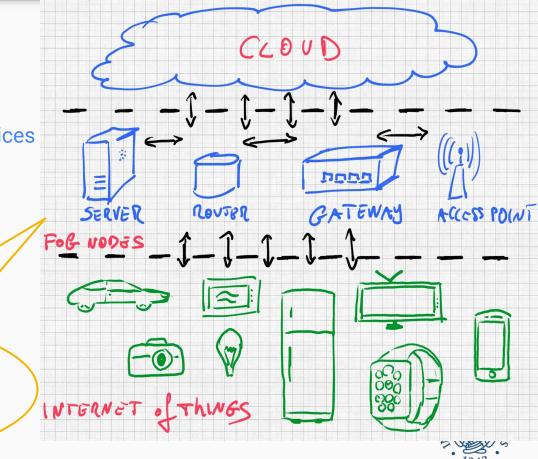
Predicting QoS and energyconsumption in the FOG

A.Brogi, M.Danelutto, D.De Sensi, A.Ibrahim, M.Torquati

Through the fog workshop, January 15th, 2016 Computer Science Department, University of Pisa, Italy

- Our view of FOG computing
- The need of *autonomic management* for optimizing QoS and power consumption
- A simple use-case scenario: preliminary thoughts and results



Our view of FOG architecture

Dynamic distributed architecture:

- using very different types of interconnection networks
- unreliable system, including devices running on batteries
- Extremely heterogeneous architecture
 - sensors, mobile devices, PC/laptops, hosts, cloud

We aim at targeting the problem of dynamic resources allocation for the "FOG NODES" layer

Main characteristics:

- dynamic workload distribution
- dynamic numbers of devices appearing and disappearing

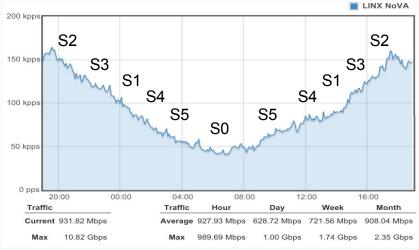
Our approach:

- parallel structure of the application modelled (exclusively) with
 - hierarchical compositions of
 - parallel patterns
 - with autonomic control

Autonomic management needs

Dimensioning the system resources for the worst case scenario may be unfeasible and too costly

- How many FOG nodes?
- How many resources to use on each node (cores, clock frequency)?


Use case scenario: Network applications

- We are interested in those applications where a set of different workloads W₁...W_n correspond to different phases of the FOG application
- Different phases have different requirements in terms of performance and power consumption (+ performance \rightarrow + power consumption)
- Goal: to dynamically adapt/reconfigure the system resources in order to minimize power consumptions and/or execution time
 - Possible application scenarios:
 - streaming hot-spots
 - network packets analysis

Use case scenario: Network applications

Input: a set of possible "Solutions" (S0, S1, S2, S3, S4, S5, S6, S7,) all able to sustain a given input rate with a given power cost

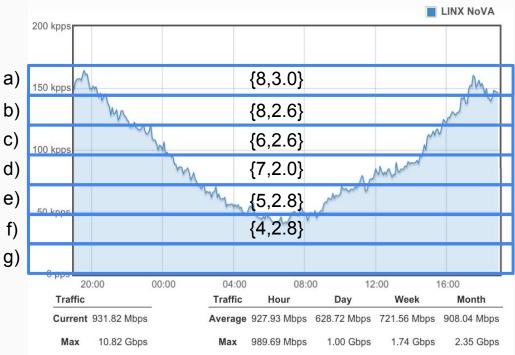
Output: find a suitable subset of "Solutions" that provides the desired QoS and minimize the power cost

Option 1:

Experimentally trying out the different configurations

Option 2:

Using a probabilistic simulation tool

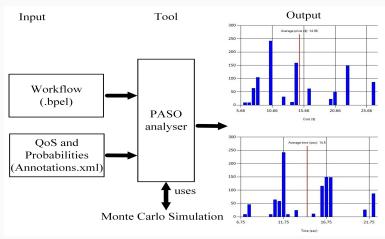


Use case scenario: Network applications

- Configuration {C, F} = {number of Cores, Frequency of the cores}
- We know the cost of each solution as well as the cost for the transition among solutions

	Prob.	Rate	Configuration of the solutions
a)	12%	> 150	{8, 3.0} , {7, 3.3}
b)	14%	> 125	{8, 2.6} , { 7, 3.0 }
c)	14%	> 100	{6, 2.6} , { 6, 2.6 } , { 5, 3.0 }
d)	29%	> 75	{7, 2.0} , { 6, 2.4 }
e)	24%	> 50	{5, 2.8} , { 5, 2.8 }
f)	7%	> 25	{4, 2.8} , { 3, 3.0 }
g)	0	> 0	-

- PASO can probabilistically predict the QoS of a workflow
- Open-source application developed in F# .Net

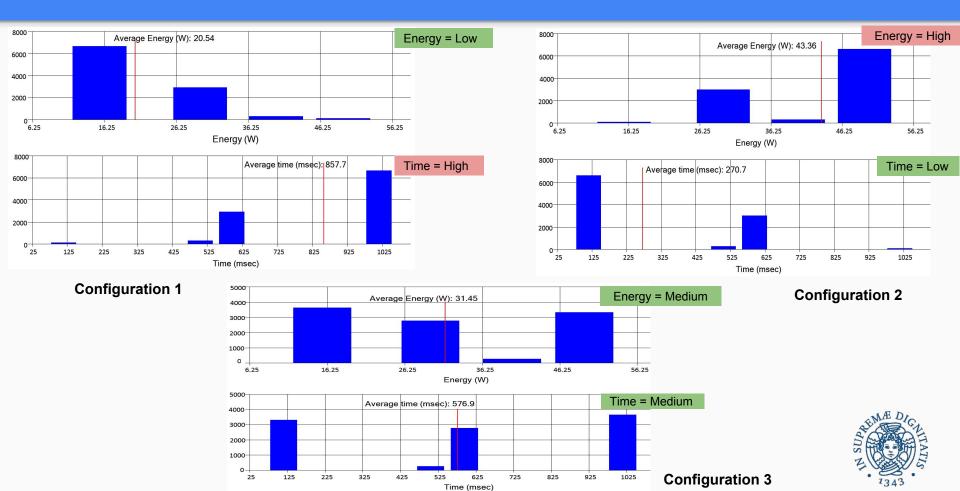

Why PASO?

Can address several challenges in predicting QoS

- 1. Different results of service invocations
- 2. Non-determinism in the workflow
- 3. Correlation in parallel branches
- 4. Complex dependency structure

Source code for the PASO analyser is available at https://github.com/upi-bpel/paso

L. Bartoloni, A. Brogi, and A. Ibrahim, Probabilistic prediction of the QoS of service orchestrations: A truly compositional approach, ICSOC 2014, LNCS 8831, pp. 378–385, November 3-6, 2014



Attributes:

- Service Time (ms)
- Energy (W)

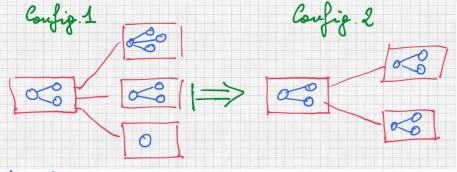
Preliminary results obtained using PASO

Conclusions:

- We aim at targeting the problem of dynamic allocation of resources for the FOG nodes
- Our case study focuses on applications that have dynamic workload distributions
- Preliminary results produced with the PASO tool

Future works:

- more experiments needed trying more complex and accurate functions for energy and time
- validation of the results



Any questions ?

Why using hierarchical parallel patterns ?

- because:
 - well-known parallel structure
 - simpler to manage and deploy
 - easier to model the execution behaviour
 - easier to reconfigure/adapt at run-time
- The autonomic hierarchical approach has been used in other contexts: distributed-systems, global computing, cloud,
 - we think this is the way to go for the FOG

