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Monotone Minimal Perfect Hash Functions (MMPHFS)

Given a set S of n keys from a universe [u] = {0, ...,u — 1}

Construct a hash function that maps keys € S to their rank, and keys & S to an
arbitrary value
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Why are MMPHFs interesting?

Minimal Perfect
Hash Functions (MPHF)
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Take > 1.44 bits/key
But no ranks

Exploit lex order

MMPHFs

[SODA 09]

Monotone Minimal Perfect Hashing:
Searching a Sorted Table with O(1) Accesses

Djamal Belazzougui* Paolo Boldi'

Abstract

A minimal perfect hash function maps a set § of n keys into
the set {0, 1,...,n — 1} bijectively. Classical results state
that minimal perfect hashing is possible in constant time us-
ing a structure occupying space close to the lower bound
of loge bits per element. Here we consider the problem of
monotone minimal perfect hashing, in which the bijection is
required to preserve the lexicographical ordering of the keys.
A monotone minimal perfect hash function can be seen as a
very weak form of index that provides ranking just on the
set S (and answers randomly outside of ). Our goal is to
minimise the description size of the hash function: we show
that, for a set S of n elements out of a universe of 2 ele-
‘ments, O(n loglog w) bits are sufficient to hash monotoni-
eally with evaluation time ((loo w) Alternativelv. we can

Rasmus Pagh* Sebastiano Vigna'

retrieve the position of a key in a given list of keys [11, 20]
We start from the observation that all existing technique
for this task assume that keys can be provided in any order
incurring an unavoidable S (nlogn) lower bound on the
number of bits required to store the function. However
very frequently the keys to be hashed are sorted in thei
intrinsic (i.e., lexicographical) order. This is typically th
case of dictionaries of search engines, list of URLs of wel
graphs, etc. We call the problem of mapping each key of :
lexicographically sorted set to its ordinal position monoton:
minimal perfect hashing. This problem has received, t
the best of our knowledge, no attention in the literature
However, as we will shortly explain, it is tightly connectec
with other classical problems. It is, in a way, a very weal
form of ranking: for instance, partial ranking on a set S i

Return ranks of keys in §
in O(logloglogu) bits/key

Any order

Order-Preserving MPHFs [TOIS 91]

Order-Preserving Minimal Perfect Hash
Functions and Information Retrieval

EDWARD A. FOX, QI FAN CHEN, AMJAD M. DAOUD and LENWOOD S. HEATH
Virginia Polytechnic Institute and State University

Rapid access to information is essential for a wide variety of retrieval systems and applications.
Hashing has long been used when the fastest possible direct search is desired, but is generally
not appropriate when sequential or range searches are also required. This paper describes a
hashing method, developed for collections that are relatively static, that supports both direct and
sequential access. The algorithms described give hash functions that are optimal in terms of
time and hash table space utilization, and that preserve any a priori ordering desired. Further-
more, the resulting order-preserving minimal perfect hash functions (OPMPHFs) can be found
using time and space that are linear in the number of keys involved; this is close to optimal.

Return ranks of keys in §
in Q(logn) bits/key

More space*

Less powerful rank

Rank data structures

Index on S

Compressed S

Return rank of any key
in Q log% bits/key

Applications of MMPHFs in databases, pattern matching, and search engines



Key tool: Retrieval data structures

 Associate given r-bit values to keys in S, and retrieve them in O(1) time

in theory Dietzfelbinger and Pagh [ICALP 08], Porat [CSR 09]

e Take rn bits +

in practice with BURR Dillinger et al. [SEA 22]



Belazzougui, Boldi, Pagh, Vigna [SODA 09] [ACM JEA 11]

Known approaches for MMPHF's

Hollow trie
& PaCo trie
Rank on Z-fast trie
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1. Form equal-size buckets and store local ranks with a
retrieval data structure

2. Build a (relative) rank data structure on the bucket
delimiters D to route keys in S to buckets

Space: O(logloglogu) bits/key
Queries: O(loglogu) time @



Our MMPHF
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Our MMPHF
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Our MMPHF
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e Suppose the input integers are uniform

* Map x to bucket number En‘, l.e. a linear mapping

Theorem 1.
Our MMPHF on uniform integers needs n(2.915 + o(1)) bits on average
and can be queried in O(1) time.

* This breaks the lower bound of Q(n logloglogu) bits for a MMPHF

* Learning and leveraging the input data smoothness:



Ranks [n]

HOW tO map non—uniform data 0[1|1[3|4]4|5]6|6]|9]|10/11

* Learn a piecewise linear g-approximation of
the function keys = ranks Ferragina, V. [VLDB 20]

v/ e |Rank estimate — True rank| < a given integer
o  The more the data is smooth the smaller is the
number of segments
* Rank estimate for a key = bucket index
:::::::::::::3:0::::4:0::::5:0::::6:0::::7:0::::8:0::::9:0::::1(:)0

Universe [u]



L.eMonHash bounds

Theorem 1.
LeMonHash on uniform integers takes n(2.915 + o0(1)) bits on average
and can be queried in O(1) time.

Piecewise linear e-approx.
Local ranks with m segments

Theorem 2. p A . - A

.
LeMonHash takes n(log(Ze +1)+2+ 0(1)) + O (mlog%) bits in
the worst case and can be queried in O(loglogu) time.




Handling variable-length strings

almon
awfish
callops
ca lion
ea snake
ca spilder

—
w-bit chunks

Global
ranks
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salmon

sawfish

scallops

sea lion
sea snake

sea spilder

#strings =t = handle recursively thus
creating a tree

Many optimisations in the paper
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String data

Integer data
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Experiments: space vs query throughput
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Existing Pareto front:

* Hollow-trie approaches 5 +
le) (%]
e ZFast / PaCo & S
_gm
* LCP approaches S

* On string data, space within
13% of the best competitors,
and up to 3X faster queries
than the larger competitor

* On integer data, dominates in
space-time all competitors
(except for the space on fb)

* Improved construction

throughput by up to 2X

()



Conclusion

: New MMPHF that learns and leverages data smoothness
e Can break the superlinear lower bound on MMPHFs’ space

* In practice: on most datasets, dominates all competitors on space
usage, query and construction throughput, simultaneously

Open problems
1. Strengthen our pessimistic bounds

2. Extend to nonlinear models



