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Motivation
 Lightweight virtualisation 

 for smaller, virtualised devices to host 

application/platform services

 Containerisation as a lightweight virtualisation 

solution. 

 Containers relevant for Platform-as-a-

Service (PaaS) clouds 

 application packaging and orchestration. 

 this can help to manage and orchestrate 

applications as containers

 Cloud 

technology is 

moving

 distribution 

across multi-

clouds 

 inclusion of 

devices – IoT / 

edge cloud / 

fog computing

 Agenda:
 review edge cloud requirements 

 discuss suitability of container and cluster technology



Agenda

 Edge Cloud

 Virtualisation and Containers

 PaaS Clouds and Containers

 Clusters and Distribution in the Cloud

 Container-based Edge Cloud

 Edge Cloud Management

 Use Cases



Edge Cloud – Architectural Requirements

 Challenges:

 Virtualisation and interoperable application packaging

 Distributed delivery and orchestration of infrastructure and 

application services



Edge Cloud – Architectural Requirements

 Classify distributed clouds into three architectural models: 

 Multi-datacentre clouds with multiple, tightly coupled data 

centers under control of the same provider. 

 Loosely coupled multi-service clouds combine services 

from different cloud providers. 

 Decentralized edge clouds utilize edge resources to provide 

data / compute resources in a highly dispersed manner

 Needs infrastructure and application services to be placed 

at source of data



Edge Cloud – Architectural Requirements
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 Infrastructure Support:
 Location awareness, computation placement, local replication/recovery

 Packaging, deployment, orchestration

 Data transfer between virtualised resources



Edge Cloud – Architectural Requirements

 Development support for these architectures

 supported through orchestration based on topology patterns + 
orchestration plans

 reflecting common and reference architectures

 Application packaging through containerisation: 

 Containers to distribute service and applications to the edge

 Docker has been used to do this 

 Programmability: 

 Orchestration support through topology specification 

 TOSCA topology patterns

 Service orchestration needs to cover whole life-cycle 

 deploy, patch, shutdown

 Operations are mapped to cloud infrastructure management 

 TOSCA engine runs on top of edge cloud infrastructure



Virtualisation and Containers

 VM instances: full guest OS images – large files

 Space and time constraints



Virtualisation and Containers
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 Containers

 Packages, self-contained, ready-to-deploy set of parts of applications

 In the form of binaries and libraries to run applications



Virtualisation and Containers

 Recent Linux distributions - Linux container project LXC 
 kernel mechanisms to isolate processes on shared operating system

 Mechanisms: namespaces and cgroups

 Namespace isolation 
 allows groups of processes to be separated

 different namespaces for process isolation, access to inter-process 
communication, mount-points, for isolating kernel and version 
identifiers

 cgroups (control groups) 
 manage and limit resource access for process groups

 enables better isolation between isolated applications on a host

 restricts containers in multi-tenant host environments

 cgroups allow sharing hardware resources between containers 
 if required, setting up limits and constraints



Virtualisation and Containers

 Boot process: 

 traditional Linux boot: kernel mounts root FS as read-

only, then switches rootfs volume to read-write mode

 Docker mounts the rootfs as read-only, but instead of 

changing FS to read-write mode, it uses a union mount 

to add a writable file system on top 

 Mounting (union mount): 

 allows multiple read-only FS to be stacked on top of 

each other

 can create new images by building on top of base images

 each of these FS layers is a separate image loaded by the 

container engine for execution. 

 Container: 

 only the top layer (container) is writable

 container can have state and is executable - directory for 

everything 
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cgroups
name-
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Writable Container



Virtualisation and Containers

Container-based Application Architecture – Scenarios:

 Container solution:

 Repositories

 API: create, define, compose, distribution

 Storage and network functions: 

 shared volumes, links for data transfer
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PaaS Clouds and Containerisation

 PaaS:

 Built farms

 Routing layers

 Schedulers to dispatch workloads



PaaS Clouds and Containerisation

 Evolution of PaaS:

 first PaaS generation: 

 classical fixed proprietary platforms 

 such as Azure or Heroku. 

 second PaaS generation:

 open-source solutions such as Cloud Foundry or OpenShift

 allow users to run their own PaaS (on-premise or in the cloud)

 already with a built-in support of containers. 

 Openshift moves from own container model to Docker model

 Cloud Foundry does as well through its internal Diego solution

 third PaaS generation: 

 Dawn, Deis, Flynn, Octohost and Tsuru, 

 built on Docker from scratch 

 deployable on own servers or on public IaaS clouds

 Clustered, distributed architecture management



PaaS Clouds and Containerisation

 Microservices architectural style 

 developing a single application as a suite of small services

 each running in its own process and lightweight communication 

 Microservices are 

 independently deployable

 supported by automated deployment and orchestration

 They require 

 ability to deploy often and independently at arbitrary schedules 

 Microservice dev/arch concerns are PaaS concerns

 Containerisation provides ideal mechanism for flexible 
deployment schedules and orchestration needs

 particularly, if these are to be PaaS-provisioned



Clustering and Distribution

 Cluster architecture:

 Multiple clusters in multiple clouds



Clustering and Distribution
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 Features:

 Failover

 Load 

balancing

 Scalability 

 API:
 Platform 

service mgmt

 Lifecycle 
mgmt

 Cluster head 
node



Clustering and Distribution

 Requirements for a lightweight virtualised cluster 

architecture :

 Hosting containerised services

 Providing secure communication between these services 

 Auto-scalability and load balancing support 

 Distributed and scalable service discovery and orchestration 

 Transfer/migration of service deployments between clusters

 Tools:

 Mesos and Kubernetes …



Clustering and Orchestration

 Cluster architecture:

 Interoperable orchestration



Clustering and Distribution

 TOSCA supports a number of 
features:

 interoperable description of 
application & infrastructure 
services 

 here implemented as containers 
hosted on nodes in an edge cloud,

 relationships between parts of 
the service 

 here service compositions and 
links as relationships, 

 operational behaviour of the 
services in an orchestration plan

 such as deploy, patch or shutdown



TOSCA for Container Orchestration

 Needed: a TOSCA-based modelling language 

 To describe the features of a container in abstract terms 

 to compose multiple containers to build an application

 to orchestrate the deployment and management of multi-

container applications in distributed clusters

 Specifically:

 Need: manage applications over multiple and heterogeneous 

clouds, 

 Solution: services have to be described and orchestrated in a 

standardized fashion



Clustering and Distribution

Orchestration and Topology
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TOSCA Service Templates for Containers

[ joint work with A. Brogi, J.Soldani @ University of Pisa ]



Docker Orchestration Example



Container-based Edge Cloud Deployment

 Cluster architecture for edge cloud scenarios:

 Cloud deployment on resource-constrained devices



PaaS & Container Ecosystem



Beyond PaaS: Devices for the Edge Cloud

 Driver:

 Bring computation to the edge

 infrastructure + application services placed at source of data

 Assumption:

 Resource-constrained devices

 Capable of carrying out some remote calculations

 Solution

 Hardware: Raspberry Pi (or similar)

 Software/application packaging: Docker

 Cluster management: Kubernetes

 Orchestration: TOSCA



Raspberry Pi and Linux

 Raspberry Pi 2 Model B - second generation Raspberry Pi

 900MHz quad-core ARM Cortex-A7 CPU

 1GB RAM

Replaced the original Raspberry Pi 1 Model B+ in Feb’15. 

 Processor:  ARMv7 + 1GB

 can run the full range of ARM GNU/Linux distributions, 

 support of Raspbian - a free operating system based on Debian

optimized for Raspberry Pi hardware



Docker on Raspberry Pi

From [https://blog.docker.com/2015/09/update-raspberry-pi-

dockercon-challenge/]

 Describes demo running 500 Docker

containers on a Raspberry Pi 2 device. 

 As of now (?), the current record 

stands at 2334 web servers running in 

containers on a single Raspberry Pi 2.

https://blog.docker.com/2015/09/update-raspberry-pi-dockercon-challenge/


Sample configuration

 Resources:

 A RPi 2 has 1Gb of RAM (about 975 Mb available)

 Memory footprint of single web server outside a container is 0.3 Mb

 Can use ~700 Mb (2300 instances) for “real” processes, 

 Leaves 300 Mb for the system and the Docker engine

 Specs for set-up:

 Raspberry Pi 2 (4x core, 1 GByte memory)

 Docker 1.8.1 (stock version, without any optimisations)

 Linux: Debian Wheezy (HypriotOS) with Kernel 3.18.11 (used for 

DockerCon demo)

 Web server: Docker Image “hypriot/rpi-nano-httpd:minimal” (available 

on Docker Hub)



Raspberry Pi – Cloud and Cluster

 University of Glasgow:
 https://raspberrypicloud.wordpress.com/blog/

 Glasgow Raspberry Pi Cloud (PiCloud)

 scale model of data centre (DC) composed of clusters of Raspberry Pi

 The Pi Cloud emulates all layers of a cloud stack

 ranging from resource virtualisation to network behaviour

 University of Bozen-Bolzano:
 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6735414

 The UniBZ Raspberry Pi cluster creates a small DC infrastructure 

https://raspberrypicloud.wordpress.com/blog/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6735414


The University of Bozen-Bolzano (BZ) 

Raspberry Pi Cluster

 Aim: 

 small-scale cloud data centre for teaching /research purposes.

 Focus: 

 particularly interested in mobility

 i.e., how to move clusters to locations where they are needed

 e.g. in difficult terrain or in emergency circumstances

 Architecture:

 300 nodes in star topology



BZ Raspberry Pi Cluster

 Architecture: 300 nodes

 Network topology: star

 Rack: bespoke

 Power Supply …

 OS Debian 7

 Cluster management
 Own solution

 Low-level cluster configuration, 
monitoring, and maintenance:

 boot master

 register RPis

 could use Kubernetes in the future …



BZ RPi Cluster Management

 Cloud platform 

 include centralized 

management of: 

 resource pool

 usage monitoring

 automated service 

provision

 online access to 

acquired resources

 focus resource 

management: 

 subcluster organization

 storage



Cluster orchestration

 The whole cluster is split into subclusters:

 allowing different users to run processes in parallel on different 

parts of the infrastructure

 Orchestration:

 Static orchestration:

 At the moment a subcluster is composed of a predefined set of RPis. 

 Dynamic orchestration:

 It is possible to move an RPi from one subcluster to another one

 We are working on a solution to make this switch dynamically: 

 i.e., switch while the system is running

 without burdening the system’s resources too heavily



Cluster storage

 SD cards slow: use a network storage system 

 to improve the performance of the overall system

 to make a common filesystem for the cluster available 

 Implementation:

 a four-bay Network Attached Storage (NAS) from QNAP Systems, 
allows us to replace the original firmware with a custom Debian image. 

 This NAS forms part of the master node 

 Inside the NAS:

 every subcluster has a dedicated volume managed by LVM (logical vol mngr)

 which is shared by all the RPis belonging to that subcluster

 The RPis mount a volume locally via Network File System (NFS) v.4

 we used NFS rather than iSCSI (Internet Small Computer System Interface) 

 allows sharing of same volume between different nodes, 

 thus making inter-node communication via file system possible



Kubernetes on Raspberry Pi 2’s

 https://raspberrypicloud.wordpress.com/2015/08/11/how-
to-kubernetes-multi-node-on-raspberry-pi-2s/

 Kubernetes is a powerful orchestration tool for containerised 
applications across multiple hosts. 

 Glasgow Cluster:

 Fully running implementation of 

Kubernetes on Raspberry Pi 2 

 Min config: 

 2 Raspberry Pi 2s

 Two SD cards loaded with Arch Linux | ARM

https://raspberrypicloud.wordpress.com/2015/08/11/how-to-kubernetes-multi-node-on-raspberry-pi-2s/


Edge Cluster Management Implementation

 Architecture

 Data and Software Management



Technology Stack
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Entities

 Edge Object (EO) – Cloud Object (CO) – Data/Software 

Processing (DSP)

40

Edge Objects

DSPs



Management Architecture

41



Configuration based on ServIoTicy
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Configuration based on ServIoTicy
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Use Cases - Requirements



Use Cases

 Smart City
 Traffic management

 Cameras

 Sensor coordination

 Space occupancy

 Smart Area
 Tourism

 Sensor management: temperature, people counters

 Agriculture
 Sensors and actuators: sun/precipitation -> irrigation 

 Technology:
 Web objects

 HTTP-enabled devices 

 connect to edge clouds DC or cloudlets (e.g. containers on Raspb Pi)



Requirements for use cases

 Why Docker/Kubernetes on Raspberry Pi:

 Need full data centre (DC) capabilities 

 Need easy orchestration

 Need portability / interoperability

 Meets requirements of Edge Cloud architectures



Conclusions



Conclusions

 Edge clouds move the focus from heavy-weight data 

centre clouds to more lightweight virtualised resources

 Use emerging container technology and container cluster 

management for edge clouds 

 Some PaaS have started to address limitations in the context of 

programming (orchestration) and DevOps for clusters.  

 Observation: cloud management platforms are still at an 

earlier stage than the container platforms they build on 

 Container technology has the potential to 

 advance PaaS technology towards distributed heterogeneous 

clouds 

 through lightweightness and interoperability



Thank you!

Claus.Pahl@unibz.it


