (j − e)] + (A[j]−A[e]), (6.1)
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where A[j] (resp. A[e]) can be retrieved in constant time from TL[q] and TC[q] (resp.
TL[r] and TC[r]).

Proof. By construction, S[i + 1, j] is identical to a suffix of Z[1] · · ·Z[r]. Since such a
suffix ends at position e = PE[r], it holds S[i + 1, j] ≡ S[e− j + i + 1, e] and

A[t] = A[j]− (S[j] + S[j − 1] + · · ·+ S[t + 1])
= (A[j]−A[e]) + A[e]− (S[e] + S[e− 1] + · · ·S[t + 1− (j − e)])
= (A[j]−A[e]) + A[t− (j − e)].

For the second part of the lemma, we notice that A[j] is the first value covered by
Z[q]’s tail, while A[e] is the last value covered by Z[r]’s tail.

Using the above lemma, we can show by induction that given a position t ∈ [1, n] we
can retrieve A[t]. The main idea is to use a binary search on PE to retrieve the phrase
Z[q] containing t. Then, if t ≥ HE[q], we get A[t] from TL[q] and TC[q]; otherwise,
we use Lemma 6.1 and get A[t] by retrieving A[t− (j − e)] using recursion. In the
following, we will formalise this intuition in a complete algorithm, but before doing
so, we need to introduce some additional notation.

Using the LZε parsing, we partition the string S into meta-characters as follows. The
first phrase in the parsing Z[1] = S[1, PE[1]] is our first meta-character (note Z[1]
has an empty head, so HE[1] = 0 and the pair ⟨TL[1], TC[1]⟩ encodes the subarray
A[0, PE[1]]). Now, assuming we have already parsed Z[1] · · ·Z[q− 1] and partitioned
S[1, PE[q − 1]] into meta-characters, we partition the next phrase Z[q] into meta-
characters as follows: Z[q]’s tail will form a meta-character by itself, while Z[q]’s
head “inherits” the partition into meta-characters from its source. Indeed, recall that
Z[q]’s head is a copy of a suffix of Z[1] · · ·Z[r], with r = HS[q]. Such a suffix, say
S[a, b], belongs to the portion of S already partitioned into meta-characters. Since by
construction Z[r]’s tail is a meta-character Xr, we know that Xr is a suffix of S[a, b].
Working backwards from Xr we obtain the sequence X0 · · ·Xr of meta-characters
covering S[a, b]. Note that it is possible that X0, the meta-character containing S[a],
starts before S[a]. We thus define X ′

0 as the suffix of X0 starting at S[a] and define
the meta-character partition of Z[q]’s head as X ′

0X1 · · ·Xr. This process is depicted
in Figure 6.3. Note that each meta-character is either the tail of some phrase or it is
the suffix of a tail. We do not really compute the meta-characters but only use them
in our analysis, as in the following result.

Lemma 6.2. Algorithm 5 computes select(t) = A[t] in O(log λ + Mmax) time, where
λ is the number of phrases in the LZε parsing and Mmax is the maximum number of
meta-characters in a single phrase.
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Z[6]Z[4]Z[3]Z[2]Z[1] Z[5] Z[7]

Z[4]Z[3]Z[2] Z[5]

Figure 6.3: The LZε parsing with the definition of meta-characters. Cells represent
meta-characters, and the coloured cells are also tails. Z[7]’s head consists of a
copy of a substring that starts inside Z[2] and ends at the end of Z[5] (notice the
diagonal patterns in Z[7]’s head with the same colours of the tails in Z[2] · · · [5]).
Meta-characters in Z[7]’s head are defined from the meta-characters in the copy.
Note that Z[7]’s first meta-character is a suffix of Z[2]’s first meta-character.

Algorithm 5 Recursive select procedure.
1: procedure SELECT(t)
2: q ← the smallest i such that PE[i] ≥ t, found via a binary search on PE
3: return SELECT-AUX(t,q)

4: procedure SELECT-AUX(t,q) ▷ Invariant: PE[q − 1] < t ≤ PE[q]
5: if t > HE[q] then ▷ If t belongs to the tail of Z[q]
6: return A[t] ▷ A[t] is computed from TL[q], TC[q]
7: r ← q′ ← HS[q] ▷ The head of Z[q] is a suffix of Z[1] · · ·Z[r]
8: j ← HE[q] ▷ j is the last position of the head of Z[q]
9: e← PE[r] ▷ e is the last position of Z[r]

10: ∆← A[j]−A[e] ▷ ∆ is computed in O(1) time by Lemma 6.1
11: t′ ← t− (j − e); ▷ A[t] = A[t′] + ∆ by Lemma 6.1
12: while t′ > PE[q′] do ▷ Find the phrase Z[·] containing t′

13: q′ ← q′ − 1 ▷ Go back one word
14: return SELECT-AUX(t′, q′) + ∆ ▷ The returned value is A[t] by Lemma 6.1

Proof. The correctness of the algorithm follows by Lemma 6.1. To prove the time
bound, observe that Line 2 clearly takes O(log λ) time. Let ℓ denote the number
of meta-characters between the one containing position t up to the end of Z[q].
We show by induction on ℓ that SELECT-AUX(t, q) takes O(ℓ) time. If ℓ = 1, then t

belongs to Z[q]’s tail, and the value A[t] is retrieved in O(1) time from TL[q] and
TC[q].

If ℓ > 1, the algorithm retrieves the value A[t′] from a previous phrase Z[q′], with
q′ = r − k, where k is the number of times Line 13 is executed. Since Z[q] meta-
characters are induced by those in its source, we get that the number of meta-
characters between the one containing t′ and the end of Z[r] is ℓ − 1, and the
number of meta-characters between the one containing t′ and the end of Z[q′] is
ℓ′ ≤ ℓ− 1− k. By the inductive hypothesis, the call to SELECT-AUX(t′, q′) takes O(ℓ′),
and the overall cost of SELECT-AUX(t, q) is O(k) +O(ℓ′) = O(ℓ), as claimed.

It is easy to see that for some input t Algorithm 5 takes Θ(Mmax) time. To reduce
the complexity, we now show how to modify the parsing so that Mmax is upper
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Z[6]Z[4]Z[3]Z[2]Z[1] Z[5] Z[7]

Z[4]Z[3]Z[2]

Z[8]

Figure 6.4: The LZε parsing of the same string of Figure 6.3 with M = 5. The
phrase Z[7] from Figure 6.3 is invalid since it has 13 meta-characters. Z[7] head can
have at most 4 meta-characters, so we define Z[7] by setting HS[7] = 3 (Step 2b).
Next, we define Z[8] by setting HS[8] = 4 (Step 2c).

bounded by a user-defined parameter M > 1. The resulting parsing could contain
some repeated phrases, but note that Lemma 6.2 does not require the phrases to be
different: repeated phrases will only affect the space usage.

To build a LZε parsing in which each phrase contains at most M meta-characters, we
proceed as follows. Assuming S[1, i] has already been parsed as Z[1], . . . , Z[q − 1],
we first compute the longest prefix S[i + 1, j] which is a suffix of Z[1] · · ·Z[r] for
some r < q. Let m denote the number of meta-characters in S[i + 1, j]. Then (see
Figure 6.4):

1. If m < M , then Z[q] is defined as usual with HS[q] = r. Since Z[q]’s tails
constitute an additional meta-character, Z[q] has m + 1 ≤M meta-characters,
as required.

2. Otherwise, if m ≥M , we do the following.

a) We scan S[i+1, j] backward dropping copies of Z[r], Z[r−1], . . . until we
are left with a prefix S[i + 1, ks] containing less than M meta-characters.
By construction, S[i + 1, ks] is a suffix of Z[1] · · ·Z[s] for some s < r and
since each phrase contains at most M meta-characters, S[i + 1, ks] is
non-empty.

b) We define Z[q] by setting S[i+1, ks] as its head, HS[q] = s, and by defining
Z[q]’s tail as usual.

c) Next, we consider Z[s+1] ≡ S[ks, ks+1]. By construction, Z[s+1] contains
at most M meta-characters while S[i + 1, ks+1] contains more than M

meta-characters. If Z[q] ends before position ks+1 (i.e. PE[q] < ks+1), we
define an additional phrase Z[q+1] with heads equal to S[PE[q]+1, ks+1],
HS[q + 1] = s + 1 and with a tail defined as usual. This ensures that Z[q]
alone or Z[q]Z[q + 1] contains at least M meta-characters.

Lemma 6.3. The LZε parsing with limit M contains at most 2n/M repeated phrases.
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Proof. In the algorithm described above, repeated phrases are created only at
Steps 2b and 2c. Indeed, both Z[q] defined in Step 2b and Z[q +1] defined in Step 2c
could be identical to a previous phrase. However, the concatenation Z[q]Z[q + 1]
covers at least S[i + 1, ks+1] so by construction contains at least M meta-characters.
Hence, Steps 2b and 2c can be executed at most n/M times.

In the following, let σ denote the number of distinct gaps in S (i.e., the alphabet
size of S), for any ρ > 0, we denote by LZρ

ε the parsing computed with the above
algorithm with M = log1+ρ n. The following lemma shows that the space to
represent the parsing can be bounded in terms of the kth order entropy of the
gap-string S (defined in footnote 1) plus o(n log σ) bits.

Lemma 6.4. Let σ denote the number of distinct gaps in S. The arrays PE, HE, and HS
produced by the LZρ

ε parsing can be stored in nHk(S) +O(n/ logρ n) + o(n log σ) bits
for any positive k = o(logσ n), and still support constant-time access to their elements.

Proof. Let λ denote the number of phrases in the parsing. We write λ = λr + λd,
where λr is the number of repeated phrases, and λd is the number of distinct phrases.
By Lemma 6.3 it is λr ≤ n/(2 log1+ρ n), while for the number λd of distinct phrases
it is [KN13, Lemmas 3.9 and 3.10]

λd = O
(

n

logσ n

)
and λd log λd ≤ nHk(S) + λd log n

λd
+O(λd(1 + k log σ)) (6.2)

for any constant k ≥ 0. The vectors PE and HE contain λ increasing values in
the range [1, n]. We encode each of them in λ log n

λ +O(λ) bits using Lemma 4.1.
Since f(x) = x log(n/x) is increasing for x ≤ n/e and λ = O(n/ logσ n), it is
λ log n

λ +O(λ) = O(n(log σ)(log log n)/ log n) = o(n log σ).

We encode HS using λ cells of size ⌈log λ⌉ = log λ +O(1) bits for a total of

λr log(λr + λd) + λd log(λr + λd) + O(λ) bits.

Since λd = O(n/ logσ n) and λr = O(n/ log1+ρ n), it is λd + λr = O(n/ logσ n) and
the first term is O(n/ logρ n). The second term can be bounded by noticing that, if
λd ≤ λr, the second term is smaller than the first. Otherwise, from (6.2) we have

λd log(λr + λd) ≤ λd log(2λd) ≤ nHk(S) + λd log n
λd

+O(λd(1 + k log σ)).

By the same reasoning as above, we have λd log n
λd

= o(n log σ) and λd(1+k log σ) =
O((nk log σ)/ logσ n) = o(n log σ) for k = o(logσ n).

Combining Lemma 6.4 with 6.2 and recalling that log λ = O(log1+ρ n), we get
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Theorem 6.1. Let σ denote the number of distinct gaps in S. Using the LZρ
ε parsing we

can compute select(t) in O(log1+ρ n) time using nHk(S) + O(n/ logρ n) + o(n log σ)
bits of space plus the space used for the λ segments (array TL) and for the corrections
of the elements in A covered by the tails in the parsing (array TC), for any positive
k = o(logσ n).

In the proof of Lemma 6.4 one can see the interplay between the term O(n/ logρ n)
coming from the repeated phrases and the term o(n log σ) coming from the dis-
tinct phrases in LZρ

ε. In particular, if σ is small (i.e., there are few distinct gaps),
then o(n log σ) becomes O(n log log n/ log n) and the space bound turns out to be
nHk(S) + O(n/ logρ n) bits. Also, note that the number of segments λ in LZρ

ε is
always smaller than the number of segments in a plain LA-vector. Also, the total
length of the LZρ

ε tails is always smaller than n. Hence, our approach is no worse
than the LA-vector in space.

We now show that the LZρ
ε parsing support efficient rank queries. The starting point

is the following lemma, whose proof is analogous to the one of Lemma 6.1.

Lemma 6.5. Let S[i + 1, j] denote the head of phrase Z[q], and let r = HS[q] and
e = PE[r]. Then, for any v such that A[i] < v ≤ A[j], it holds rank(v) = rank(v −
(A[j]−A[e])) + (j − e).

Theorem 6.2. Using the LZρ
ε parsing we can compute rank(v) in O(log1+ρ n + log ε)

time within the space stated in Theorem 6.1.

Proof. We answer rank(v) with an algorithm similar to Algorithm 5. First, we
compute the index q of the phrase Z[q] such that A[PE[q− 1]] < v ≤ A[PE[q]] with a
binary search on the values A[PE[i]]. If the parsing has λ phrases, this takes O(log λ)
time, since we can retrieve A[PE[i]] in constant time using PE[i], TL[i] and TC[i].

Next, we set j = HE[q] and compare v with A[j] (which again we can retrieve in
constant time since it is the first value covered by Z[q]’s tail). If v ≥ A[j], we return
j plus the rank of v in A[j, PE[q]], which we can compute in O(log ε) time from TL[q]
and TC[q] using the algorithm in Section 5.3. If v < A[j], we set e = PE[HS[q]]
and compute rank(v) recursively using Lemma 6.5. Before the recursive call, we
need to compute the index q′ of the phrase such that A[PE[q′ − 1]] < v′ ≤ A[PE[q′]],
for v′ = v − (A[j]−A[e]). To this end, we execute the same while loop as the one
in Lines 12–13 of Algorithm 5 with the test t′ > PE[q′] replaced by v′ > A[PE[q′]].
Reasoning as in the proof of Lemma 6.2, we get that the overall time complexity is
O(log λ + Mmax + log ε) = O(log1+ρ n + log ε).
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Discussion

Overall, Theorems 6.1 and 6.2 show that, if σ denotes the number of distinct
gaps in S, the LZρ

ε parsing supports rank in O(log1+ρ n + log ε) time and select in
O(log1+ρ n) time using nHk(S) + O(n/ logρ n) + o(n log σ) bits of space, for any
positive ρ and k = o(logσ n), plus the space to store the segments and the correction
values that are used to advance the parsing (like the explicit characters in traditional
LZ-parsing).

On the other hand, the most common approach in the literature to design an Hk-
compressed dictionary for a set of distinct integers A over the universe {0, . . . , u} is
to represent A using the characteristic bitvector bv(A), which has length u + 1 and
is such that bv(A)[i] = 1 iff i ∈ A.

The best succinct data structure based on bv(A) is the one by [SG06] that supports
constant-time rank and select in uHk(bv(A)) + O(u log log u/ log u) bits of space.
This space bound cannot be compared to ours since it is given in terms of Hk(bv(A))
instead of Hk(S). To achieve space nHk(S) one can use an entropy-compressed
representation of S enriched with auxiliary data structures to support rank/select
on A. For example, by sampling one value of A out of log n and performing a
binary search followed by a prefix sum of the gaps one can support O(log n)-time
rank and select queries. Using the representation of [FV07], this solution uses
nHk(S) +O(n log u/ log n) + o(n log σ) = nHk(S) + o(n log u) bits of space, which
is worse in space than our solution but faster in query time. Other trade-offs are
possible: the crucial point however is that none of the known techniques is able to
exploit simultaneously the presence of exact repetitions and approximate linearity
in the input data as instead our LZρ

ε does. In the best scenario, LZρ
ε parsing uses seg-

ments to quickly consume any approximate linearity in A thus potentially reducing
significantly the number of LZ-phrases. On the other hand, if A cannot be linearly
approximated, segments will be short and the overall space occupancy of LZρ

ε parsing
will be nHk(S) + o(n log σ) bits, i.e. no worse than a traditional LZ-parsing.

6.2 The block-ε tree

In this section, we design a repetition aware version of the LA-vector by following
an approach that focuses on query efficiency and uses space bounded in terms of
the complexity measure δ. We do so by building a variant of the block tree [Bel+21]
on a combination of the gap-string S and the piecewise linear ε-approximation. We
name this variant block-ε tree, and show that it achieves time-space bounds which
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are competitive with the ones achieved by block trees and LA-vectors because it
combines both forms of compressibility discussed in this paper: repetitiveness and
approximate linearity.

The main idea of the block-ε tree consists in first building a traditional block tree
structure over the gap-string S[1, n] of A. Recall that every node of the block tree
represents a substring of S, and thus it implicitly represents the corresponding subar-
ray of A. Then, we prune the tree by dropping the subtrees whose corresponding
subarray of A can be covered more succinctly by segments and corrections (i.e.
whose LA-vector representation wins over the block-tree representation). Note that,
compared to LA-vector, we do not encode segments and corrections correspond-
ing to substrings of S that have been encountered earlier, that is, we exploit the
repetitiveness of S to compress the piecewise linear ε-approximation at the core of
LA-vector. On the other hand, compared to block trees, we drop subtrees whose
substrings can be encoded more efficiently by segments and corrections, that is, we
exploit the approximate linearity of subarrays of A. Below we detail how to orches-
trate this interplay to achieve efficient queries and compressed space occupancy in
the block-ε tree.

For simplicity of exposition, assume that n = δ2h for some integer h, where δ is the
string complexity of S. The block-ε tree is organised into h′ ≤ h levels. The first
level (level zero) logically divides the string S into δ blocks of size s0 = n/δ. In
general, blocks at level ℓ have size sℓ = n/(δ2ℓ), because they are recursively halved
until possibly reaching the last level h = log n

δ , where blocks have size sh = 1.

At any level, if two blocks Sq and Sq+1 are consecutive in S and they form the
leftmost occurrence in S of their content, then we say that both Sq and Sq+1 are
marked. A marked block Sq that is not in the last level becomes an internal node of
the tree. Such an internal node has two children corresponding to the two equal-size
sub-blocks in which Sq is split into. On the other hand, an unmarked block Sr

becomes a leaf of the tree because, by construction, its content occurs earlier in S

and thus we can encode it by storing (i) a leftward pointer q to the marked blocks
Sq, Sq+1 at the same level ℓ containing its leftmost occurrence, taking log n

sℓ
bits;

(ii) the offset o of Sr into the substring Sq · Sq+1, taking log sℓ bits. Furthermore, to
recover the values of A corresponding to Sr, we store (iii) the difference ∆ between
the value of A corresponding to the beginning of Sr and the value of A at the
pointed occurrence of Sr, taking log u bits. Overall, each unmarked block needs
log n + log u bits of space.

To describe the pruning process, we first define a cost function c on the nodes of
the block-ε tree. For an unmarked block Sr, we define the cost c(Sr) = log n + log u,
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which accounts for the space in bits taken by q, o and ∆. For a marked block Sq

at the last level h, we define the cost c(Sq) = log u, which accounts for the space
in bits taken by its single corresponding element of A. Instead, consider a marked
block Sq at level ℓ < h for which there exists a segment approximating with error
εq ≤ ε the corresponding elements of A. Suppose εq is minimal, that is, there is
no ε′ < εq such that there exists a segment ε′-approximating those same elements
of A. Let κ be the space in bits taken by the parameters ⟨α, β⟩ of the segment, e.g.
κ = 2 log u + log n if we encode β in log u bits and α as a rational number with a
log u-bit numerator and a log n-bit denominator. We assign to such Sq a cost c(Sq)
defined recursively as

c(Sq) = min

κ + sℓ log εq + log log u

2 log n +∑
Sx∈child(Sq) c(Sx)

(6.3)

The first branch of Equation 6.3 accounts for an encoding of the subarray of A

corresponding to Sq via an εq-approximate segment, the corrections of log εq bits for
each of the sℓ elements in Sq, and the exponent y of εq = 2y − 1 to keep track of its
value, respectively. The second branch of Equation 6.3 accounts for an encoding that
recursively splits Sq into two children, i.e. an encoding via two log n-bit pointers
plus the optimal cost of the children. Finally, if there is no linear ε-approximation
(and thus no εq-approximation with εq ≤ ε) for Sq, we assign to such Sq the cost
indicated in the second branch of Equation 6.3.

A postorder traversal of the block-ε tree is sufficient to assign a cost to its nodes and
possibly prune some of its subtrees. Specifically, after recursing on the two children
of a marked block Sq at level ℓ, we check if the first branch of Equation 6.3 gives
the minimum. In that case, we prune the subtree rooted at Sq and store instead
the encoding of the block via the parameters ⟨α, β⟩ and the sℓ corrections in an
array Cq. As a technical remark, this pruning requires fixing the destination of any
leftward pointer that starts from an unmarked block Sr and ends to a (pruned)
descendant of Sq. For this purpose, we first make Sr pointing to Sq. Then, since
any leftward pointer points to a pair of marked blocks (unless the offset is zero),
both or just one of them belongs to the pruned subtree. In the second case, we
require an additional pointer from Sr to the block that does not belong to the pruned
subtree. This additional pointer does not change the asymptotic complexity of the
structure.

Overall, this pruning process yields a tree with h′ ≤ h levels. An example of
block-ε tree is depicted in Figure 6.5.
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Supporting rank and select

To answer select(i) in the block-ε tree, we follow the path that starts from the first-
level block in which position i falls and proceeds towards a marked leaf block. We
have the following cases for a visited block at level ℓ:

• The current block is an unmarked block Sr pointing to q with offset o and
difference value ∆ = A[b] − A[a], where b is the position corresponding to
the beginning of Sr, and a is the position corresponding to the beginning
of the copy within Sq. First, we jump to either Sq or Sq+1 depending on
whether o < sℓ, where sℓ is the size of the blocks at level ℓ. Then, we turn the
select(i) = A[i] query to ∆ + select(a + i − b) = ∆ + A[a + i − b].2 In fact, it
holds

∆ + A[a + i− b] = ∆ + A[a] + S[a + 1] + · · ·+ S[a + i− b]
= A[b]−A[a] + A[a] + S[a + 1] + · · ·+ S[a + i− b]
= A[b] + S[a + 1] + · · ·+ S[a + i− b]
= A[b] + S[b + 1] + · · ·+ S[b + i− b]
= A[b + i− b] = A[i].

• The current block is a marked internal block. We jump to its first or second
child depending on whether i mod sℓ < sℓ/2, and we continue computing
select(i).

• The current block is a marked leaf block Sq storing the segment parameters
⟨α, β⟩ and the local corrections Cq. We return αi + β + Cq[i mod sℓ].

• The current block is a marked leaf block Sq at the last level h, thus we return
its single element.

Let us now compute the time complexity of this traversal. First observe that, if we
encounter a pruned block, the traversal stops. If we encounter an unmarked block,
we follow its pointer to a pruned block or to an internal node. In this latter case, the
traversal proceeds top-down with a constant amount of work per level. Therefore,
the time complexity of select is O(h′).

For rank queries, we create the predecessor structure on the δ integers of A corres-
ponding to the first-level blocks, i.e. the integers A[in/δ] for i = 1, . . . , δ. We use the

2Special care must be taken when either or both Sq and Sq+1 are pruned blocks. In this case, Sr

points to their ancestor, which is associated to a segment, and the argument of select can be
recomputed accordingly.
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structure of [BN15, Appendix A] giving a query time of O(log logw
u
δ ), where w is

the word size, but there are many other possible trade-offs [NR20] that we skip for
simplicity of exposition. Furthermore, in each marked block Sq at any level ℓ except
the first and the last ones, we store the value y of A corresponding to the middle
of Sq to descend to the correct child. The extra information does not change the
asymptotic space complexity of our structure.

To answer rank(x), we start with a query to the predecessor structure, which indicates
the first-level block in which x falls into, and then we proceed towards a marked
leaf block. The traversal proceeds similarly to select, so we only give a sketch. If the
visited block is a marked leaf block Sq at level ℓ, we retrieve its ⟨α, β⟩ parameters
and the correction array Cq, and then we perform a binary search for x on these sℓ

corrections. Using the algorithm of Section 5.3, this search costs O(log εq) time and
returns the result of rank(x), which is the position in A of (the predecessor of) the
value x.

If the visited block is a marked internal block, we descend to its left or right child in
constant time by using the aforementioned value y and return the result of rank(x)
in this block.

Finally, if the visited block is an unmarked block Sr, we recursively issue a rank-query
on the marked block Sq pointed to by Sr with argument x−∆, where ∆ is defined
as above, and then return b − a + rank(x −∆). The shift b − a takes into account
the leftward jump induced by the fact that we solve the rank query not on Sr but
on Sq.3

Overall, the time complexity of rank is given by the sum of the costs of the initial
predecessor search, the traversal of the block-ε tree, and the final binary search,
thus it is equal to O(log logw

u
δ + h′ + log ε).

Discussion

Overall, we have shown that the block-ε tree supports rank in O(log log u
δ + log n

δ +
log ε) time and select in O(log n

δ ) time using O(δ log n
δ log n) bits of space in the

worst case, where δ is the string complexity of S.

We observe that the block-ε tree achieves space-time complexities no worse than
a standard block tree construction on S. This is due to the pruning of subtrees
guided by the space-conscious cost function c(·) and by the resulting reduction in
the number of levels, which positively impact the query time.

3Here, the same considerations of footnote 2 apply.
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One could also consider a standard block tree construction on bv(A) that, instead,
supports rank and select in O(log u

δ′ ) time using O(δ′ log u
δ′ log u) bits of space, where

δ′ is the string complexity measure on bv(A). The time and space bounds achieved
by the block tree and by our block-ε tree are not comparable due to the use of
δ′ instead of δ. Therefore, in Section 6.3, we compare an implementation of our
block-ε tree built on S with the standard block tree built on bv(A). Our proposal
turns out to be more space-efficient for some of the experimented sparse datasets
and, as far as query time is concerned, it is 2.19× faster in select, and it is either
faster (1.32×) or slower (1.27×) in rank than the block tree.

Compared to LA-vector, the block-ε tree can take advantage of repetitions and avoid
the encoding of subarrays of A corresponding to repeated substrings of S. Further-
more, since the block-ε tree allocates the most succinct encoding for a subarray of
A by considering the smallest εq ≤ ε giving a linear εq-approximation, it could be
regarded as the repetition-aware analogous of the space-optimised LA-vector (see
Section 5.5), in which all values of ε = 0, 20, 21, . . . , 2log u are considered. The
block-ε tree has the advantage of potentially storing fewer corrections at the cost
of storing the tree topology. Using the straightforward pointer-based encoding
we discussed above, the tree topology takes O(δ log n

δ log n) bits in the worst case,
but in the next section we implement a more succinct pointerless encoding. We
notice, nonetheless, that the more repetitive is the string S, the smaller is δ, thus the
overhead of the tree topology gets negligible.

Finally, we mention that the block-ε tree could employ other compressed rank-select
dictionaries in its nodes, yielding a hybrid compression approach [OTV15] that can
benefit from the orchestration of bicriteria optimisation and proper pruning of its
topology to achieve the best space occupancy, given a bound on the query time, or
vice versa (à la [FV20b; FGM09; OTV15]).

6.3 Experiments

We experiment with a C++ implementation of the block-ε tree, the simplest and
most practical contribution in this chapter, on a machine with 202 GB of RAM
and a 2.30 GHz Intel Xeon Gold 5118 CPU. The source code is available at https:
//github.com/gvinciguerra/BlockEpsilonTree.
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6.3.1 Implementation notes

In our implementation of the block-ε tree, instead of starting from a pre-determined
number of blocks, we follow [Bel+21] and construct a full block tree to then remove
the top levels that do not contain any unmarked block.4 We use a pointerless
representation of the tree topology via a plain bitvector for each level indicating
with a 0 which block in the level is unmarked (hence, has a leftward copy) or
pruned by a segment, and with a 1 which block is marked but not pruned by a
segment (hence, it is an internal node). We use rank1 on these bitvectors to traverse
the tree downwards. If we reach a marked or pruned node, we use rank0 on the
bitvector to access two separate packed arrays5 storing the pointers and the ∆-
values, respectively, associated with each unmarked or pruned block. We store the
segment blocks as an array of structures, with each structure storing the slope α, the
intercept β, the exponent y of the error ε = 2y − 1 of the segment, and a pointer to
the correction packed array Cq. For the visit of the block-ε tree that assigns costs to
its nodes, we consider the values of y ranging from 0 to 15, and we slightly change
the constants of the cost function c defined in Section 6.2 to reflect our pointerless
implementation. Marked leaf blocks containing less than a number b of elements
are not split further, and they are concatenated left-to-right and encoded with
Lemma 4.1. Intuitively, since these blocks cannot be replaced by leftward pointers or
pruned by segments they lack both repetitiveness and approximate linearity, hence a
compression via Lemma 4.1 (or any other method) is likely to be more appropriate.
The samples at each level needed to support rank on A are stored in a packed array.
For the predecessor query on the first-level samples, we use a binary search.

6.3.2 Baselines and datasets

We compare our block-ε tree with the block tree of [Bel+21], built on the char-
acteristic bitvector bv(A), and with the space-optimised LA-vector of Section 5.5
(referred to as la_vector_opt in Section 5.7). All these implementations are written
in C++ and build on the sdsl library [Gog+14]. For both the block tree and the
block-ε tree, we use a branching factor of two and vary the length b of the last-level
blocks as b ∈ {23, 24, . . . , 29}. We do not show the full space-time trade-off of each
structure but report only the most space-efficient configurations. A comparison with
other rank/select dictionaries is beyond the scope of this chapter, and it was already
investigated in Section 5.7.

4We experimented with the theoretical proposal of starting with δ blocks. Although this makes the
query time faster, it worsens the compression (up to 2.7×) as it misses the copies longer than n/δ.

5By packed array, we mean an array with fixed-length entries sized to contain the largest element.

6.3 Experiments 107



Table 6.1: The performance of LA-vector, the block tree over the characteristic
bitvector bv(A) and the block-ε tree over twelve datasets of different size n and
universe size u. The select and rank columns show the average query time of
the operations in nanoseconds. The space of each structure is shown in Bits Per
Integer (BPI). For the block tree and the block-ε tree, the value b denotes the length
of the last-level block that gave the most space-efficient configuration.

Dataset LA-vector Block tree on bv(A) Block-ε tree on S

Name (n/u) n/106 u/106 select rank BPI b select rank BPI Depth b select rank BPI Depth (Avg)

GOV2 (76.6%) 18.85 24.62 69 130 1.85 64 668 519 0.69 12 16 451 825 1.89 14 (9.98)
GOV2 (40.6%) 9.85 24.62 60 129 3.48 128 686 531 1.56 11 256 367 638 3.26 10 (8.73)
GOV2 (4.1%) 1.00 24.62 33 96 3.01 32 645 573 4.62 13 128 407 465 2.92 10 (9.73)

URL (5.6%) 57.98 1039.92 124 144 2.83 32 1017 733 2.58 18 16 762 909 3.41 16 (12.94)
URL (1.3%) 13.56 1039.91 98 123 6.34 32 987 753 8.57 18 32 463 664 7.32 10 (8.39)
URL (0.4%) 3.73 1039.86 34 87 1.28 32 831 783 1.84 19 16 400 553 1.51 11 (7.92)

5GRAM (9.8%) 145.40 1476.73 171 249 4.40 32 1176 876 3.64 18 32 621 999 5.01 12 (10.27)
5GRAM (2.0%) 29.20 1476.73 132 177 6.37 32 1143 863 8.80 18 64 483 733 6.96 9 (7.81)
5GRAM (0.8%) 11.22 1476.69 95 125 7.56 32 1017 826 11.25 19 64 421 592 8.34 9 (7.61)

DNA (49.0%) 490.10 1000.00 250 446 5.27 512 1158 922 2.09 14 512 535 1070 3.65 3 (2.98)
DNA (29.5%) 294.68 1000.00 218 416 6.20 512 1227 989 3.46 14 512 368 718 4.57 2 (1.96)
DNA (19.6%) 195.42 1000.00 195 384 6.69 512 1206 972 5.21 14 512 335 654 5.01 2 (1.94)

As datasets, we use (i) three postings lists with different densities n/u from the GOV2
inverted index (see Section 5.7.2); (ii) six integers lists obtained by enumerating
the positions of the first, second and third most frequent character in each of the
Burrows-Wheeler transform of two text files: URL and 5GRAM (as in Section 5.7.2);
(iii) three integers lists obtained by enumerating, respectively, the positions of both
Ts and Gs, of Ts, and of Gs in the Burrows-Wheeler transform of the first gigabyte of
the human reference genome GRCh38.p13.

6.3.3 Results

For each tested structure, query operation, and dataset, we generate a batch of 105

random queries and measure the average query time in nanoseconds and the space
occupancy of the structure in bits per integer

Table 6.1 shows the results. First and foremost, we note that LA-vector is 10.51×
faster in select and 4.69× faster in rank than the block tree on average, while for
space there is no clear winner over all the datasets. This comparison, which was not
known in the literature, illustrates that the combination of approximate linearity and
repetitiveness is interesting not only from a theoretical point of view, as commented
in the introduction, but also from a practical point of view.

Let us now compare the performance of our block-ε tree against the block tree and
the LA-vector. The block-ε tree is 2.19× faster in select than the block tree, and it
is either faster (1.32×) or slower (1.27×) in rank. With respect to LA-vector, the
block-ε tree is always slower. But, for what concerns the space, the block-ε tree
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improves both the LA-vector and the block tree in the sparsest GOV2 and DNA, and
in the vast majority of the remaining datasets it is the second-best structure for
space occupancy (except for the densest GOV2, URL and 5GRAM). This shows that
space-wise, the block-ε tree can be a robust data structure in that it often achieves
a good compromise by exploiting both kinds of regularities: repetitiveness (block
trees) and approximate linearity (LA-vectors).

For future work, we believe the block-ε tree can be improved along at least two
avenues. First, the block-ε tree at a certain level is constrained to use fixed-length
blocks (and thus segments), whilst the LA-vector minimises its space occupancy
using segments whose start/end positions do not have to coincide with a subdivision
in blocks. Removing this limitation, inherited from the block tree, would help
to better capture approximate linearity and improve the space occupancy of the
block-ε tree. Second, the block-ε tree captures the repetitiveness of the gap string
S, while for the densest datasets of Table 6.1 it appears worthwhile to consider the
repetitiveness in bv(A), as done by the block tree. Therefore, adapting our pruning
strategy to bv(A) is likely to improve the space occupancy in these densest datasets
(though, the space-time bounds will then depend on u instead of n).

6.4 Summary

We introduced compressed rank/select dictionaries that exploit two sources of com-
pressibility arising in real data: repetitiveness and approximate linearity. Our first
result, the LZρ

ε parsing, combines backward copies with linear ε-approximation thus
supporting efficient queries within a space complexity bounded by the kth order
entropy of the gaps in the input data. Our second result, the block-ε tree, adapts
smoothly to both sources of compressibility and offers improved query times com-
pared to LZρ

ε . We experimented with an implementation of the block-ε tree showing
that it effectively exploits both repetitiveness and approximate linearity.

The results in this chapter appeared in [FMV21]. The source code of the block-ε tree
is publicly available at https://github.com/gvinciguerra/BlockEpsilonTree.
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Conclusions 7
We conclude the thesis with a summary of the main contributions and a discussion
of the open research problems.

Chapter 3

We studied the effectiveness of the approximate linearity concept, which underlies
the data structures presented in the following chapters, by stating some bound on
the size of the optimal piecewise linear ε-approximation built on a sorted input array
of size n. Our main result is an upper bound of O(n/ε2), which holds under some
general assumptions on the distribution of the input data.

The results in this chapter appeared on [FLV20; FLV21], and the code to repro-
duce the experiments was made available at https://github.com/gvinciguerra/
Learned-indexes-effectiveness.

The first open question regards the assumption “ε is sufficiently larger than σ/µ”
of Theorem 3.3. It is natural to ask whether this condition can be waived, thus
making the theorem stronger, and whether we can bound the error made by the
approximation for finite and not too large values of εµ/σ. A second question asks
to provide a formal analysis of the distribution of the segment lengths found in the
optimal piecewise linear ε-approximation of O’Rourke [ORo81]. We know that their
number grows on average as Ω((µε/σ)2), but how much are they longer than what
this Ω-bound asymptotically states? A final intriguing research question concerns the
study of (piecewise) nonlinear ε-approximations, which are likely to decrease the
number of “pieces” with respect to segments, at the expense of more parameters to
store for a single piece. Do these nonlinear ε-approximations improve the O(n/ε2)
space bound of the linear ones?

Chapter 4

We designed the PGM-index, a data structure for the predecessor search problem
with provably efficient I/O-bounds. In the static case, it guarantees the same optimal
I/O-complexity of a B-tree while improving its space from O(n/B) to O(n/B2),
which is significant, since B in practice is of the order of hundreds or thousands.
We made the PGM-index compressed and query distribution aware, and we showed
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experimentally that it significantly improves the space-time performance of both
static and dynamic predecessor structures.

The PGM-index first appeared on [FV20b]. The corresponding software library
was released at https://pgm.di.unipi.it, and since then it has been improved
with new features, such as the capability of answering orthogonal range queries on
multidimensional data. The library has become popular on GitHub (with over 550
stars) and has also appeared on several social networks and websites, such as on
Hacker News. Contributors helped in debugging, implementing new functionality
(e.g. approximate k-nearest neighbour search), and asking for new features (e.g. the
integration into database management systems and porting into other programming
languages).

For future work, we believe that there is room for further improvements in the
performance of the Dynamic PGM-index, especially over query-heavy workloads.
We also mention the design and implementation of concurrency control techniques,
which would be a key step for the integration of the PGM-index into real database
management systems. Finally, it is worth investigating an extension of the PGM-index
in the context of variable-length string keys.

Chapter 5

We shone a new light on the core component of any compact data structure, namely
compressed rank/select dictionaries, by proposing the LA-vector, a novel learning-
based compression scheme based on piecewise linear ε-approximations augmented
with correction values. We showed how to support efficient query operations,
and we designed a piecewise linear ε-approximation construction algorithm that
uses different ε values for different chunks of the input data with the objective of
minimising the overall space occupancy of the LA-vector. A comparison of LA-vector
with some other well-engineered compressed rank/select dictionaries showed new
space-time trade-offs.

The LA-vector appeared in [BFV21a], and its source code was made available at
https://github.com/gvinciguerra/la_vector.

For future work, we argue that the space of LA-vector can be further improved by
computing segments in such a way that the statistical redundancy of the correction
values in C is increased. This could be possibly achieved by jointly optimising
the space occupied by the segments and the space occupied by the compressed C,
playing on both the segments’ lengths and their correction values. We also mention
the use of vectorised instructions to achieve faster query times [LB15]. Finally,
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we suggest an in-depth study, design and experimentation of hybrid rank/select
structures, possibly integrating nonlinear ε-approximations in the LA-vector.

Chapter 6

We showed that the results obtained in the previous chapter, which exploit the
approximate linearity in the data, can be combined with the ones that exploit
the repetitiveness in the data, such as the classical Lempel-Ziv parsings [LZ76;
ZL77; KN13] and the recently-proposed block trees [Bel+21]. Our first result,
the LZρ

ε , is a rank/select data structure that combines backward copies with linear
ε-approximations. It supports efficient queries within a space complexity bounded
by the kth order entropy of the gaps in the input data. Our second result, the
block-ε tree, is a rank/select data structure that carefully deploys leftward copies
of block trees and linear ε-approximations to minimise the space occupancy of
the compressed representation. Our experimental achievements show that the
combination of the two sources of compressibility is effective and achieves the best
of both worlds.

The results in this chapter appeared in [FMV21]. The source code of the block-ε tree
is publicly available at https://github.com/gvinciguerra/BlockEpsilonTree.

For future work, we plan to implement and experiment with the LZρ
ε parsing, possibly

adapting the efficient parsing algorithms of [KK17]. It is also worth investigating the
construction of the LZρ

ε phrases and the block-ε tree inside a bicriteria framework,
which seeks to optimise the query time and space usage under some given constraints.
Finally, a study of the relation between the known repetitiveness measures [Nav20]
and the number of segments in a piecewise linear ε-approximation would shed some
more light on their differences and interplay.
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[PT14] Mihai Pǎtraşcu and Mikkel Thorup. “Dynamic integer sets with optimal rank,
select, and predecessor search”. In: Proceedings of the 55th IEEE Annual Sym-
posium on Foundations of Computer Science (FOCS). 2014, pp. 166–175 (cit. on
p. 34).
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