
Toward Greener
Matrix Operations
by Lossless
Compressed
Formats

Francesco Tosoni, Philip Bille,
Valerio Brunacci,
Alessio De Angelis, Paolo Ferragina,
and Giovanni Manzini

Fi
le

:B
et

el
bl

at
t.s

vg
or

ig
in

al
ly

up
lo

ad
ed

to
 C

om
m

on
s

by
 U

se
r:

Fu
rf

ur

Introduction
Sparse Matrix-Vector Multiplication (SpMV) are relevant in ML, scientific

computing, and graph algorithms.
Research focus: Investigate space, time, and energy efficiency of SpMV.

We challenge prevailing assumptions about a straightforward linear correlation
between time and energy.

0 1

2 4

3
0 0 1 0 0

1 0 0 0 0

0 1 0 1 0

0 0 0 0 1

0 0 1 0 0

2.1

1.5

3.8

0.7

4.4

3.8

2.1

2.2

4.4

3.8

M x y

M
ot

iv
at

io
n

POPULARITY OF ML ALGORITHMS (E.G.
CHATGPT) AND DATA GENERATION

SURPASSING MOORE'S LAW

AI NOT JUST ON SERVER MACHINES BUT
ALSO ON EDGE AND IOT DEVICES →

BATTERY DURATION AS CRITICAL
CONCERN.

ENERGY AS A LEADING DESIGN
CONSTRAINT IN COMPUTING DEVICES;

HOWEVER, GREEN SOFTWARE
ENGINEERING IS STILL IN ITS INFANCY.

OVERSIMPLIFIED ENERGY COMPLEXITY
MODELS FAIL TO CAPTURE REAL-WORLD

DYNAMICS → NEED FOR
COMPREHENSIVE REFERENCE MODELS

Platforms

Intel® Xeon® Gold 6132 CPU
@2.60GHz (28 cores, 2-way

hyperthreading) and the
RAPL energy profiler

Raspberry Pi 4 model
B @1.5GHz (4 cores)

and a Fluke 8845A
benchtop multimeter

VS.

Research questions
How does compression affect the efficiency
of space, time, and energy? Some matrix
formats are more space-efficient but
consume order of magnitude more energy
than others.

What trade-offs exist between time
optimisation and energy
consumption? Often the energy-optimal
parallelism degree is lower than the time-
optimal one.

Which runtime metrics impact energy
efficiency? The number of L1 and L3 cache
accesses impact performances.

Compressed
matrix formats

Compressed matrix formats
We compare three computation-friendly compression schemes
for large yet sparse binary matrices:
•Google's Zuckerli (Versari et al., 2020)
•k²-tree (Brisaboa, Ladra, and Navarro 2014)
•RePair-compressed matrices [mm-repair] (Ferragina et al., 2022)

Why lossless?

Lossy compression solutions
for space reduction:
• Low-precision storage (e.g.

FP32)
• Sparsification
• Quantisation (binary, ternary)
→careful & manual application

Lossless compression is a
better "automated" alternative
• data independent
• no need a priori knowledge

about the input data.

Computation-
friendly

compression

All formats we tested are
computation-friendly for
matrix-vector multiplications:
• Exploit more than mere

sparsity
• Enable direct operations on

data without prior
decompression

• Allow operating in time
proportional to the size of
the compressed
representation (win-win!)

WebGraph & Zuckerli (1/2)

Exploit redundancies of outgoing links
within the same domain.
• Webgraph (2004) exploit the copying

property of consecutive adjacency
lists to compress each list based on
a reference list (Java, c++, Rust).

• Google's Zuckerli (2020) applies
novel compression heuristics on top
of Zuckerli.

Adjacency matrix for eu-2005. Figure

taken from DOI: 10.1155/2020/2354875

WebGraph &
Zuckerli (2/2)

These graph formats
allow for compression-
friendly matrix-to-vector
multiplications
(Francisco et al. 2022).
Idea: exploit deltas
between similar
adjacency lists.
We implement
multiplications on top of
Zuckerli.

Node Outdegree Successors

...

15 11 13, 15, 16, 17 , 18, 19, 23, 24, 203,
315, 316, 317, 3041

16 10 15, 16, 17, 22, 23, 24, 315, 316,
317, 3041

17 0

18 5 13, 15, 16, 17, 50

...

k²-tree (1/3)

Exploit sparsity and
clustering of 0's.
Submatrices are recursively
split into k² smaller
submatrices.
• 0: empty submatrix;
• 1: non-empty ones.

F
i
g
u
r
e

t
a
k
e
n
f
r
o
m

D
O
I
:

10
.1

00
7/

97
8-

3-
64

2-
03

78
4-

9_
3c

k=2

k²-tree (2/3)

F
i
g
u
r
e

t
a
k
e
n
f
r
o
m

D
O
I
:

10
.1

00
7/

97
8-

3-
64

2-
03

78
4-

9_
3c

Retrieving neighbours for page 10

Height is always logkn → access
to each single cell O(logkn).

Matrix-vector multiplication =
visit to the tree

k²-tree (3/3)

Implementations:
University of A Coruña,
SDSL library, and one by
the University of
Chile/Millennium
Institute.
Matrix-to-vector
multiplications can be
implemented by a tree
traversal (in any order).
There's no need of rank
and select data
structures.

mm-repair ~ Step #1: exploit sparsity

1 2 3

4.1 5.3 0 5.3
4.1 0 2.0 4.1
0 5.3 2.0 5.3
4.1 5.3 2.0 4.1
4.1 5.3 2.0 5.3

𝑉 = 2.0 4.1 5.3

1 2 3 4

𝑆 =
2,1 3,2 3,4 $ 2,1 1,3 2,4 $

3,2 1,3 3,4 $ 2,1 3,2 1,3 2,4 $

2,1 3,2 1,3 3,4 $ $ is the EOL character

Compute the CSRV

representation of a matrix, a

modification of the CSR

representation.Set of

nonzeros

Sequence

of pairs

𝑆 =
2,1 3,2 3,4 $ 2,1 1,3 2,4 $

3,2 1,3 3,4 $ 2,1 3,2 1,3 2,4 $

2,1 3,2 1,3 3,4 $

4.1 5.3 0 5.3
4.1 0 2.0 4.1
0 5.3 2.0 5.3
4.1 5.3 2.0 4.1
4.1 5.3 2.0 5.3

1 2 3 4

1 2 3

𝑉 = 2.0 4.1 5.3

Generate column-value

index pairs

𝑙, 𝑗

Non-zero

index

Column

index

mm-repair ~ Step #1: exploit sparsity

𝑆 =
2,1 3,2 3,4 $ 2,1 1,3 2,4 $

3,2 1,3 3,4 $ 2,1 3,2 1,3 2,4 $

2,1 3,2 1,3 3,4 $

4.1 5.3 0 5.3
4.1 0 2.0 4.1
0 5.3 2.0 5.3
4.1 5.3 2.0 4.1
4.1 5.3 2.0 5.3

1 2 3 4

1 2 3

𝑉 = 2.0 4.1 5.3

𝑙, 𝑗

Non-zero

index

Column

index

mm-repair ~ Step #1: exploit sparsity

Generate column-value

index pairs

mm-repair ~ Step #2: grammar-compress

In the following, as a

(lossless) compressor

we use RePair, which is

a grammar

compressor based on

straight-line programs

(SLP).

𝑆 = 𝑎𝑏𝑎𝑏𝑏𝑎

𝑅1 → 𝑎𝑏
𝑅2 → 𝑅1𝑅1
𝑅3 → 𝑏𝑎
𝑅4 → 𝑅2𝑅3

𝑅4

𝑅2 𝑅3

𝑅1

a b

b a

mm-repair ~ Step #2: grammar-compress

mm-repair ~ Step #2: grammar-compress

mm-repair ~ Step #2: grammar-compress

mm-repair ~ Step #3: multiply

mm-repair ~ Step #3: multiply

mm-repair ~ Step #3: multiply

mm-repair ~
physical
representations

Final
string

C
Rules

R
Nonzeros

V

re_32 32 bit 32 bit 64 bit

re_iv packed
arrays

packed
arrays

64 bit

re_ans ANS
(entropy
coder)

packed
arrays

64 bit

Different
space‒time

tradeoffs

Experimental
setup

PageRank
A classical algorithm in graph
analysis.

Teleporting
parameter
(α=0.15)

Left
matrix-vector

multiplication

Initial
probability

distribution

Fi
le

:R
ha

co
ph

or
us

ni
gr

op
al

m
at

us
.jp

g
or

ig
in

al
ly

up
lo

ad
ed

to
 C

om
m

on
s

by
 U

se
r:

R
us

he
nb

Fi
le

:L
in

ks
tr

uc
t2

.s
vg

up
lo

ad
ed

to
 C

om
m

on
s

in
 S

VG
 fo

rm
at

 b
y

U
se

r:
R

ob
er

tG

Datasets

From the WebGraph framework, via the SuiteSparse Matrix Collection. Most
graphs are derived from web crawls, with vertices ordered by the reversed URL
lexicographically.

We also included two social network graphs:

• hollywood-2009: An undirected graph representing movie actors, where
edges connect actors who co-starred in films.

• ljournal-2008: A directed graph illustrating asymmetric friendships in the
LiveJournal social network.

Raspberry Pi 4 Model B

•CPU: 4 x ARM Cortex-A72 @ 1.5GHz
•Cores: 4 physical cores

Memory:
•Total RAM: 4 GB LPDDR4 SDRAM

Operating system:
•Ubuntu Server 24.04 LTS (64-bit)

Cache architecture:
•L1d: 128 KiB per core; L1i: 192 KiB per core
•L2: 1 MB shared (16-way set associative)
•No L3!
Datasets Used: ≤10⁷ vertices

Intel® Xeon® Server

CPU: 2 x Intel® Xeon® Gold 6132 @ 2.60GHz
Cores: 28 physical cores (56 logical)
Memory:
Total RAM: 384 GB (12 x 32 GB DDR4)
Memory Speed: 2666 MT/s
Operating system:
Ubuntu 22.04.3 LTS (64-bit)
Cache architecture:
L1d: 896 KiB (8-way set associative)
L1i: 896 KiB (8-way set associative)
L2: 28 MiB (16-way set associative)
L3: 38.5 MiB (11-way set associative)

Specifications

Code setup

Preprocessing steps
Transposed the matrix

Compress via Zuckerli, k2-tree,
mm-repair

Store out-degree array O[1, n] for
each vertex

Experiment execution
Executed 100 iterations of PageRank

Repeated for each compression
format and dataset

Code optimisation
All codes written in C/C++

Compiled with -O3 flag for
maximum optimization → energy
savings (<43% compared to –O0)

Data parallelism
We exploit multicore architectures
with data-parallel versions.

We divide each matrix into b row
blocks. y=Mx consists of b
independent multiplications over a
single block.

We use C/C++ with POSIX Threads
(Pthreads) and fork-join
mechanismsb=3

Power Measurement
on the Intel® Xeon® Server

Intel RAPL (Running Average Power Limit) interface,
accessible via the Linux profiler perf (version 5.15.149).

Energy estimations at
• Core level: All cores in a processor
• Package level: Includes cores, memory controller, last-
level cache, and other components

Accuracy:
• RAPL offers reasonably accurate measurements, as
supported by prior studies.
• Integrated with tools like Scaphandre, CodeCarbon, and
Green Metrics Tool.

Metrics Collected via perf: Energy estimations, CPU
cycles, cache hits/misses, and instruction counts.

Power Measurement
on Raspberry Pi 4

Current drawn during PageRank
computations measured using a Fluke
8845A benchtop multimeter.
• Multimeter connected in series with the
USB-C power cable.
• Configured to a range of 10 A, with a
resolution of 4½ digits and a sampling
frequency of 3 Hz.

Sampling rate deemed sufficient for
accurately reconstructing the current signal
with high fidelity.

Results and
discussion

Disk occupancy gzip: Variable compression ratios compared to Zuckerli
xz: Most compressed but the slowest in decompression

The memory usage surpasses the disk usage due to
• Additional temporary data structures
• Block splitting for multithread multiplication

Baselines for
compression ratios

more compressed

Space-time performances
on the Intel® Xeon® Server

Space
efficient

Fastest

Time (﹍) and energy (＿) performances
on the Intel® Xeon® Server

Energy scales
less than time

Multicriteria approach in multi-threaded applications
(e.g., select fastest solution within energy constraints)

Instruction throughput
on the Intel® Xeon® Server

better

Zuckerli and the k²-tree
exhibit higher
throughputs

L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

L3 L1d

Data cache access patterns:
load cache misses, load cache
hits, and store operations.

L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

Data cache access patterns:
load cache misses, load cache
hits, and store operations.

L1dL3

L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

Data cache access patterns:
load cache misses, load cache
hits, and store operations.

L3

L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

Data cache access patterns:
load cache misses, load cache
hits, and store operations.

L3

L1d/L3 cache access
patterns
on the Raspberry Pi
5 smallest graphs. Up to ≤8 threads.

• Non-monotonic behaviour observed
when scaling from 4 to 8 threads (notably
for Zuckerli).

• Single-threaded k²-tree outperforms all
Zuckerli configurations on Raspberry Pi

• Less pronounced convex trend on Intel®
Xeon® suggests different resource
management.

Conclusion

Appropriate compressed representations enable handling large datasets on resource-
constrained devices.

Careful selection of compressed representation can reduce energy usage by one or two
orders of magnitude across different environments.

The k²-tree is nearly as fast as grammar-based compressors and almost as space-efficient
as Zuckerli, with minimal degradation in compression ratio as threads increase.

Optimal thread counts may differ for minimising energy vs. optimizing runtime.

Increased L1 and L3 cache operations affect cycles per instruction

Future work

• Investigate additional lossless compression
formats for matrices and vectors.

• Expand applications beyond PageRank.

• In-depth studies on optimising energy-time
tradeoffs. → Insights for software engineers to
reduce carbon footprints and enhance battery life.

• Study energy-efficient implementations of
major compressed data structures (e.g., FM-
index, Rank and select structures, Suffix arrays,
Succinct tree topologies, …)

• ML optimisation: explore combinations of
lossless and state-of-the-art lossy
compression strategies.

Transparency
and reproducibility

The entire codebase to
reproduce the
experiments is made
available at gitlab:
https://gitlab.com/ftosoni/
green-lossless-spmv

Datasets from
https://sparse.tamu.edu/L
AW

https://gitlab.com/ftosoni/green-lossless-spmv
https://gitlab.com/ftosoni/green-lossless-spmv
https://sparse.tamu.edu/LAW
https://sparse.tamu.edu/LAW

Coauthors
• 4 universities
• 3 research groups
• 2 research areas

Dr. Francesco
Tosoni

Prof. Philip
Bille

Mr. Valerio
Brunacci

Prof. Alessio
De Angelis

Prof. Paolo
Ferragina

Prof. Giovanni
Manzini

Research
groups
Visit our pages to
stay up-to-date
with our research
outcomes!

Questions & Answers

Francesco Tosoni, PhD
Postdoctoral researcher

Informatica
L.go B. Pontecorvo 3
56127 Pisa PI
Italy

francesco.tosoni@di.unipi.it

pages.di.unipi.it/tosoni

mailto:francesco.tosoni@di.unipi.it

	Diapositiva 1: Toward Greener Matrix Operations by Lossless Compressed Formats
	Diapositiva 2: Introduction
	Diapositiva 3: Motivation
	Diapositiva 4: Platforms
	Diapositiva 5: Research questions
	Diapositiva 6: Compressed matrix formats
	Diapositiva 7: Compressed matrix formats
	Diapositiva 8: Why lossless?
	Diapositiva 9: Computation-friendly compression
	Diapositiva 10: WebGraph & Zuckerli (1/2)
	Diapositiva 11: WebGraph & Zuckerli (2/2)
	Diapositiva 12: k²-tree (1/3)
	Diapositiva 13: k²-tree (2/3)
	Diapositiva 14: k²-tree (3/3)
	Diapositiva 15: mm-repair ~ Step #1: exploit sparsity
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18: mm-repair ~ Step #2: grammar-compress
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26: Experimental setup
	Diapositiva 27: PageRank A classical algorithm in graph analysis.
	Diapositiva 28: Datasets
	Diapositiva 29
	Diapositiva 30: Code setup
	Diapositiva 31: Data parallelism
	Diapositiva 32: Power Measurement on the Intel® Xeon® Server
	Diapositiva 33: Power Measurement on Raspberry Pi 4
	Diapositiva 34: Results and discussion
	Diapositiva 35: Disk occupancy
	Diapositiva 36: Space-time performances on the Intel® Xeon® Server
	Diapositiva 37: Time (﹍) and energy (＿) performances on the Intel® Xeon® Server
	Diapositiva 38: Instruction throughput on the Intel® Xeon® Server
	Diapositiva 39: L1d/L3 cache access patterns on the Intel® Xeon® Server Dataset: ljournal-2008
	Diapositiva 40: L1d/L3 cache access patterns on the Intel® Xeon® Server Dataset: ljournal-2008
	Diapositiva 41: L1d/L3 cache access patterns on the Intel® Xeon® Server Dataset: ljournal-2008
	Diapositiva 42: L1d/L3 cache access patterns on the Intel® Xeon® Server Dataset: ljournal-2008
	Diapositiva 43: L1d/L3 cache access patterns on the Raspberry Pi
	Diapositiva 44: Conclusion
	Diapositiva 45: Future work
	Diapositiva 46: Transparency and reproducibility
	Diapositiva 47: Coauthors
	Diapositiva 48: Research groups
	Diapositiva 49: Questions & Answers

