
Containers and Clusters 

for Edge Cloud Architectures 

Claus Pahl
Irish Centre for Cloud Computing and Commerce IC4, Ireland

University of Bozen-Bolzano, Italy



Motivation
 Lightweight virtualisation 

 for smaller, virtualised devices to host 

application/platform services

 Containerisation as a lightweight virtualisation 

solution. 

 Containers relevant for Platform-as-a-

Service (PaaS) clouds 

 application packaging and orchestration. 

 this can help to manage and orchestrate 

applications as containers

 Cloud 

technology is 

moving

 distribution 

across multi-

clouds 

 inclusion of 

devices – IoT / 

edge cloud / 

fog computing

 Agenda:
 review edge cloud requirements 

 discuss suitability of container and cluster technology



Agenda

 Edge Cloud

 Virtualisation and Containers

 PaaS Clouds and Containers

 Clusters and Distribution in the Cloud

 Container-based Edge Cloud

 Edge Cloud Management

 Use Cases



Edge Cloud – Architectural Requirements

 Challenges:

 Virtualisation and interoperable application packaging

 Distributed delivery and orchestration of infrastructure and 

application services



Edge Cloud – Architectural Requirements

 Classify distributed clouds into three architectural models: 

 Multi-datacentre clouds with multiple, tightly coupled data 

centers under control of the same provider. 

 Loosely coupled multi-service clouds combine services 

from different cloud providers. 

 Decentralized edge clouds utilize edge resources to provide 

data / compute resources in a highly dispersed manner

 Needs infrastructure and application services to be placed 

at source of data



Edge Cloud – Architectural Requirements

Core 
Cloud

Core 
Cloud

Edge 
Cloud

Edge 
Cloud

Edge 
Cloud

Edge 
Cloud

Core 
Cloud

 Infrastructure Support:
 Location awareness, computation placement, local replication/recovery

 Packaging, deployment, orchestration

 Data transfer between virtualised resources



Edge Cloud – Architectural Requirements

 Development support for these architectures

 supported through orchestration based on topology patterns + 
orchestration plans

 reflecting common and reference architectures

 Application packaging through containerisation: 

 Containers to distribute service and applications to the edge

 Docker has been used to do this 

 Programmability: 

 Orchestration support through topology specification 

 TOSCA topology patterns

 Service orchestration needs to cover whole life-cycle 

 deploy, patch, shutdown

 Operations are mapped to cloud infrastructure management 

 TOSCA engine runs on top of edge cloud infrastructure



Virtualisation and Containers

 VM instances: full guest OS images – large files

 Space and time constraints



Virtualisation and Containers

Hardware

Host OS

Container Engine

Bins/LibsContainer

Bins/Libs

App App

Container

App App

Hardware

Hypervisor/Host OS

VM

Bins/Libs

App App

Guest OS

VM

Bins/Libs

App App

Guest OS

 Containers

 Packages, self-contained, ready-to-deploy set of parts of applications

 In the form of binaries and libraries to run applications



Virtualisation and Containers

 Recent Linux distributions - Linux container project LXC 
 kernel mechanisms to isolate processes on shared operating system

 Mechanisms: namespaces and cgroups

 Namespace isolation 
 allows groups of processes to be separated

 different namespaces for process isolation, access to inter-process 
communication, mount-points, for isolating kernel and version 
identifiers

 cgroups (control groups) 
 manage and limit resource access for process groups

 enables better isolation between isolated applications on a host

 restricts containers in multi-tenant host environments

 cgroups allow sharing hardware resources between containers 
 if required, setting up limits and constraints



Virtualisation and Containers

 Boot process: 

 traditional Linux boot: kernel mounts root FS as read-

only, then switches rootfs volume to read-write mode

 Docker mounts the rootfs as read-only, but instead of 

changing FS to read-write mode, it uses a union mount 

to add a writable file system on top 

 Mounting (union mount): 

 allows multiple read-only FS to be stacked on top of 

each other

 can create new images by building on top of base images

 each of these FS layers is a separate image loaded by the 

container engine for execution. 

 Container: 

 only the top layer (container) is writable

 container can have state and is executable - directory for 

everything 

rootfs

Linux Kernel

cgroups
name-

spaces

layer 

FS

Images

Base Image (Ubuntu)

Image (Emacs)

Image (Apache)

Writable Container



Virtualisation and Containers

Container-based Application Architecture – Scenarios:

 Container solution:

 Repositories

 API: create, define, compose, distribution

 Storage and network functions: 

 shared volumes, links for data transfer

Container

Load 

Balan

cer

Container

Bins/Libs

App

Container

Bins/Libs

App App

Container

App AppApp

Auto 

scale

App

Database



PaaS Clouds and Containerisation

 PaaS:

 Built farms

 Routing layers

 Schedulers to dispatch workloads



PaaS Clouds and Containerisation

 Evolution of PaaS:

 first PaaS generation: 

 classical fixed proprietary platforms 

 such as Azure or Heroku. 

 second PaaS generation:

 open-source solutions such as Cloud Foundry or OpenShift

 allow users to run their own PaaS (on-premise or in the cloud)

 already with a built-in support of containers. 

 Openshift moves from own container model to Docker model

 Cloud Foundry does as well through its internal Diego solution

 third PaaS generation: 

 Dawn, Deis, Flynn, Octohost and Tsuru, 

 built on Docker from scratch 

 deployable on own servers or on public IaaS clouds

 Clustered, distributed architecture management



PaaS Clouds and Containerisation

 Microservices architectural style 

 developing a single application as a suite of small services

 each running in its own process and lightweight communication 

 Microservices are 

 independently deployable

 supported by automated deployment and orchestration

 They require 

 ability to deploy often and independently at arbitrary schedules 

 Microservice dev/arch concerns are PaaS concerns

 Containerisation provides ideal mechanism for flexible 
deployment schedules and orchestration needs

 particularly, if these are to be PaaS-provisioned



Clustering and Distribution

 Cluster architecture:

 Multiple clusters in multiple clouds



Clustering and Distribution

Container clusters

Cluster

Host nodeHost node

Host node Host node

Container

Container

Container

Container

Service ContainerContainer

Service
Container

Container

Volume

Volume

Link

mounted

 Features:

 Failover

 Load 

balancing

 Scalability 

 API:
 Platform 

service mgmt

 Lifecycle 
mgmt

 Cluster head 
node



Clustering and Distribution

 Requirements for a lightweight virtualised cluster 

architecture :

 Hosting containerised services

 Providing secure communication between these services 

 Auto-scalability and load balancing support 

 Distributed and scalable service discovery and orchestration 

 Transfer/migration of service deployments between clusters

 Tools:

 Mesos and Kubernetes …



Clustering and Orchestration

 Cluster architecture:

 Interoperable orchestration



Clustering and Distribution

 TOSCA supports a number of 
features:

 interoperable description of 
application & infrastructure 
services 

 here implemented as containers 
hosted on nodes in an edge cloud,

 relationships between parts of 
the service 

 here service compositions and 
links as relationships, 

 operational behaviour of the 
services in an orchestration plan

 such as deploy, patch or shutdown



TOSCA for Container Orchestration

 Needed: a TOSCA-based modelling language 

 To describe the features of a container in abstract terms 

 to compose multiple containers to build an application

 to orchestrate the deployment and management of multi-

container applications in distributed clusters

 Specifically:

 Need: manage applications over multiple and heterogeneous 

clouds, 

 Solution: services have to be described and orchestrated in a 

standardized fashion



Clustering and Distribution

Orchestration and Topology

Cluster TOSCA

Topology Template

Node Type

Host 

node

Host node

Container

Container

Container

Relationship Type

Link /

Service

Orchestration Plan

Host 

node 

Cluster 

Template

Host 

node 

Host 

node 

node

type

relationship

type



TOSCA Service Templates for Containers

[ joint work with A. Brogi, J.Soldani @ University of Pisa ]



Docker Orchestration Example



Container-based Edge Cloud Deployment

 Cluster architecture for edge cloud scenarios:

 Cloud deployment on resource-constrained devices



PaaS & Container Ecosystem



Beyond PaaS: Devices for the Edge Cloud

 Driver:

 Bring computation to the edge

 infrastructure + application services placed at source of data

 Assumption:

 Resource-constrained devices

 Capable of carrying out some remote calculations

 Solution

 Hardware: Raspberry Pi (or similar)

 Software/application packaging: Docker

 Cluster management: Kubernetes

 Orchestration: TOSCA



Raspberry Pi and Linux

 Raspberry Pi 2 Model B - second generation Raspberry Pi

 900MHz quad-core ARM Cortex-A7 CPU

 1GB RAM

Replaced the original Raspberry Pi 1 Model B+ in Feb’15. 

 Processor:  ARMv7 + 1GB

 can run the full range of ARM GNU/Linux distributions, 

 support of Raspbian - a free operating system based on Debian

optimized for Raspberry Pi hardware



Docker on Raspberry Pi

From [https://blog.docker.com/2015/09/update-raspberry-pi-

dockercon-challenge/]

 Describes demo running 500 Docker

containers on a Raspberry Pi 2 device. 

 As of now (?), the current record 

stands at 2334 web servers running in 

containers on a single Raspberry Pi 2.

https://blog.docker.com/2015/09/update-raspberry-pi-dockercon-challenge/


Sample configuration

 Resources:

 A RPi 2 has 1Gb of RAM (about 975 Mb available)

 Memory footprint of single web server outside a container is 0.3 Mb

 Can use ~700 Mb (2300 instances) for “real” processes, 

 Leaves 300 Mb for the system and the Docker engine

 Specs for set-up:

 Raspberry Pi 2 (4x core, 1 GByte memory)

 Docker 1.8.1 (stock version, without any optimisations)

 Linux: Debian Wheezy (HypriotOS) with Kernel 3.18.11 (used for 

DockerCon demo)

 Web server: Docker Image “hypriot/rpi-nano-httpd:minimal” (available 

on Docker Hub)



Raspberry Pi – Cloud and Cluster

 University of Glasgow:
 https://raspberrypicloud.wordpress.com/blog/

 Glasgow Raspberry Pi Cloud (PiCloud)

 scale model of data centre (DC) composed of clusters of Raspberry Pi

 The Pi Cloud emulates all layers of a cloud stack

 ranging from resource virtualisation to network behaviour

 University of Bozen-Bolzano:
 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6735414

 The UniBZ Raspberry Pi cluster creates a small DC infrastructure 

https://raspberrypicloud.wordpress.com/blog/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6735414


The University of Bozen-Bolzano (BZ) 

Raspberry Pi Cluster

 Aim: 

 small-scale cloud data centre for teaching /research purposes.

 Focus: 

 particularly interested in mobility

 i.e., how to move clusters to locations where they are needed

 e.g. in difficult terrain or in emergency circumstances

 Architecture:

 300 nodes in star topology



BZ Raspberry Pi Cluster

 Architecture: 300 nodes

 Network topology: star

 Rack: bespoke

 Power Supply …

 OS Debian 7

 Cluster management
 Own solution

 Low-level cluster configuration, 
monitoring, and maintenance:

 boot master

 register RPis

 could use Kubernetes in the future …



BZ RPi Cluster Management

 Cloud platform 

 include centralized 

management of: 

 resource pool

 usage monitoring

 automated service 

provision

 online access to 

acquired resources

 focus resource 

management: 

 subcluster organization

 storage



Cluster orchestration

 The whole cluster is split into subclusters:

 allowing different users to run processes in parallel on different 

parts of the infrastructure

 Orchestration:

 Static orchestration:

 At the moment a subcluster is composed of a predefined set of RPis. 

 Dynamic orchestration:

 It is possible to move an RPi from one subcluster to another one

 We are working on a solution to make this switch dynamically: 

 i.e., switch while the system is running

 without burdening the system’s resources too heavily



Cluster storage

 SD cards slow: use a network storage system 

 to improve the performance of the overall system

 to make a common filesystem for the cluster available 

 Implementation:

 a four-bay Network Attached Storage (NAS) from QNAP Systems, 
allows us to replace the original firmware with a custom Debian image. 

 This NAS forms part of the master node 

 Inside the NAS:

 every subcluster has a dedicated volume managed by LVM (logical vol mngr)

 which is shared by all the RPis belonging to that subcluster

 The RPis mount a volume locally via Network File System (NFS) v.4

 we used NFS rather than iSCSI (Internet Small Computer System Interface) 

 allows sharing of same volume between different nodes, 

 thus making inter-node communication via file system possible



Kubernetes on Raspberry Pi 2’s

 https://raspberrypicloud.wordpress.com/2015/08/11/how-
to-kubernetes-multi-node-on-raspberry-pi-2s/

 Kubernetes is a powerful orchestration tool for containerised 
applications across multiple hosts. 

 Glasgow Cluster:

 Fully running implementation of 

Kubernetes on Raspberry Pi 2 

 Min config: 

 2 Raspberry Pi 2s

 Two SD cards loaded with Arch Linux | ARM

https://raspberrypicloud.wordpress.com/2015/08/11/how-to-kubernetes-multi-node-on-raspberry-pi-2s/


Edge Cluster Management Implementation

 Architecture

 Data and Software Management



Technology Stack

PaaS

TCP Sockets

REST API

Storm

Data Management Software Management

Applications

REST API

Device Layer

Service Layer

Application

Layer

Web Sockets

HTTP

Edge

/

IoT

Developer Portal

Orchestration



Entities

 Edge Object (EO) – Cloud Object (CO) – Data/Software 

Processing (DSP)

40

Edge Objects

DSPs



Management Architecture

41



Configuration based on ServIoTicy

42

DSP

Aggregate

Filter

(rssi < -70dBm)

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices



Configuration based on ServIoTicy

43

DSP

Aggregate

Filter

(rssi < -70dBm)

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

Central Cloud



Use Cases - Requirements



Use Cases

 Smart City
 Traffic management

 Cameras

 Sensor coordination

 Space occupancy

 Smart Area
 Tourism

 Sensor management: temperature, people counters

 Agriculture
 Sensors and actuators: sun/precipitation -> irrigation 

 Technology:
 Web objects

 HTTP-enabled devices 

 connect to edge clouds DC or cloudlets (e.g. containers on Raspb Pi)



Requirements for use cases

 Why Docker/Kubernetes on Raspberry Pi:

 Need full data centre (DC) capabilities 

 Need easy orchestration

 Need portability / interoperability

 Meets requirements of Edge Cloud architectures



Conclusions



Conclusions

 Edge clouds move the focus from heavy-weight data 

centre clouds to more lightweight virtualised resources

 Use emerging container technology and container cluster 

management for edge clouds 

 Some PaaS have started to address limitations in the context of 

programming (orchestration) and DevOps for clusters.  

 Observation: cloud management platforms are still at an 

earlier stage than the container platforms they build on 

 Container technology has the potential to 

 advance PaaS technology towards distributed heterogeneous 

clouds 

 through lightweightness and interoperability



Thank you!

Claus.Pahl@unibz.it


