
Learned Monotone Minimal
Perfect Hashing

Paolo Ferragina1, Hans-Peter Lehmann2, Peter Sanders2, and Giorgio Vinciguerra1

European Symposium on Algorithms (ESA 23)

1 2

Monotone Minimal Perfect Hash Functions (MMPHFs)

Given a set 𝑆 of 𝑛 keys from a universe 𝑢 = 0,… , 𝑢 − 1
Construct a hash function that maps keys ∈ 𝑆 to their rank, and keys ∉ 𝑆 to an
arbitrary value

2

0

A 1

C, F 2

3

D, G 4

5

C 0

A 1

F 2

3

G 4

D 5

A

C

D

F

G

Perfect
(no collisions)

C 0

A 1

F 2

D 3

G 4

A

C

D

F

G

…and Minimal
(output range is [𝑛])

A 0

C 1

D 2

F 3

G 4

A

C

D

F

G

…and Monotone
(preserves the lex order)

A

C

D

F

G

Classic

Why are MMPHFs interesting?

3

0

1

2

3

4

A

C

D

F

G

Minimal Perfect
Hash Functions (MPHF)

Take ≥ 1.44 bits/key
But no ranks

Order-Preserving MPHFs [TOIS 91]

Return ranks of keys in 𝑆
in Ω log 𝑛 bits/key

MMPHFs [SODA 09]

More space*

Less powerful rank

Return rank of any key
in Ω log !

"
bits/key

Compressed 𝑆

Index on 𝑆

Rank data structures

Return ranks of keys in 𝑆
in 𝒪 log log log 𝑢 bits/key

Any orderExploit lex order

Applications of MMPHFs in databases, pattern matching, and search engines

Key tool: Retrieval data structures

• Associate given 𝑟-bit values to keys in 𝑆, and retrieve them in 𝒪 1 time

• Take 𝑟𝑛 bits + small overhead

4

𝑜(𝑛) bits in theory Dietzfelbinger and Pagh [ICALP 08], Porat [CSR 09]

< 0.01 𝑟𝑛 bits in practice with BuRR Dillinger et al. [SEA 22]

1 3 4 6 7 12 15 17 20 21 24 29

Known approaches for MMPHFs

1. Form equal-size buckets and store local ranks with a
retrieval data structure

2. Build a (relative) rank data structure on the bucket
delimiters 𝐷 to route keys in 𝑆 to buckets

Space: 𝒪 log log log 𝑢 bits/key
 Queries: 𝒪 log log 𝑢 time 5

Hollow trie
PaCo trie

Z-fast trieRank on 𝐷

Belazzougui, Boldi, Pagh, Vigna [SODA 09] [ACM JEA 11]

1 3 4 6 7 12 15 17 20 21 24 29

This is optimal Assadi et al. [SODA 23]

Set 𝑆
(not stored)

Our MMPHF

6

𝑛 input keys

Universe [𝑢]

𝑛 buckets

Monotone function
(discussed later)

Our MMPHF

7

𝑛 input keys

Universe [𝑢]

Global ranks

𝑛 buckets

2𝑛 + 𝑜(𝑛) bits

Monotone function
(discussed later)

Our MMPHF

8

𝑛 input keys

Universe [𝑢]

Retrieval data
structures storing

local ranks for
buckets of size ≥ 2

Global ranks

𝑛 buckets

Monotone function
(discussed later)

2𝑛 + 𝑜(𝑛) bits

How to map to buckets
• Suppose the input integers are uniform

• Map 𝑥 to bucket number)
*
𝑛 , i.e. a linear mapping

Theorem 1.
Our MMPHF on uniform integers needs 𝑛(2.915 + 𝑜(1))	bits on average
and can be queried in 𝒪 1 time.

• This breaks the lower bound of Ω 𝑛 log log log 𝑢 bits for a MMPHF
• Learning and leveraging the input data smoothness: LeMonHash

9

? →

How to map non-uniform data

10

• Learn a piecewise linear 𝜺-approximation of
the function keys → ranks Ferragina, V. [VLDB 20]

• |Rank estimate – True rank| ≤ a given integer 𝜀
• The more the data is smooth the smaller is the

number of segments

• Rank estimate for a key = bucket index

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

Ra
nk

s [
n]

Universe [u]

? →

LeMonHash bounds
Theorem 1.
LeMonHash on uniform integers takes	𝑛(2.915 + 𝑜(1))	bits on average
and can be queried in 𝒪 1 time.

Theorem 2.
LeMonHash takes 𝑛 log 2𝜀 + 1 + 2 + 𝑜 1 + 𝒪 𝑚 log *

-
 bits in

the worst case and can be queried in 𝒪 log log 𝑢 time.

11

Global ranks
Piecewise linear ε-approx.

with 𝑚 segments Local ranks

Handling variable-length strings

12

salmon

sawfish

scallops

sea_lion

sea_snake

sea_spider

𝑤-bit chunks

|𝐿𝐶𝑃| = 1

salmon

sawfish

scallops

sea_lion

sea_snake

sea_spider

salmon

sawfish

scallops

sea_lion

sea_snake

sea_spider

[2#]	

0

2

2

3

3

6

salmon

sawfish

scallops

sea_lion

sea_snake

sea_spider
#strings ≥ 𝑡 ⇒ handle recursively thus
 creating a tree

Many optimisations in the paper

Global
ranks

Experiments: space vs query throughput

13

St
rin

g
da

ta
In

te
ge

r d
at

a

Existing Pareto front:
• Hollow-trie approaches
• ZFast / PaCo
• LCP approaches

LeMonHash:
• On string data, space within

13% of the best competitors,
and up to 3✕ faster queries
than the larger competitor
• On integer data, dominates in

space-time all competitors
(except for the space on fb)
• Improved construction

throughput by up to 2✕

+ space
 + throughput

Conclusion
• LeMonHash: New MMPHF that learns and leverages data smoothness
• Can break the superlinear lower bound on MMPHFs’ space
• In practice: on most datasets, dominates all competitors on space

usage, query and construction throughput, simultaneously

Open problems
1. Strengthen our pessimistic bounds
2. Extend to nonlinear models

14

