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Introduction
Sparse Matrix-Vector Multiplication (SpMV) are relevant in ML, scientific

computing, and graph algorithms.
Research focus: Investigate space, time, and energy efficiency of SpMV.

We challenge prevailing assumptions about a straightforward linear correlation
between time and energy.
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POPULARITY OF ML ALGORITHMS (E.G. 
CHATGPT) AND DATA GENERATION 

SURPASSING MOORE'S LAW

AI NOT JUST ON SERVER MACHINES BUT
ALSO ON EDGE AND IOT DEVICES → 

BATTERY DURATION AS CRITICAL
CONCERN.

ENERGY AS A LEADING DESIGN 
CONSTRAINT IN COMPUTING DEVICES; 

HOWEVER, GREEN SOFTWARE 
ENGINEERING IS STILL IN ITS INFANCY.

OVERSIMPLIFIED ENERGY COMPLEXITY
MODELS FAIL TO CAPTURE REAL-WORLD 

DYNAMICS → NEED FOR 
COMPREHENSIVE REFERENCE MODELS



Platforms

Intel® Xeon® Gold 6132 CPU 
@2.60GHz (28 cores, 2-way 

hyperthreading) and the 
RAPL energy profiler

Raspberry Pi 4 model 
B @1.5GHz (4 cores) 

and a Fluke 8845A 
benchtop multimeter

VS.



Research questions
How does compression affect the efficiency
of space, time, and energy? Some matrix
formats are more space-efficient but
consume order of magnitude more energy 
than others.

What trade-offs exist between time 
optimisation and energy 
consumption? Often the energy-optimal
parallelism degree is lower than the time-
optimal one. 

Which runtime metrics impact energy 
efficiency? The number of L1 and L3 cache 
accesses impact performances.



Compressed 
matrix formats



Compressed matrix formats
We compare three computation-friendly compression schemes
for large yet sparse binary matrices:
•Google's Zuckerli (Versari et al., 2020)
•k²-tree (Brisaboa, Ladra, and Navarro 2014)
•RePair-compressed matrices [mm-repair] (Ferragina et al., 2022)



Why lossless?

Lossy compression solutions 
for space reduction:
• Low-precision storage (e.g. 

FP32)
• Sparsification
• Quantisation (binary, ternary)
→careful & manual application

Lossless compression is a 
better "automated" alternative
• data independent
• no need a priori knowledge 

about the input data.



Computation-
friendly 

compression

All formats we tested are 
computation-friendly for 
matrix-vector multiplications:
• Exploit more than mere 

sparsity
• Enable direct operations on 

data without prior 
decompression

• Allow operating in time 
proportional to the size of 
the compressed 
representation (win-win!)



WebGraph & Zuckerli (1/2)

Exploit redundancies of outgoing links 
within the same domain.
• Webgraph (2004) exploit the copying

property of consecutive adjacency
lists to compress each list based on 
a reference list (Java, c++, Rust).

• Google's Zuckerli (2020) applies
novel compression heuristics on top 
of Zuckerli.

Adjacency matrix for eu-2005. Figure 

taken from DOI: 10.1155/2020/2354875



WebGraph & 
Zuckerli (2/2)

These graph formats 
allow for compression-
friendly matrix-to-vector
multiplications
(Francisco et al. 2022).
Idea: exploit deltas
between similar
adjacency lists.
We implement
multiplications on top of 
Zuckerli.

Node Outdegree Successors

... ... ...

15 11 13, 15, 16, 17 , 18, 19, 23, 24, 203, 
315, 316, 317, 3041

16 10 15, 16, 17, 22, 23, 24, 315, 316, 
317, 3041

17 0

18 5 13, 15, 16, 17, 50

... ... ...



k²-tree (1/3)

Exploit sparsity and 
clustering of 0's.
Submatrices are recursively
split into k² smaller
submatrices.
• 0: empty submatrix;
• 1: non-empty ones.
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k²-tree (2/3)
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Retrieving neighbours for page 10

Height is always logkn → access 
to each single cell O(logkn).

Matrix-vector multiplication = 
visit to the tree



k²-tree (3/3)

Implementations: 
University of A Coruña, 
SDSL library, and one by 
the University of 
Chile/Millennium 
Institute.
Matrix-to-vector
multiplications can be 
implemented by a tree
traversal (in any order). 
There's no need of rank
and select data 
structures.



mm-repair ~ Step #1: exploit sparsity

1 2 3 

4.1 5.3 0 5.3
4.1 0 2.0 4.1
0 5.3 2.0 5.3
4.1 5.3 2.0 4.1
4.1 5.3 2.0 5.3

𝑉 = 2.0 4.1 5.3

1 2 3 4 

𝑆 =
2,1 3,2 3,4 $ 2,1 1,3 2,4 $

3,2 1,3 3,4 $ 2,1 3,2 1,3 2,4 $

2,1 3,2 1,3 3,4 $ $ is the EOL character

Compute the CSRV 

representation of a matrix, a 

modification of the CSR 

representation.Set of 

nonzeros

Sequence

of pairs



𝑆 =
2,1 3,2 3,4 $ 2,1 1,3 2,4 $

3,2 1,3 3,4 $ 2,1 3,2 1,3 2,4 $

2,1 3,2 1,3 3,4 $

4.1 5.3 0 5.3
4.1 0 2.0 4.1
0 5.3 2.0 5.3
4.1 5.3 2.0 4.1
4.1 5.3 2.0 5.3

1 2 3 4 

1 2 3 

𝑉 = 2.0 4.1 5.3

Generate column-value 

index pairs

𝑙, 𝑗

Non-zero 

index

Column

index

mm-repair ~ Step #1: exploit sparsity



𝑆 =
2,1 3,2 3,4 $ 2,1 1,3 2,4 $

3,2 1,3 3,4 $ 2,1 3,2 1,3 2,4 $

2,1 3,2 1,3 3,4 $

4.1 5.3 0 5.3
4.1 0 2.0 4.1
0 5.3 2.0 5.3
4.1 5.3 2.0 4.1
4.1 5.3 2.0 5.3

1 2 3 4 

1 2 3 

𝑉 = 2.0 4.1 5.3

𝑙, 𝑗

Non-zero 

index

Column

index

mm-repair ~ Step #1: exploit sparsity

Generate column-value 

index pairs



mm-repair ~ Step #2: grammar-compress

In the following, as a 

(lossless) compressor 

we use RePair, which is 

a grammar 

compressor based on 

straight-line programs 

(SLP).

𝑆 = 𝑎𝑏𝑎𝑏𝑏𝑎

𝑅1 → 𝑎𝑏
𝑅2 → 𝑅1𝑅1
𝑅3 → 𝑏𝑎
𝑅4 → 𝑅2𝑅3

𝑅4

𝑅2 𝑅3

𝑅1

a b

b a



mm-repair ~ Step #2: grammar-compress



mm-repair ~ Step #2: grammar-compress



mm-repair ~ Step #2: grammar-compress



mm-repair ~ Step #3: multiply



mm-repair ~ Step #3: multiply



mm-repair ~ Step #3: multiply



mm-repair ~ 
physical 
representations

Final
string

C
Rules

R
Nonzeros

V

re_32 32 bit 32 bit 64 bit

re_iv packed
arrays

packed
arrays

64 bit

re_ans ANS
(entropy
coder)

packed
arrays

64 bit

Different
space‒time 

tradeoffs



Experimental 
setup



PageRank
A classical algorithm in graph
analysis.

                      

                    

                      

                    

                      

                    

                      

                    

                      

                    

                      

                    

                      

                    

                    

                    

                    
                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

                    

Teleporting
parameter
(α=0.15)

Left
matrix-vector

multiplication

Initial
probability

distribution
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Datasets

From the WebGraph framework, via the SuiteSparse Matrix Collection. Most
graphs are derived from web crawls, with vertices ordered by the reversed URL 
lexicographically.

We also included two social network graphs:

• hollywood-2009: An undirected graph representing movie actors, where
edges connect actors who co-starred in films.

• ljournal-2008: A directed graph illustrating asymmetric friendships in the 
LiveJournal social network.



Raspberry Pi 4 Model B 

•CPU: 4 x ARM Cortex-A72 @ 1.5GHz
•Cores: 4 physical cores

Memory:
•Total RAM: 4 GB LPDDR4 SDRAM

Operating system: 
•Ubuntu Server 24.04 LTS (64-bit)

Cache architecture:
•L1d: 128 KiB per core; L1i: 192 KiB per core
•L2: 1 MB shared (16-way set associative)
•No L3!
Datasets Used: ≤10⁷ vertices

Intel® Xeon® Server 

CPU: 2 x Intel® Xeon® Gold 6132 @ 2.60GHz
Cores: 28 physical cores (56 logical)
Memory:
Total RAM: 384 GB (12 x 32 GB DDR4)
Memory Speed: 2666 MT/s
Operating system: 
Ubuntu 22.04.3 LTS (64-bit)
Cache architecture:
L1d: 896 KiB (8-way set associative)
L1i: 896 KiB (8-way set associative)
L2: 28 MiB (16-way set associative)
L3: 38.5 MiB (11-way set associative)

Specifications



Code setup

Preprocessing steps
Transposed the matrix

Compress via Zuckerli, k2-tree, 
mm-repair

Store out-degree array O[1, n] for 
each vertex

Experiment execution
Executed 100 iterations of PageRank

Repeated for each compression
format and dataset

Code optimisation
All codes written in C/C++

Compiled with -O3 flag for 
maximum optimization → energy 
savings (<43% compared to –O0)



Data parallelism
We exploit multicore architectures 
with data-parallel versions.

We divide each matrix into b row 
blocks. y=Mx consists of b
independent multiplications over a 
single block.

We use C/C++ with POSIX Threads 
(Pthreads) and fork-join 
mechanismsb=3



Power Measurement
on the Intel® Xeon® Server

Intel RAPL (Running Average Power Limit) interface, 
accessible via the Linux profiler perf (version 5.15.149).

Energy estimations at
• Core level: All cores in a processor
• Package level: Includes cores, memory controller, last-
level cache, and other components

Accuracy:
• RAPL offers reasonably accurate measurements, as
supported by prior studies.
• Integrated with tools like Scaphandre, CodeCarbon, and 
Green Metrics Tool.

Metrics Collected via perf: Energy estimations, CPU 
cycles, cache hits/misses, and instruction counts.



Power Measurement
on Raspberry Pi 4

Current drawn during PageRank
computations measured using a Fluke
8845A benchtop multimeter.
• Multimeter connected in series with the 
USB-C power cable.
• Configured to a range of 10 A, with a 
resolution of 4½ digits and a sampling 
frequency of 3 Hz.

Sampling rate deemed sufficient for 
accurately reconstructing the current signal
with high fidelity.



Results and 
discussion



Disk occupancy gzip: Variable compression ratios compared to Zuckerli
xz: Most compressed but the slowest in decompression

The memory usage surpasses the disk usage due to
• Additional temporary data structures
• Block splitting for multithread multiplication

Baselines for 
compression ratios

more compressed



Space-time performances
on the Intel® Xeon® Server

Space 
efficient

Fastest



Time (﹍) and energy (＿) performances
on the Intel® Xeon® Server

Energy scales
less than time

Multicriteria approach in multi-threaded applications
(e.g., select fastest solution within energy constraints)



Instruction throughput
on the Intel® Xeon® Server

better

Zuckerli and the k²-tree 
exhibit higher
throughputs



L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

L3 L1d

Data cache access patterns: 
load cache misses, load cache 
hits, and store operations.



L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

Data cache access patterns: 
load cache misses, load cache 
hits, and store operations.

L1dL3



L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

Data cache access patterns: 
load cache misses, load cache 
hits, and store operations.

L3



L1d/L3 cache access patterns
on the Intel® Xeon® Server
Dataset: ljournal-2008

Data cache access patterns: 
load cache misses, load cache 
hits, and store operations.

L3



L1d/L3 cache access 
patterns
on the Raspberry Pi
5 smallest graphs. Up to ≤8 threads.

• Non-monotonic behaviour observed
when scaling from 4 to 8 threads (notably
for Zuckerli).

• Single-threaded k²-tree outperforms all
Zuckerli configurations on Raspberry Pi

• Less pronounced convex trend on Intel® 
Xeon® suggests different resource
management.



Conclusion

Appropriate compressed representations enable handling large datasets on resource-
constrained devices.

Careful selection of compressed representation can reduce energy usage by one or two
orders of magnitude across different environments.

The k²-tree is nearly as fast as grammar-based compressors and almost as space-efficient
as Zuckerli, with minimal degradation in compression ratio as threads increase.

Optimal thread counts may differ for minimising energy vs. optimizing runtime.

Increased L1 and L3 cache operations affect cycles per instruction



Future work

• Investigate additional lossless compression
formats for matrices and vectors.

• Expand applications beyond PageRank.

• In-depth studies on optimising energy-time 
tradeoffs. → Insights for software engineers to 
reduce carbon footprints and enhance battery life.

• Study energy-efficient implementations of 
major compressed data structures (e.g., FM-
index, Rank and select structures, Suffix arrays, 
Succinct tree topologies, …)

• ML optimisation: explore combinations of 
lossless and state-of-the-art lossy 
compression strategies.



Transparency 
and reproducibility

The entire codebase to 
reproduce the 
experiments is made 
available at gitlab: 
https://gitlab.com/ftosoni/
green-lossless-spmv

Datasets from 
https://sparse.tamu.edu/L
AW

https://gitlab.com/ftosoni/green-lossless-spmv
https://gitlab.com/ftosoni/green-lossless-spmv
https://sparse.tamu.edu/LAW
https://sparse.tamu.edu/LAW
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