
Lifting the Fog with Aggregate Computing
..a programming model perspective

Mirko Viroli

Alma Mater Studiorum—Università di Bologna, Italy
mirko.viroli@unibo.it

“Through the Fog” Workshop
Pisa, 15/1/2016

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 1 / 56

(Internet-of-)Things are getting a bit messy (and foggy)

A plethora of programming models for “mobile/IoT applications”

client side
I single-device program: objects + functions + concurrency..

..threads/actors/futures/tasks/activities
I device-centric interactions/protocols: using APIs for

MoM/SOA/ad-hoc-communications

server side
I same interactions/protocols: MoM/SOA/ad-hoc-communications
I storage by DB: OO, relational, NoSQL
I coordination (orchestration, mediation, rules enactment)
I situation recognition (online/offline, mining, business intelligence, stream

processing)

scalability in the server calls for cloudification
I not really orthogonal to the whole programming model
I it often dramatically affects system design

Fog computing has likely nice benefits

..but does not seemingly simplify things

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 2 / 56

(Internet-of-)Things are getting a bit messy (and foggy)

A plethora of programming models for “mobile/IoT applications”

client side
I single-device program: objects + functions + concurrency..

..threads/actors/futures/tasks/activities
I device-centric interactions/protocols: using APIs for

MoM/SOA/ad-hoc-communications

server side
I same interactions/protocols: MoM/SOA/ad-hoc-communications
I storage by DB: OO, relational, NoSQL
I coordination (orchestration, mediation, rules enactment)
I situation recognition (online/offline, mining, business intelligence, stream

processing)

scalability in the server calls for cloudification
I not really orthogonal to the whole programming model
I it often dramatically affects system design

Fog computing has likely nice benefits

..but does not seemingly simplify things

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 2 / 56

Implications

Where programming effort ends up?

programs of clients and servers highly depend on
I the chosen platform / API / communication technology
I the number and type of involved devices

IoT systems tend to be very rigid, hard and costly to debug/maintain
design and deployments hardly tolerate changes

The technological result

systems can’t scale with complexity of behaviour
very few of the opportunities of large-scale IoT are taken

I virtually any computational mechanism (sensing, actuation, processing,
storage)..

I ..could involve spontaneous, adaptive cooperation of large sets of devices!

how many large-scale deployments of adaptive IoT systems around?
where are the Collective Adaptive Systems?

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 3 / 56

Implications

Where programming effort ends up?

programs of clients and servers highly depend on
I the chosen platform / API / communication technology
I the number and type of involved devices

IoT systems tend to be very rigid, hard and costly to debug/maintain
design and deployments hardly tolerate changes

The technological result

systems can’t scale with complexity of behaviour
very few of the opportunities of large-scale IoT are taken

I virtually any computational mechanism (sensing, actuation, processing,
storage)..

I ..could involve spontaneous, adaptive cooperation of large sets of devices!

how many large-scale deployments of adaptive IoT systems around?
where are the Collective Adaptive Systems?

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 3 / 56

What to do? A programming model perspective..

What do we lack in large-scale IoT sytems?

the plain old platform-independent programming abstraction

⇒ fully grounding system design like objects did well.. in the past
I delegating to the underlying platform virtually all deployment issues
I automagically addressing non-functional issues (resilience, self-*)

The challenge

Just directly consider the worst scenario possible..

zillion devices unpredictably moving in the environment

heterogeneous displacement, pervasive sensing/actuation

abstracting away from the possible multi-layered “server system”
(fog++/cloud++) in background
⇒ but be ready to exploit the opportunities it creates!

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 4 / 56

What to do? A programming model perspective..

What do we lack in large-scale IoT sytems?

the plain old platform-independent programming abstraction

⇒ fully grounding system design like objects did well.. in the past
I delegating to the underlying platform virtually all deployment issues
I automagically addressing non-functional issues (resilience, self-*)

The challenge

Just directly consider the worst scenario possible..

zillion devices unpredictably moving in the environment

heterogeneous displacement, pervasive sensing/actuation

abstracting away from the possible multi-layered “server system”
(fog++/cloud++) in background
⇒ but be ready to exploit the opportunities it creates!

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 4 / 56

What to do? A programming model perspective..

What do we lack in large-scale IoT sytems?

the plain old platform-independent programming abstraction

⇒ fully grounding system design like objects did well.. in the past
I delegating to the underlying platform virtually all deployment issues
I automagically addressing non-functional issues (resilience, self-*)

The challenge

Just directly consider the worst scenario possible..

zillion devices unpredictably moving in the environment

heterogeneous displacement, pervasive sensing/actuation

abstracting away from the possible multi-layered “server system”
(fog++/cloud++) in background
⇒ but be ready to exploit the opportunities it creates!

Let’s try to program that “computational system”!

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 4 / 56

Abstract of the talk

Systems of interest: collective adaptive situated systems CASS

(possibly very large scale) collective adaptive systems

deployed in physical space (situated), i.e., IoT-oriented

complex (open, dynamic, in need of much self-*)

Aggregate Computing

The “good” computing/programming model for CASS

It gives nice abstractions, promoting solid engineering principles

Simple idea, few constructs, rather tractable, somehow different

This talk

1. Motivation and idea of aggregate computing

2. Some semi-technicalities and overview of results

3. State of toolchain and perspectives on platforms and fog

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 5 / 56

Abstract of the talk

Systems of interest: collective adaptive situated systems CASS

(possibly very large scale) collective adaptive systems

deployed in physical space (situated), i.e., IoT-oriented

complex (open, dynamic, in need of much self-*)

Aggregate Computing

The “good” computing/programming model for CASS

It gives nice abstractions, promoting solid engineering principles

Simple idea, few constructs, rather tractable, somehow different

This talk

1. Motivation and idea of aggregate computing

2. Some semi-technicalities and overview of results

3. State of toolchain and perspectives on platforms and fog

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 5 / 56

Abstract of the talk

Systems of interest: collective adaptive situated systems CASS

(possibly very large scale) collective adaptive systems

deployed in physical space (situated), i.e., IoT-oriented

complex (open, dynamic, in need of much self-*)

Aggregate Computing

The “good” computing/programming model for CASS

It gives nice abstractions, promoting solid engineering principles

Simple idea, few constructs, rather tractable, somehow different

This talk

1. Motivation and idea of aggregate computing

2. Some semi-technicalities and overview of results

3. State of toolchain and perspectives on platforms and fog

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 5 / 56

Outline

1 Aggregate Computing

2 Field Calculus

3 Platform support

4 Field Engineering

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 6 / 56

Outline

1 Aggregate Computing

2 Field Calculus

3 Platform support

4 Field Engineering

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 7 / 56

An example opportunity for IoT-based CASS..

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 8 / 56

Gathering local context

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 9 / 56

Sensing global patterns of data

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 10 / 56

Crowd Detection

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 11 / 56

Crowd Anticipation

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 12 / 56

Crowd-aware Steering

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 13 / 56

Crowd dispersal

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 14 / 56

Crowd evacuation upon alerts

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 15 / 56

Broad research challenges

Computational/programming model for these services

Programming as: “describing the problem, not hacking the solution!”

Hiding complexity and resiliency “under-the-hood”

How computation carries on is hidden as well, and intrinsically self-*

Grounding an effective tool-chain

languages, compilers, simulators, scalable execution platforms

Supporting solid engineering principles

checking/enacting functional/non-functional correctness

supporting reuse of patterns, substitutability, compositionality

Chasing the true issue

we should fully escape the single “device” abstraction

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 16 / 56

Broad research challenges

Computational/programming model for these services

Programming as: “describing the problem, not hacking the solution!”

Hiding complexity and resiliency “under-the-hood”

How computation carries on is hidden as well, and intrinsically self-*

Grounding an effective tool-chain

languages, compilers, simulators, scalable execution platforms

Supporting solid engineering principles

checking/enacting functional/non-functional correctness

supporting reuse of patterns, substitutability, compositionality

Chasing the true issue

we should fully escape the single “device” abstraction

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 16 / 56

Broad research challenges

Computational/programming model for these services

Programming as: “describing the problem, not hacking the solution!”

Hiding complexity and resiliency “under-the-hood”

How computation carries on is hidden as well, and intrinsically self-*

Grounding an effective tool-chain

languages, compilers, simulators, scalable execution platforms

Supporting solid engineering principles

checking/enacting functional/non-functional correctness

supporting reuse of patterns, substitutability, compositionality

Chasing the true issue

we should fully escape the single “device” abstraction

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 16 / 56

Approaches to “group interaction in space”

Survey of past approaches [Beal et.al., 2013]

Device abstractions – make interaction implicit
NetLogo, Hood, TOTA, Gro, MPI, and the SAPERE approach
Pattern languages – supporting composability of spatial behaviour
Growing Point, Origami Shape, various selforg pattern langs
Information movement – gathering in space, moving elsewhere
TinyDB and Regiment
Foundation – giving linguistic means for group interactions in space
3π, Shape Calculus, bi-graphs, KLAIM, στ -linda, SCEL
Spatial computing – program space-time behaviour of systems
Proto, MGS

Our approach

Combining the above efforts of “macro” programming
Taking some of those ideas to the extreme consequences

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 17 / 56

Approaches to “group interaction in space”

Survey of past approaches [Beal et.al., 2013]

Device abstractions – make interaction implicit
NetLogo, Hood, TOTA, Gro, MPI, and the SAPERE approach
Pattern languages – supporting composability of spatial behaviour
Growing Point, Origami Shape, various selforg pattern langs
Information movement – gathering in space, moving elsewhere
TinyDB and Regiment
Foundation – giving linguistic means for group interactions in space
3π, Shape Calculus, bi-graphs, KLAIM, στ -linda, SCEL
Spatial computing – program space-time behaviour of systems
Proto, MGS

Our approach

Combining the above efforts of “macro” programming
Taking some of those ideas to the extreme consequences

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 17 / 56

Aggregate programming at [IEEE Computer 48(9), 2015]

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 18 / 56

Manifesto of aggregate computing

Motto: program the aggregate, not individual devices!

1. The reference computing machine
⇒ an aggregate of devices as single “body”, fading to the actual space

2. The reference elaboration process
⇒ atomic manipulation of a collective data structure (a field)

3. The actual networked computation
⇒ a proximity-based self-org system hidden “under-the-hood”

neighborhood

device

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 19 / 56

Outline

1 Aggregate Computing

2 Field Calculus

3 Platform support

4 Field Engineering

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 20 / 56

Computational Fields [Mamei et.al., 2009, Beal et.al., 2013]

Traditionally a map: Space 7→ Values

possibly: evolving over time, dynamically injected, stabilising

smoothly adapting to very heterogeneous domains

more easily “understood” on continuous and flat spatial domains

ranging to: booleans, reals, vectors, functions

real-valued gradient in 3D numeric partition in 2D boolean channel in 2D

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 21 / 56

(Computational) Fields revisited [IEEE Computer 48(9), 2015]

A map: DeviceSet × Space × Time 7→ ValueSet

event E : a triple 〈δ, t, p〉 – device δ, “firing” at time t in position p
domain D: a coherent set of events (devices cannot move too fast)
field φ : D 7→ V : a map from events to field values

Early intuition: often one will think at fields that..

“converge” with density of events, and lose track of device identities
eventually (in time) reach a fixpoint
so, you can draw (and reason/design) in 2D

T
im

e

Space

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 22 / 56

The “channel” example: computing a redundant route

How would you program it?

how could a program be platform-independent,
unaware of global map, resilient to changes, faults,..

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 23 / 56

The “channel” example: computing a redundant route

How would you program it?

how could a program be platform-independent,
unaware of global map, resilient to changes, faults,..

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 23 / 56

Aggregate programming as a functional approach

Functionally composing fields

Inputs: sensor fields, Output: actuator field
Computation is a pure function over fields (time embeds state!)

⇒ for this to be practical/expressive we need a good programming language

source destination

gradient distancegradient

<=

+

dilate

width

37

10

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 24 / 56

Field calculus [Damiani & Viroli & Beal & Pianini, FORTE2015]

Key idea

a sort of λ-calculus with “everything is a field” philosophy!

Syntax (slightly refactored, semi-formal version of FORTE’s)

e ::= x
∣∣ v

∣∣ e(e1, . . . , en)
∣∣ rep(e0){e}

∣∣ nbr{e} (expr)
v ::= < standard-values >

∣∣ λ (value)
λ ::= f

∣∣ o
∣∣ (x)=>e (functional value)

F ::= def f(x) {e} (function definition)

Few explanations

v includes numbers, booleans, strings,..
..tuples/vectors/maps/any-ADT (of expressions)

f is a user-defined function

o is a built-in functional operator (mostly pure math or a sensor)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 25 / 56

Intuition of global-level semantics

The four main constructs at work
⇒ values, application, evolution, and interaction – in aggregate guise

e ::= . . .
∣∣ v

∣∣ e(e1, . . . , en)
∣∣ rep(e0){e}

∣∣ nbr{e}

0

(x)=>x+1

true t<0,1>

()0

1

+
-

1
-1

ef(0,1)

ef

rep

0

(x)=>x+1
t

v0

t

v1

..
rep(0){(x)=>x+1}

nbr de

nbr{e}

φd=[d1→v1,..,dn→vn]

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 26 / 56

Intuition of field-level semantics

Value v

A field constant in space and time, mapping any event to v

Function application e(e1, . . . , en)

e evaluates to a field of functions, assume it ranges to λ1, . . . , λn

this naturally induces a partition of the domain D1, . . . ,Dn

now, join the fields: ∀i , λi (e1, . . . , en) restricted in Di

Repetition rep(e0){eλ}
the value of e0 where the restricted domain “begins”
elsewhere, unary function eλ is applied to previous value at each device

Neighbouring field construction nbr{e}
at each event gathers most recent value of e in neighbours (in restriction)
..what is neighbour is orthogonal (i.e., physical proximity)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 27 / 56

The restriction trick: branching behaviour

if

eb

if

cond
then

else

if (eb) {e} else {false}

false

e

if as a space-time branching construct

if(e-bool){e-then}else{e-else}
≈
(e-bool ? ()=>{e-then} : ()=>{e-else})()

More advanced patterns

spread code, in different versions in different regions

have different regions/device run different programs

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 28 / 56

Aggregate programming as a functional approach

Functionally composing fields

...so, is field calculus language practical/expressive?

source destination

gradient distancegradient

<=

+

dilate

width

37

10

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 29 / 56

The channel pattern

def gradient(source){ ;; reifying minimum distance from source
rep(Infinity) { ;; distance is infinity initially

(distance) => source ? 0 : minHood(nbr{distance} + nbrRange)

} }

def distance(source, dest) { ;; propagates minimum distance between source and dest
snd(;; returning the second component of the pair
rep(pair(Infinity, Infinity)) { ;; computing a field of pairs (distance,value)
(distanceValue) => source ? pair(0, gradient(dest)) :

minHood(;; propagating as a gradient, using for first component of the pair
pair(fst(nbr{distanceValue}) + nbrRange, snd(nbr{distanceValue})))

}) }

def dilate(region, width) { ;; a field of booleans
gradient(region) < width

}

;; Here the ‘‘aggregate’’ nature of our approach gets revealed
def channel(source, dest, width) {

dilate(gradient(source) + gradient(dest) <= distance(source,dest), width)

}

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 30 / 56

Symbols

Builtin functions exploited

?: — Java-like (though, call-by-value) ternary operator

nbrRange — maps each device to a neighbour field of estimated
distances

minHood — in each device, collapse a neighbour field into its
minimum value

sumHood — in each device, collapse a neighbour field into sum of
values

,-,,/,>,. . . — usual math, applied also pointwise to fields

pair,fst,snd — construction/selection for pairs

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 31 / 56

Channel in action: note inherent self-stabilisation

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 32 / 56

On expressiveness of the field calculus

Practically, we can express:

complex spreading / aggregation / decay functions

spatial leader election, partitioning, consensus

distributed spatio-temporal sensing and situation recognition

dynamic deployment/spreading of code (via lambda)

implicit/explicit device selection of what code execute

“collective teams” forming based on the selected code

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 33 / 56

Outline

1 Aggregate Computing

2 Field Calculus

3 Platform support

4 Field Engineering

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 34 / 56

Key aspects of the semantics: network model

Platform abstract model

A node state θ (value-tree) updated at asynchronous rounds

At the end of the round, θ is made accessible to the neighbourhood

A node state is updated “against” recently received neighbours’ trees

Neighbour trees
aka, message queue

Evaluation tree

Nodes send their
evaluation tree to
neighbours at the end
of each computation round

Node A

Node B

Node C

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 35 / 56

Single-round operational semantics – pulverization

Main run-time structures

φ ::= {δ 7→ l} field value: mapping nodes to local values

v ::= l | φ values: local values or field values

θ ::= v (θ) value-tree: an ordered tree of values

Θ ::= {δ 7→ θ} value-tree environment: neighbours info

Big-step operational semantics judgment

δ; Θ ` e ⇓ θ
Read: at device δ, with environment Θ, evaluation of e gives result θ
⇒ Namely, computation takes input Θ and produces output θ

..an orthogonal “network-level” LTS completes the operational semantics

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 36 / 56

Current formalisation (under progressive shrinking..)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 37 / 56

Core mechanisms in the operational semantics

Orthogonally..

evaluation proceeds recursively on expression and neighbour trees
neighbour trees may be discarded on-the-fly if not “aligned” (restriction)

Function application e(e1, . . . , en)

evaluates body against a filtered set of neighbours..
..i.e., only those which evaluated e to same result

Repetition rep(e0){eλ}
if a previous value-tree of mine is available, evaluates eλ on its root
otherwise, evaluates e0

Neighbouring field construction nbr{e}
gather values from neighbour trees currently aligned
add my current evaluation of e

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 38 / 56

Core mechanisms in the operational semantics

Orthogonally..

evaluation proceeds recursively on expression and neighbour trees
neighbour trees may be discarded on-the-fly if not “aligned” (restriction)

Function application e(e1, . . . , en)

evaluates body against a filtered set of neighbours..
..i.e., only those which evaluated e to same result

Repetition rep(e0){eλ}
if a previous value-tree of mine is available, evaluates eλ on its root
otherwise, evaluates e0

Neighbouring field construction nbr{e}
gather values from neighbour trees currently aligned
add my current evaluation of e

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 38 / 56

Operational semantics as blueprint for platform support

Requirements

a notion of neighbourhood must be defined — wireless connectivity,
physical proximity..

nodes execute in asynchronous rounds, and emit a “round result”

a node need to have recent round results of neighbours

by construction we tolerate losses of messages

by construction we tolerate various round frequencies

Platform details are very orthogonal to our programming model!

the above requirements can be met by various platforms

programming remains mostly unaltered!

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 39 / 56

Operational semantics as blueprint for platform support

Requirements

a notion of neighbourhood must be defined — wireless connectivity,
physical proximity..

nodes execute in asynchronous rounds, and emit a “round result”

a node need to have recent round results of neighbours

by construction we tolerate losses of messages

by construction we tolerate various round frequencies

Platform details are very orthogonal to our programming model!

the above requirements can be met by various platforms

programming remains mostly unaltered!

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 39 / 56

Natural implementations

P2P

devices see neighbours, and directly broadcast messages (ad-hoc wifi)
⇒ in principle possible, but interferences might be an issue

Server-mediated communication

a single server mediates communications
holding topology info and enacting a fully-custom topology

⇒ not hard to handle 10K devices firing at 1Hz

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 40 / 56

Dealing with (mobile) cloud

Cloud implementation

we use devices only as physical containers of sensors / actuators
the server as mediator of communications and running computations
cloudification is easy due to our pulverization semantics
a cloud-DB holds field maps, rounds can be executed in clusters

Advantages of the conceptual concentration

vertical optimisation: decide what to compute in the cloud and what on
device/edge
horizontal optimisation: decide which device computation can be slowed
down

⇒ both explicit (programmed) or implicit (dynamically activated)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 41 / 56

Dealing with fog computing

Explicit approach: edge devices as part of the “aggregate machine”

edge devices are just like any other device
the programmer takes care of use them for specific tasks

I typically: leaders/aggregators of distributed sensing/decision making
I they could be nodes with higher round frequency and connectivity

Implicit approach: edge devices are part of the underlying platform

using edge devices as sort of vertical optimisation
when too much computation/communication resources are required, the
platform starts delegating to the edges, then to cloud

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 42 / 56

Outline

1 Aggregate Computing

2 Field Calculus

3 Platform support

4 Field Engineering

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 43 / 56

How to scale with complexity?

local ops
- sensors
- actuators
- math

Application
Code

Boiler-plate
code

Field Calculus
Constructs

Device
Capabilities

fun-call repnbr

commun. state

?

Crowd ManagementCrowd Management
?

anonym funs
- higher-order
- code mobility
- restriction

user-def funs
- modularity
- abstraction

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 44 / 56

Survey of recent efforts

Attacking a multifaceted problem

Properties (self-stabilisation, density-independence, universality)

Tools (languages, simulators, platforms)

Libraries (reusable components, correctness, raising abstraction)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 45 / 56

Properties

Self-stabilisation

Def: If environment and inputs stop changing, computation reaches a
fixpoint

Identified a rather large subset of the language [SASO-2015]

Density independence

Def: the denotation of an expression computation converges with the
space-time density of events

Identified a (small) subset of the language [Submitted]

Universality

Def: for any causal field evolution Φ over arbitrary domain D (even
continuous), there exists an expression whose denotation converges to
Φ as the domain converges to D

Field calculus is arguably universal [SCW-2014]

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 46 / 56

Self-stabilisation for computational fields

Definition of self-stabilising field expression e

Given an environment: inputs (sensor fields) and network topology

⇒ computing e results in a stable unique field in finite time

distance-to

Implications

After fixing a topology, a field computation is an I/O problem

⇒ Transient env. changes do not affect the result of computation

Self-stabilisation is undecidable, but can identify sufficient conditions

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 47 / 56

Self-stabilisation for computational fields

Definition of self-stabilising field expression e

Given an environment: inputs (sensor fields) and network topology

⇒ computing e results in a stable unique field in finite time

distance-to

Implications

After fixing a topology, a field computation is an I/O problem

⇒ Transient env. changes do not affect the result of computation

Self-stabilisation is undecidable, but can identify sufficient conditions

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 47 / 56

GCT as self-stabilising combinators set

G: spreading

3

1
7

0
2

T: time decay

1
4

3
3

C: collecting

Functions

G: Spreads and en-route computes information outwards a source

C: Collects and en-route aggregates information inwards a destination

T: Locally iterates computations until a termination

Observations

The three blocks can pragmatically replace nbr and rep

Towards a GCT-based system of libraries

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 48 / 56

Libraries (each function with a 1-5 lines body)

Application
Code

Developer
APIs

Field Calculus
Constructs

Resilient
Coordination

Operators

Device
Capabilities

TG ifCfun-call

PerceptionPerception

summarize
average
regionmax
…

ActionAction StateState

Collective BehaviorCollective Behavior

distanceto
broadcast
partition
…

timer
lowpass
recenttrue
…

collectiveperception
Collectivesummary
managementregions
…

Crowd ManagementCrowd Management
evacuationalert crowdtracking
crowdwarning safedispersal

se
lf-

st
ab

ili
sa

tio
n

local ops
- sensors
- actuators
- math

fun-call repnbr

commun. stateanonym funs
- higher-order
- code mobility
- restriction

user-def funs
- modularity
- abstraction

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 49 / 56

Crowd estimation service, on top of APIs [Fruin, 1971]

;; Density Estimation: density of neighbours within a short 3.0mt range
def densityEstimation() {

countHood(nbrRange < 3.0) / (3.0 * 3.0 * 3.14)

}
;; More then 2.17 density and ’threshold’ overcame in a ’partition’ region
def dangerousDensity(partition, threshold, range) {

average(partition, densityEstimation()) > 2.17 ;; Fruin LoS
&&

count(partition) > threshold ;; and, many people..
}
;; Crowd levels:
;; Level 1 (low): density greater than 1.08 in last 60 seconds
;; Level 2 (high): in a 30mt-range partition, L1 persons are > 300 with density > 2.18
;; Level 0 (none): others
def crowdTracking(){

if (recentlyTrue(densityEstimation() > 1.08, 60) { ;; note restriction here..
dangerousDensity(randomPartition(30), 300) ? high : low

} else {
none

}
}

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 50 / 56

Current tool-chain for aggregate computing

Field Calculus

Protelis

Xtext parsing

Static analysis Interpreter

Alchemist

Platforms

Formal
foundation

Programming
Language

Language
tools

Simulation

Execution

Properties

Proto Lang

Proto Sim

Libraries

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 51 / 56

Protelis + Alchemist [SAC-2015]

Protelis language: http://protelis.org/

Field calculus in disguised and full-blown version

Java-like syntax and Java API integration

Alchemist simulator: http://alchemist.apice.unibo.it/

A general-purpose simulator with pluggable specification language

XText/Eclipse integration

Support from working with Maps, Traces, Paths, Movement models

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 52 / 56

Current/future investigations

Field calculus

fields as processes, neighbours as ensembles, dealing with streams

universality, relation with continuous space-time, self-stabilisation

model checking with abstractions for large-scale systems

Language and programming

Protelis released, and pluggable into Alchemist simulator

Scala library support to be released soon

Platform level

single-server general-purpose coordinator (RESTlets + RedisDB)

cloud support (experiments with Apache Kafka & Storm)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 53 / 56

Conclusions

Aggregate Computing

a new paradigm for developing large-scale situated systems

a bunch of results and tools emerged, many to come

we’re always eager to find new collaborations!

Messages for the fog people

evaluate our toolchain for location-aware applications

think at a fog support that does not impact programming

try to think at systems as aggregates, it is worthy!

Acknowledgments

Jacob Beal (BBN, USA)

Ferruccio Damiani (UNITO)

Danilo Pianini (UNIBO)

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 54 / 56

References I

[IEEE Computer 48(9), 2015] Beal, J., Pianini, D, and Viroli, M. (2015).
Aggregate programming for the Internet of Things.
IEEE Computer, 48(9) 2015.

[Beal et.al., 2013] Beal, J., Dulman, S., Usbeck, K., Viroli, M., and Correll, N. (2013).
Organizing the aggregate: Languages for spatial computing.
In Mernik, M., editor, Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, chapter 16, pages
436–501. IGI Global.
A longer version available at: http://arxiv.org/abs/1202.5509.

[SCW-2014] Beal, J., Viroli, M., and Damiani, F. (2014).
Towards a unified model of spatial computing.
In 7th Spatial Computing Workshop (SCW 2014), AAMAS 2014, Paris, France.

[Fruin, 1971] Fruin, J. (1971).
Pedestrian Planning and Design.
Metropolitan Association of Urban Designers and Environmental Planners.

[Mamei et.al., 2009] Mamei, M. and Zambonelli, F. (2009).
Programming pervasive and mobile computing applications: The tota approach.
ACM Transactions on Software Engineering and Methodologies, 18(4).

[SAC-2015] Pianini, D., Beal, J., and Viroli, M. (2015).
Practical aggregate programming with protelis.
In ACM Symposium on Applied Computing (SAC 2015).
To appear.

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 55 / 56

References II

[Damiani & Viroli & Beal & Pianini, FORTE2015] Damiani, F., Viroli, M., Pianini, D., and Beal, J. (2015).
Code mobility meets self-organisation: a higher-order calculus of computational fields.
In Formal Techniques for Distributed Objects, Components, and Systems, volume 9039 of LNCS, pages 113–128. Springer.

[SASO-2015] Viroli, M., Beal, J., Damiani, F. and Pianini, D. (2015).
Efficient Engineering of Complex Self-Organising Systems by Self-Stabilising Fields
In IEEE Conference on Self-Adaptive and Self-Organising Systems.

[Beal, SAC2009] Beal, j. (2009).
Flexible self-healing gradients
In ACM Symposium on Applied Computing, pp. 1197–1201.

Mirko Viroli (Università di Bologna) Aggregate Computing 15/1/2016 56 / 56

	Aggregate Computing
	Field Calculus
	Platform support
	Field Engineering

