
Enhancing SWH Object Storage 

with Compressed and Dynamic 

Solutions

P. Ferragina, F. Tosoni



Previous work (1/2)
Permute-Partition-Compress (PPC) paradigm

Backup scenario

• Permute files by similarity

• Partition data into blocks of a specific size

• Compress the blocks

⇒ Outcome: very good 

compression ratios

(up to 2.2% on 200 GBs of 

Python code) but static, slow 

construction



Previous work (2/2)

Permute-Partition-Compress (PPC) paradigm

Access scenario

• Backup capabilities

• Manage blocks with RocksDB?

⇒ Outcome: slightly worse 

compression ratios

(up to 5.8%) and moderate 

access speed (~101 MBs-1) 



RocksDB

A key-value store based 

upon the LSM-Tree

PPC approach:

• Ordered by key 

→ permute

• Divided into blocks 

→ partition

• Compressed blocks 

→ compress



Why RocksDB?

• Good compression ratio

• Very fast in insertion and retrieval

• Multiple retrieval options:

• Single-get

• Multi-get 

• Fine-tunable with many options

Officially distributed in C++ & Java; wrappers in 

Python3, Rust & other languages



Tuning RocksDB

Pairs = <fingerprint* of the file, file>

(*) Fingerprints = filename, tlsh, min_hash, …

Three scenarios: 

• Backup: just storage and full decompression (sort the 

pairs, create a Parquet file and compress with zstd-22) 

• Access: support random access to files (sort the pairs, 

insert them in RocksDB, and compress with zlib-6) → 

multiget

• Dynamic: key-value pairs arriving in streaming (inserted 

as is in RocksDB and compressed with zlib-6)

→ multiget: ~101 MB s-1

Federico Ramacciotti’s
MSc thesis



RocksDB for SWH’s Object Storage 

(1/2)
Cuckoo hashing
(libcuckoo) for a 
space-efficient and 
dynamic mapping 
SHA-1→filenames.

We might consider 
replacing cuckoo 
hashing with an 
additional RocksDB 
instance as the 
number of entries 
grows.

SHA-1 filename

sha0 fn0

sha1 fn1

… …

shaN fnN

SWH key
(SHA-1)

cuckoo

hashing

filename



RocksDB for SWH’s Object Storage 

(2/2)
• Python Integration via pybind11

wrappers of C++ components
(RocksDB, libcuckoo).

• Apache Arrow to improve data 
serialisation and processing 
(support for Parquet file format).

Outcome: A new fast and dynamic
object-storage layer for files ≤5KB 
(which make up most of SWH’s
space)



Conclusions

Simple, modular and general framework

How to design an object-storage backend?

RocksDB offers...

• Dynamic and effective solution

• Good compression (~20%)

• Fast insertion (400 MB s-1, 105 files s-1, zlib-6) and deletion

• Fast access (10 MB s-1, 2500 files s-1, zlib-6)

How to distribute datasets for AI?

PPC approach offers...

• Output based on the parquet format

• Content- and context-based compression

• Open-source codebase → reproducible

Efficient storage for Code2Code search engines


	Diapositiva 1: Enhancing SWH Object Storage with Compressed and Dynamic Solutions 
	Diapositiva 2: Previous work (1/2)
	Diapositiva 3: Previous work (2/2)
	Diapositiva 4: RocksDB
	Diapositiva 5: Why RocksDB?
	Diapositiva 6: Tuning RocksDB
	Diapositiva 9: RocksDB for SWH’s Object Storage (1/2)
	Diapositiva 10: RocksDB for SWH’s Object Storage (2/2)
	Diapositiva 11: Conclusions

