SIGMOD 2024

Grafite: Taming Adversarial Queries with Optimal Range Filters

Marco Costa, Paolo Ferragina, Giorgio Vinciguerra

UNIVERSITA DI P1SA

Range Filters

Given a set S of n keys, a range filter is a space-efficient data
structure that answers range emptiness queries with a false
positive probability of at most &

la,blnS=0? |a' b'lNnS=0@? la”, bl NS =@?
o—o-o o—o o > [0, u)

NMy € False positive

* Generalises Bloom filters from point to range queries
* Reduces I/Os of range queries in LSM-based storage engines

Not empty Empty

Gralite: An Optimal Robust Range Filter

1. Apply a locality-preserving hash function to the keys
L 2-independent hash function

h(x) = (x + q([x/rj)) mod r

Properly chosen to bound FPR and space S

o—eo-o | o—o ——eo———> [0,u)
W

ib/ //
L] Z S o> (0,7)

2. Compress the hash codes with the Elias-Fano code
3. Solve queries in hash space

NS =0? |a b’]nS-(Z)?

*—o o — > [0, u)
/z()h(%)h(b)
”'AE EOT) Grafite works robustly out of th
y rarite Works robustity out o e

box by just specitying B or &

Theorem. Given a space budget of B bits/key, the query time
of Grafite is O(1) and the false positive probability € is no
more than £/2572, where £ is the query range size

Experiments with Robust Range Filters

—O— Grafite —9— Rosetta —B— REncoder

Point queries Small range Large range
° 100
£ 101 Space-vs-FPR
2 18:2 Grafite is up to 4 orders
S 10 of magnitude more
QSC %8:2 effective than REncoder,
o oI I) . I O R and up to 5 than Rosetta
2 100
2 10:; Query time
§ %8_3 Grafite is about 1 order
S 10:;l of magnitude faster than
S %8_6 REncoder, and 2 than
g 0 I ——————— Rosetta
10° .
2 1071 Construction time
occé 18:2 \ Grafite is up to 8 orders
S 10 of magnitude faster than
§ %8:2 REncoder and 10 than
0 Rosetta
e e e —

30 10 20 30 10 20 30
Space [blts/key] Space [bits/key] Space [bits/key]

Take-home message. If robustness guarantees are needed regardless
of input data and future queries, Grafite is the range filter of choice

Issues with Current Range Filters

@ Highly complex
Sophisticated designs, hard to evaluate and deploy
Q@Y Fragile

Inconsistent FPR and query times across different datasets

. Adversarial queries

ox» Easy to issue queries that result in false positives (thus 1/0s)

Point queries Small range Large range

100 : e ' 14 L IR T,
o 3 =
5 107 WY <\
g 107 Little or no
= filtering
o) B
A 1074 do—
3
< 107
L

0

10°
= 10°
5
o 10%
)
c
— 103
= How close
= 10° queries are

10! ————""1———— r r r 1 r r 1 |""|""|+0|npu.‘.keyS

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 l.y
Correlation Degree Correlation Degree Correlation Degree
—O— Grafite SNARF —€— Proteus —P»— REncoder REncoderSE
—#— Bucketing —B— SuRF —$— Rosetta REncoderSS

Bucketing: A Simple Heuristic Range Filter
1. Divide universe into buckets of equal size s < LTEQSEESCEPR
2. Mark non-empty buckets with a compressed bit-vector

3. Solve queries by mapping ranges to bit-vector positions

la,b| NS = @?

9@ @
S > S > < =/
[a/s,b/\ / la’/s,b"/s]

Non-empty buckets: | 1 0 1

Empty NED&I@

la’,b'|nS = @?

@ > |0,u)

Experiments with Heuristic Range Filters

—#*— Bucketing —E— SuRF —€— Proteus SNARF REncoderSS REncoderSE

Point queries Small range Large range

100 4 ¥ o % | F F F % F % J:;%H
-1
%8_2 %—;%m &\8\@\% Heuristic range filters

%gj provide little to no
107>
10°°

filtering on correlated
guery workloads

FPR on Uncorrelated FPR on Correlated

0
| | | vt | | |

109
107 On uncorrelated
102 query
10_2 workloads, Bucketing
%8-5 offers, simultaneously,
1076 FPR very close to the

0 best-performing
100 heuristic range filters,

5-13X faster queries,
and 5—24 X faster
construction

FPR on Books
[
o
A

————
10 20 30 10 20 30 10 20 30
Space [bits/key] Space [bits/key] Space [bits/key]

Take-home message. Heuristic range filters sacrifice robustness to work
well on some inputs only, but simpler solutions like Bucketing exist

