
Predicting QoS and energy-
consumption in the FOG
A.Brogi, M.Danelutto, D.De Sensi, A.Ibrahim, M.Torquati

Through the fog workshop, January 15th, 2016
Computer Science Department, University of Pisa, Italy

Outline

■ Our view of FOG computing
■ The need of autonomic management for optimizing QoS and

power consumption
■ A simple use-case scenario: preliminary thoughts and results

Our view of FOG architecture

Dynamic distributed architecture:

■ using very different types of
interconnection networks

■ unreliable system, including devices
running on batteries

Extremely heterogeneous architecture

■ sensors, mobile devices,
PC/laptops, hosts, cloud

We aim at targeting the
problem of dynamic
resources allocation for
the “FOG NODES” layer

Our view of parallel FOG applications

Main characteristics:

■ dynamic workload distribution
■ dynamic numbers of devices appearing and disappearing

Our approach:

- parallel structure of the application modelled (exclusively) with
■ hierarchical compositions of
■ parallel patterns
■ with autonomic control

Autonomic management needs

2 a.m.

Dimensioning the system resources for the worst case scenario may
be unfeasible and too costly

■ How many FOG nodes?
■ How many resources to use on each node (cores, clock

frequency)?

6 p.m.

resources needed

Use case scenario: Network applications

■ We are interested in those applications where a set of different
workloads W1...Wn correspond to different phases of the FOG
application

■ Different phases have different requirements in terms of performance
and power consumption (+ performance → + power consumption)

■ Goal: to dynamically adapt/reconfigure the system resources in order to
minimize power consumptions and/or execution time

○ Possible application scenarios:
■ streaming hot-spots
■ network packets analysis
■ …..

Use case scenario: Network applications

Option 2:
Using a probabilistic simulation tool

Option 1:
Experimentally trying out the different configurations not

feasible

Input: a set of possible
“Solutions” (S0, S1, S2, S3,
S4, S5, S6, S7, ….) all able
to sustain a given input rate
with a given power cost

S2
S3 S3

S2

S1 S1
S4 S4

S5
S0

S5

Output: find a suitable
subset of “Solutions” that
provides the desired QoS
and minimize the power cost

Use case scenario: Network applications

Prob. Rate Configuration of the
solutions

12% > 150 {8, 3.0}, {7, 3.3}

14% > 125 {8, 2.6}, {7, 3.0}

14% > 100 {7, 2.4}, {6, 2.6}, {5, 3.0}

29% > 75 {7, 2.0}, {6, 2.4}

24% > 50 {5, 2.6}, {5, 2.8}

7% > 25 {4, 2.8}, {3, 3.0}

0 > 0 -

■ Configuration {C, F} = {number of Cores, Frequency of the cores}
■ We know the cost of each solution as well as the cost for the transition among solutions

a)

b)
c)
d)
e)

f)
g)

a)

b)

c)

d)

e)

f)

g)

{8,3.0}

{7,2.0}

{8,2.6}
{6,2.6}

{5,2.8}
{4,2.8}

Prob. Rate Configuration of the
solutions

12% > 150 {8, 3.0}

14% > 125 {8, 2.6}

14% > 100 {6, 2.6}

29% > 75 {7, 2.0}

24% > 50 {5, 2.8}

7% > 25 {4, 2.8}

0 > 0 -

Probabilistic Analyser of Service Orchestration (PASO)

Source code for the PASO analyser is available at https://github.com/upi-bpel/paso

L. Bartoloni, A. Brogi, and A. Ibrahim, Probabilistic prediction of the QoS of service orchestrations: A truly compositional approach,ICSOC 2014, LNCS
8831, pp. 378–385, November 3-6, 2014

■ PASO can probabilistically predict the QoS of a workflow
■ Open-source application developed in F# .Net

Attributes:

■ Service Time (ms)
■ Energy (W)
■ ..

Why PASO?
 Can address several challenges in predicting QoS
1. Different results of service invocations
2. Non-determinism in the workflow
3. Correlation in parallel branches
4. Complex dependency structure

https://github.com/upi-bpel/paso

Preliminary results obtained using PASO

Energy = Low

Time = High

Energy = High

Time = Low

Configuration 3

Configuration 1 Configuration 2Energy = Medium

Time = Medium

Conclusions and Future Work

Conclusions:

■ We aim at targeting the problem of dynamic allocation of resources for the
FOG nodes

■ Our case study focuses on applications that have dynamic workload
distributions

■ Preliminary results produced with the PASO tool

Future works:

■ more experiments needed trying more complex and accurate functions for
energy and time

■ validation of the results

Thank you !

Any questions ?

Why using hierarchical parallel patterns ?

- …. because:
■ well-known parallel structure
■ simpler to manage and deploy
■ easier to model the execution behaviour
■ easier to reconfigure/adapt at run-time

- The autonomic hierarchical approach has been used in other contexts:
distributed-systems, global computing, cloud, ….

- we think this is the way to go for the FOG

