
Issues with Current Range Filters

SIGMOD 2024

Grafite: Taming Adversarial Queries with Optimal Range Filters
Marco Costa, Paolo Ferragina, Giorgio Vinciguerra

Range Filters
Given a set ! of " keys, a range filter is a space-efficient data
structure that answers range emptiness queries with a false
positive probability of at most #

• Generalises Bloom filters from point to range queries
• Reduces I/Os of range queries in LSM-based storage engines

Grafite: An Optimal Robust Range Filter
1. Apply a locality-preserving hash function to the keys

2. Compress the hash codes with the Elias-Fano code
3. Solve queries in hash space

Theorem. Given a space budget of $ bits/key, the query time
of Grafite is %(1) and the false positive probability # is no
more than ℓ/2!"#, where ℓ is the query range size

Experiments with Heuristic Range Filters

Take-home message. Heuristic range filters sacrifice robustness to work
well on some inputs only, but simpler solutions like Bucketing exist

Experiments with Robust Range Filters

Take-home message. If robustness guarantees are needed regardless
of input data and future queries, Grafite is the range filter of choice

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

! (not stored)

[0, $)
&, ' ∩) = ∅? &!, '′ ∩) = ∅?

Not empty Empty

!!!, #′′ ∩ & = ∅?

Not empty False positive

Highly complex
Sophisticated designs, hard to evaluate and deploy

Fragile
Inconsistent FPR and query times across different datasets

Adversarial queries
Easy to issue queries that result in false positives (thus I/Os)

ℎ " = " + % "/' mod '

[0, ,)

[0, .)

2-independent hash function

Properly chosen to bound FPR and space

[0, ,)

[0, .)

!′, #′ ∩ & = ∅?

Not empty

ℎ "′ , ℎ %′

!, # ∩ & = ∅?

Empty

ℎ " , ℎ %

Bucketing: A Simple Heuristic Range Filter
1. Divide universe into buckets of equal size +
2. Mark non-empty buckets with a compressed bit-vector
3. Solve queries by mapping ranges to bit-vector positions

1 0 1 1

[0, ,)

Non-empty buckets:

!′, #′ ∩ & = ∅?

"′/' , %′/'

Not empty

!!!!

!, # ∩ & = ∅?

Empty

"/' , %/'

Impacts FPR

and space

Space-vs-FPR
Grafite is up to 4 orders
of magnitude more
effective than REncoder,
and up to 5 than Rosetta

Query time
Grafite is about 1 order
of magnitude faster than
REncoder, and 2 than
Rosetta

Construction time
Grafite is up to 8 orders
of magnitude faster than
REncoder and 10 than
Rosetta

Heuristic range filters
provide little to no
filtering on correlated
query workloads

On uncorrelated query
workloads, Bucketing
offers, simultaneously,
FPR very close to the
best-performing
heuristic range filters,
5–13× faster queries,
and 5–24× faster
construction

Grafite works robustly out of the

box by just specifying) or *

How close

queries are

to input keys

Little or no

filtering

