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Range Filters

Given a set S of n keys, a range filter is a space-efficient data
structure that answers range emptiness queries with a false
positive probability of at most &
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* Generalises Bloom filters from point to range queries
* Reduces I/Os of range queries in LSM-based storage engines
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Gralite: An Optimal Robust Range Filter

1. Apply a locality-preserving hash function to the keys
L 2-independent hash function

h(x) = (x + q([x/rj)) mod r

Properly chosen to bound FPR and space S
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2. Compress the hash codes with the Elias-Fano code
3. Solve queries in hash space
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Theorem. Given a space budget of B bits/key, the query time
of Grafite is O(1) and the false positive probability € is no
more than £/2572, where £ is the query range size

Experiments with Robust Range Filters
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Take-home message. If robustness guarantees are needed regardless
of input data and future queries, Grafite is the range filter of choice

Issues with Current Range Filters

@ Highly complex
Sophisticated designs, hard to evaluate and deploy
Q@Y Fragile

Inconsistent FPR and query times across different datasets

_._ Adversarial queries

ox» Easy to issue queries that result in false positives (thus 1/0s)
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Bucketing: A Simple Heuristic Range Filter
1. Divide universe into buckets of equal size s < LTEQSEESCEPR
2. Mark non-empty buckets with a compressed bit-vector

3. Solve queries by mapping ranges to bit-vector positions
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Non-empty buckets: | 1 0 1
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Experiments with Heuristic Range Filters
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Take-home message. Heuristic range filters sacrifice robustness to work
well on some inputs only, but simpler solutions like Bucketing exist



