
Lossless-compressed

data storage for SWH
Compressed, tunable & energy-aware 

P. Ferragina, F. Tosoni



Compressed cache based on a 

key-value store

Milestone 1



Compressed cache based on a key-value store

Given a stream 𝑞1, … , 𝑞𝑚 of queries

we aim to design a scalable and 
compressed cache of size 𝑀

𝑀

𝑞1 𝑞𝑚

𝑆
miss

hit

𝑐1𝑐𝑚 …

Operations:

• Many single- and 
multi-get

• Few updates (insertion, 
deletions)

Winery 

backend
Our 

solution

𝑞1
𝑞𝑚

𝑐1𝑐𝑚 …



RocksDB

A fine-tunable key-value 

store based upon the LSM-

Tree. 

• Concurrency handling

• Single- & multi-get retrieval

• Fast insertion/delete

Ordered
by key 

⇒Permute

Divided into 
blocks 

⇒ Partition

Compressed 
blocks 

⇒ Compress



Repository features

ppc-swh-rocksdb++ is a cmake/C++ NoSQL DB with 

Python Bindings.

Key features:

• Content-based key generation 

(Regex or TLSH hash).

• Benchmarking for compression 

ratio gains.

• Verification and inspection 

tools for parquets, tars, shards 

and more.

External dependencies:

• pybind11 for C++ to 

Python binding.

• Apache Arrow for the 

parquet format.

• jemalloc: memory 

allocator.

• Compression libraries: 

gflags, zstd, snappy, 

zlib.



RocksDB

Experiments replicated on the 

Perseus/GRICAD cluster 

(Univ. of Grenoble).

 Work in progress: construct 

an exhaustive Terabyte-scale 

subset of The Stack v2 in 

parquet format comprising 

Python, Java, Javascript, 

C/C++. (discussed later)

Some technicalities:

• Dependencies installed 

manually or via nix

• Tests conducted on write/read 

operations in multi-threaded 

settings

• Enabled Intel® RAPL energy 

profiler (by contacting the node 

admin)

• Tasks scheduled via OAR 

(this introduces some delay)



Which are the keys? 

Context based
key =
Extension+filename+SWHID

py.BuildAggregatePS3Table|swh

:1:cnt:238e0908f0180e279f02b8

14186661508a0462d1

py.DeckMenu|swh:1:cnt:266433a

578d4bd3bba74c9f9e8c33fe2869f

a57b

java.AbstractBaseRedisDao|swh

:1:cnt:03f261eca0fa67a7f6946f

496eeb1dc352b17ea7



Which are the keys? 

Content based

• LSH-Project each document
𝑓1, … , 𝑓𝑛 in a vector space

• Relevant class and function
names, comments, 
statements and more

𝑐1

𝑐2𝑐3

𝑐4

𝑐5

𝑓1

𝑓2

𝑓3

𝑓4

py.BuildAggregatePS3Table|swh

:1:cnt:238e0908f0180e279f02b8

14186661508a0462d1

py.DeckMenu|swh:1:cnt:266433a

578d4bd3bba74c9f9e8c33fe2869f

a57b

java.AbstractBaseRedisDao|swh

:1:cnt:03f261eca0fa67a7f6946f

496eeb1dc352b17ea7

𝒇𝟐

𝒇𝟏

𝒇𝟒

𝒇𝟑

Context based
key =
Extension+filename+SWHID



Which are the keys? 

Content based

• LSH-Project each document
𝑓1, … , 𝑓𝑛 in a vector space

• Relevant class and function
names, comments, 
statements and more

𝑐1

𝑐2𝑐3

𝑐4

𝑐5

𝑓1

𝑓2

𝑓3

𝑓4

py.BuildAggregatePS3Table|swh

:1:cnt:238e0908f0180e279f02b8

14186661508a0462d1

py.DeckMenu|swh:1:cnt:266433a

578d4bd3bba74c9f9e8c33fe2869f

a57b

java.AbstractBaseRedisDao|swh

:1:cnt:03f261eca0fa67a7f6946f

496eeb1dc352b17ea7

𝒇𝟐

𝒇𝟏

𝒇𝟒

𝒇𝟑

Context based
key =
Extension+filename+SWHID



Fine tuning: insertion

Fine tuning: 
10 GiB
Python code



Fine tuning: single- vs multi-get
faster

• 6 compression algorithms/levels
• 4 block sizes: 4KiB, 16KiB, 64KiB, 128KiB
• 140 sequential code version tests



• 6 compression algorithms/levels
• 4 block sizes: 4KiB, 16KiB, 64KiB, 128KiB
• 140 sequential code version tests

Fine tuning: uniform vs skewed data
faster

Power law, 𝛼 = 1.5



Stream-parallel & energy aware

energy

time

Green: 1-2 
orders of 
magnitude
time & 
energy 
reduction

2208 tests



What if we need to keep the SWHID?

Cuckoo hashing
(libcuckoo) for a 
space-efficient and 
dynamic mapping 
SHA-1→filenames.

We might consider 
replacing cuckoo 
hashing with an 
additional RocksDB 
instance as the 
number of entries 
grows.

SHA-1 filename

sha0 fn0

sha1 fn1

… …

shaN fnN

SWH key
(SHA-1)

cuckoo

hashing

filename



Conclusions

Our PPC approach hinging on RocksDB offers...

• Dynamic, re-configurable and performant solution

• Competitive compression (~12% on 10 GiB, we expect more scaling up)

• Fast insertion/deletion (>100 MiB/s for zstd-3)

• Fast random access 

• Single-gets: >100 MiB/s (zstd-3), up to 140 MiB/s (zstd-22)

• Multi-gets: ~600 MiB/s (zstd-3)

• Saves 1-2 orders of magnitude time-energy via parallelism

• Remarkable retrieval speedup as thread count increases (~9 GiB/s, 

zstd-3) 

Efficient caching system for Winery, Code2Code search engines

PPC



Milestone 1: Goals & Roadmap

Formatting Python, Javascript, Java, C/C++ code 

sources in parquet format. 

the-stack-v2-pathsliced

• content

• .tar.zst

the-stack-v2-train-full-
files/data

• content + 

metadata

• parquet

the-stack-v2/data/Python

• metadata

• parquet

To avoid write
amplification problems, 
we transferred the 
datasets on UniPi
machines for further
elaboration

C++
Javascript
Java



Milestone 1: Goals & Roadmap

Finalise the experiments on the Terabyte-scaled 
dataset ⇒ contributing a dynamic and tunable 
storage engine.

Our narrative: a lossless-compressed and 
dynamic, Terabyte-scale, energy-aware, highly-
tuned caching solution based on PPC paradigm 
and a NoSQL DB.

Compared to Boffa et al. [2025], our solution is
dynamic and highly tunable, achieves more 
robust and performant results especially for the 
retrieval phase.



Permuting SWH shard files

by content similarity

Milestone 2



Scheme

PPC

We use our RocksDB-based

solution to improve shard

compressibility by permuting

contents by similarity

shard

preprocessing
keys

load permuted
shard



Scheme

PPC

We use our RocksDB-based

solution to improve shard

compressibility by permuting

contents by similarity

shard

preprocessing
keys

load permuted
shard

compressed

shard

permuted

compressed

shard

zstd -22 
–ultra
--long=31 
-T32



Scheme

PPC

We use our RocksDB-based

solution to improve shard

compressibility by permuting

contents by similarity

shard

preprocessing
keys

load permuted
shard

compressed

shard

permuted

compressed

shard

zstd -22 
–ultra
--long=31 
-T32

comparison



Regex
The critical step is defining and computing a proper sorting. 

Context-based information is not available, so we shall consider

content-based ones.

Options:

• LSH computations (e.g., via minhash or TLSH). ⇒ time-

expensive: 19h with ~50 cores and 2 permutations.

• An alternative approach entails extracting multi-language

class & function names, comments and more. ⇒ faster



A standalone for permuting
offset length

Permute 

the objects

Update the 

offsets

The permuted shard

inherits most portions

of the input shard.



Milestone 2: Goals & Roadmap

• Goal: a significant infrastructure 
contribution for a dedicated 
column/section in an 
infrastructure white paper.

• We aim to demonstrate the 
feasibility of reducing shard 
space by ~5% in the 
compressed domain ⇒ 
petabyte scale.

• Optional: Showcase reduced 
energy consumption for block-
accesses on compressed shard 
files.



Q&A

Francesco Tosoni, PhD

Postdoctoral researcher

Informatica
L.go B. Pontecorvo 3
56127 Pisa PI
Italia

francesco.tosoni@di.unipi.it

pages.di.unipi.it/tosoni

mailto:francesco.tosoni@di.unipi.it

	Diapositiva 1: Lossless-compressed data storage for SWH Compressed, tunable & energy-aware 
	Diapositiva 2: Compressed cache based on a key-value store
	Diapositiva 3: Compressed cache based on a key-value store
	Diapositiva 4: RocksDB
	Diapositiva 5: Repository features
	Diapositiva 6: RocksDB
	Diapositiva 7: Which are the keys? 
	Diapositiva 8: Which are the keys? 
	Diapositiva 9: Which are the keys? 
	Diapositiva 10: Fine tuning: insertion
	Diapositiva 11: Fine tuning: single- vs multi-get
	Diapositiva 12: Fine tuning: uniform vs skewed data
	Diapositiva 13: Stream-parallel & energy aware
	Diapositiva 14: What if we need to keep the SWHID?
	Diapositiva 15: Conclusions
	Diapositiva 16: Milestone 1: Goals & Roadmap
	Diapositiva 17: Milestone 1: Goals & Roadmap
	Diapositiva 18: Permuting SWH shard files by content similarity
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22: Regex
	Diapositiva 23: A standalone for permuting
	Diapositiva 24: Milestone 2: Goals & Roadmap
	Diapositiva 25: Q&A

