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Monotone Minimal Perfect Hash Functions (MMPHFs)

Given a set 𝑆 of 𝑛 keys from a universe 𝑢 = 0,… , 𝑢 − 1
Construct a hash function that maps keys ∈ 𝑆 to their rank, and keys ∉ 𝑆 to an 
arbitrary value
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Why are MMPHFs interesting?
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Minimal Perfect
Hash Functions (MPHF)

Take ≥ 1.44 bits/key
But no ranks

Order-Preserving MPHFs [TOIS 91]

Return ranks of keys in 𝑆
in Ω log 𝑛 bits/key

MMPHFs [SODA 09]

More space*

Less powerful rank

Return rank of any key
in Ω log !

"
bits/key

Compressed 𝑆

Index on 𝑆

Rank data structures

Return ranks of keys in 𝑆
in 𝒪 log log log 𝑢 bits/key

Any orderExploit lex order

Applications of MMPHFs in databases, pattern matching, and search engines



Key tool: Retrieval data structures 

• Associate given 𝑟-bit values to keys in 𝑆, and retrieve them in 𝒪 1  time 

• Take 𝑟𝑛 bits + small overhead
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𝑜(𝑛) bits in theory Dietzfelbinger and Pagh [ICALP 08], Porat [CSR 09]

< 0.01 𝑟𝑛 bits in practice with BuRR Dillinger et al. [SEA 22]
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Known approaches for MMPHFs

1. Form equal-size buckets and store local ranks with a 
retrieval data structure

2. Build a (relative) rank data structure on the bucket 
delimiters 𝐷 to route keys in 𝑆 to buckets

Space: 𝒪 log log log 𝑢 bits/key
  Queries: 𝒪 log log 𝑢  time 5

Hollow trie
PaCo trie

Z-fast trieRank on 𝐷

Belazzougui, Boldi, Pagh, Vigna [SODA 09] [ACM JEA 11]
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This is optimal Assadi et al. [SODA 23]

Set 𝑆
(not stored)



Our MMPHF
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𝑛 input keys

Universe [𝑢] 

𝑛 buckets

Monotone function
(discussed later)



Our MMPHF
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𝑛 input keys

Universe [𝑢] 

Global ranks

𝑛 buckets

2𝑛 + 𝑜(𝑛) bits

Monotone function
(discussed later)



Our MMPHF
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𝑛 input keys

Universe [𝑢] 

Retrieval data 
structures storing 

local ranks for 
buckets of size ≥ 2

Global ranks

𝑛 buckets

Monotone function
(discussed later)

2𝑛 + 𝑜(𝑛) bits



How to map to buckets
• Suppose the input integers are uniform

• Map 𝑥 to bucket number )
*
𝑛 , i.e. a linear mapping

Theorem 1.
Our MMPHF on uniform integers needs 𝑛(2.915 + 𝑜(1))	bits on average 
and can be queried in 𝒪 1  time.

• This breaks the lower bound of Ω 𝑛 log log log 𝑢  bits for a MMPHF 
• Learning and leveraging the input data smoothness: LeMonHash 
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How to map non-uniform data
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• Learn a piecewise linear 𝜺-approximation of 
the function keys → ranks  Ferragina, V. [VLDB 20]

• |Rank estimate – True rank| ≤ a given integer 𝜀
• The more the data is smooth the smaller is the 

number of segments 

• Rank estimate for a key = bucket index
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LeMonHash bounds
Theorem 1.
LeMonHash on uniform integers takes	𝑛(2.915 + 𝑜(1))	bits on average 
and can be queried in 𝒪 1  time.

Theorem 2. 
LeMonHash takes 𝑛 log 2𝜀 + 1 + 2 + 𝑜 1 + 𝒪 𝑚 log *

-
 bits in 

the worst case and can be queried in 𝒪 log log 𝑢  time.
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Global ranks
Piecewise linear ε-approx.

with 𝑚 segments  Local ranks



Handling variable-length strings
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#strings ≥ 𝑡 ⇒  handle recursively thus
                creating a tree

Many optimisations in the paper

Global
ranks



Experiments: space vs query throughput
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Existing Pareto front:
• Hollow-trie approaches
• ZFast / PaCo
• LCP approaches

LeMonHash:
• On string data, space within 

13% of the best competitors, 
and up to 3✕ faster queries 
than the larger competitor 
• On integer data, dominates in 

space-time all competitors 
(except for the space on fb)
• Improved construction 

throughput by up to 2✕

+ space
 + throughput



Conclusion
• LeMonHash: New MMPHF that learns and leverages data smoothness
• Can break the superlinear lower bound on MMPHFs’ space
• In practice: on most datasets, dominates all competitors on space 

usage, query and construction throughput, simultaneously

Open problems
1. Strengthen our pessimistic bounds
2. Extend to nonlinear models
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