SIGMOD 2024 Grafite: Taming Adversarial Queries with Optimal Range Filters Marco Costa, Paolo Ferragina, Giorgio Vinciguerra

UNIVERSITÀ DI PISA

Range Filters

Given a set S of n keys, a range filter is a space-efficient data structure that answers range emptiness queries with a false positive probability of at most ε

• Generalises Bloom filters from point to range queries

Issues with Current Range Filters

Highly complex

Sophisticated designs, hard to evaluate and deploy

Fragile

Inconsistent FPR and query times across different datasets

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

10⁻⁶

10

 10^{-10}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

U O

FPR

Books

uo

FPR

6

Adversarial queries

Easy to issue queries that result in false positives (thus I/Os)

• Reduces I/Os of range queries in LSM-based storage engines

Grafite: An Optimal Robust Range Filter

2-independent hash function

1. Apply a locality-preserving hash function to the keys

 $h(x) = (x + q(\lfloor x/r \rfloor)) \mod r$ Properly chosen to bound FPR and space [0, u) $\rightarrow [0,r)$

2. Compress the hash codes with the Elias-Fano code 3. Solve queries in hash space

 $[a, b] \cap S = \emptyset?$ $[a', b'] \cap S = \emptyset?$ $\rightarrow [0, u)$

Bucketing: A Simple Heuristic Range Filter 1. Divide universe into buckets of equal size s < and space 2. Mark non-empty buckets with a compressed bit-vector

3. Solve queries by mapping ranges to bit-vector positions

of Grafite is O(1) and the false positive probability ε is no more than $\ell/2^{B-2}$, where ℓ is the query range size

Experiments with Robust Range Filters

Experiments with Heuristic Range Filters

Take-home message. If robustness guarantees are needed regardless of input data and future queries, Grafite is the range filter of choice

30

10

20

Space [bits/key]

30

20

Space [bits/key]

30

10

20

Space [bits/key]

10

On uncorrelated query workloads, Bucketing offers, simultaneously, FPR very close to the best-performing heuristic range filters, $5-13 \times$ faster queries, and 5–24× faster construction