
Containers and Clusters

for Edge Cloud Architectures

Claus Pahl
Irish Centre for Cloud Computing and Commerce IC4, Ireland

University of Bozen-Bolzano, Italy

Motivation
 Lightweight virtualisation

 for smaller, virtualised devices to host

application/platform services

 Containerisation as a lightweight virtualisation

solution.

 Containers relevant for Platform-as-a-

Service (PaaS) clouds

 application packaging and orchestration.

 this can help to manage and orchestrate

applications as containers

 Cloud

technology is

moving

 distribution

across multi-

clouds

 inclusion of

devices – IoT /

edge cloud /

fog computing

 Agenda:
 review edge cloud requirements

 discuss suitability of container and cluster technology

Agenda

 Edge Cloud

 Virtualisation and Containers

 PaaS Clouds and Containers

 Clusters and Distribution in the Cloud

 Container-based Edge Cloud

 Edge Cloud Management

 Use Cases

Edge Cloud – Architectural Requirements

 Challenges:

 Virtualisation and interoperable application packaging

 Distributed delivery and orchestration of infrastructure and

application services

Edge Cloud – Architectural Requirements

 Classify distributed clouds into three architectural models:

 Multi-datacentre clouds with multiple, tightly coupled data

centers under control of the same provider.

 Loosely coupled multi-service clouds combine services

from different cloud providers.

 Decentralized edge clouds utilize edge resources to provide

data / compute resources in a highly dispersed manner

 Needs infrastructure and application services to be placed

at source of data

Edge Cloud – Architectural Requirements

Core
Cloud

Core
Cloud

Edge
Cloud

Edge
Cloud

Edge
Cloud

Edge
Cloud

Core
Cloud

 Infrastructure Support:
 Location awareness, computation placement, local replication/recovery

 Packaging, deployment, orchestration

 Data transfer between virtualised resources

Edge Cloud – Architectural Requirements

 Development support for these architectures

 supported through orchestration based on topology patterns +
orchestration plans

 reflecting common and reference architectures

 Application packaging through containerisation:

 Containers to distribute service and applications to the edge

 Docker has been used to do this

 Programmability:

 Orchestration support through topology specification

 TOSCA topology patterns

 Service orchestration needs to cover whole life-cycle

 deploy, patch, shutdown

 Operations are mapped to cloud infrastructure management

 TOSCA engine runs on top of edge cloud infrastructure

Virtualisation and Containers

 VM instances: full guest OS images – large files

 Space and time constraints

Virtualisation and Containers

Hardware

Host OS

Container Engine

Bins/LibsContainer

Bins/Libs

App App

Container

App App

Hardware

Hypervisor/Host OS

VM

Bins/Libs

App App

Guest OS

VM

Bins/Libs

App App

Guest OS

 Containers

 Packages, self-contained, ready-to-deploy set of parts of applications

 In the form of binaries and libraries to run applications

Virtualisation and Containers

 Recent Linux distributions - Linux container project LXC
 kernel mechanisms to isolate processes on shared operating system

 Mechanisms: namespaces and cgroups

 Namespace isolation
 allows groups of processes to be separated

 different namespaces for process isolation, access to inter-process
communication, mount-points, for isolating kernel and version
identifiers

 cgroups (control groups)
 manage and limit resource access for process groups

 enables better isolation between isolated applications on a host

 restricts containers in multi-tenant host environments

 cgroups allow sharing hardware resources between containers
 if required, setting up limits and constraints

Virtualisation and Containers

 Boot process:

 traditional Linux boot: kernel mounts root FS as read-

only, then switches rootfs volume to read-write mode

 Docker mounts the rootfs as read-only, but instead of

changing FS to read-write mode, it uses a union mount

to add a writable file system on top

 Mounting (union mount):

 allows multiple read-only FS to be stacked on top of

each other

 can create new images by building on top of base images

 each of these FS layers is a separate image loaded by the

container engine for execution.

 Container:

 only the top layer (container) is writable

 container can have state and is executable - directory for

everything

rootfs

Linux Kernel

cgroups
name-

spaces

layer

FS

Images

Base Image (Ubuntu)

Image (Emacs)

Image (Apache)

Writable Container

Virtualisation and Containers

Container-based Application Architecture – Scenarios:

 Container solution:

 Repositories

 API: create, define, compose, distribution

 Storage and network functions:

 shared volumes, links for data transfer

Container

Load

Balan

cer

Container

Bins/Libs

App

Container

Bins/Libs

App App

Container

App AppApp

Auto

scale

App

Database

PaaS Clouds and Containerisation

 PaaS:

 Built farms

 Routing layers

 Schedulers to dispatch workloads

PaaS Clouds and Containerisation

 Evolution of PaaS:

 first PaaS generation:

 classical fixed proprietary platforms

 such as Azure or Heroku.

 second PaaS generation:

 open-source solutions such as Cloud Foundry or OpenShift

 allow users to run their own PaaS (on-premise or in the cloud)

 already with a built-in support of containers.

 Openshift moves from own container model to Docker model

 Cloud Foundry does as well through its internal Diego solution

 third PaaS generation:

 Dawn, Deis, Flynn, Octohost and Tsuru,

 built on Docker from scratch

 deployable on own servers or on public IaaS clouds

 Clustered, distributed architecture management

PaaS Clouds and Containerisation

 Microservices architectural style

 developing a single application as a suite of small services

 each running in its own process and lightweight communication

 Microservices are

 independently deployable

 supported by automated deployment and orchestration

 They require

 ability to deploy often and independently at arbitrary schedules

 Microservice dev/arch concerns are PaaS concerns

 Containerisation provides ideal mechanism for flexible
deployment schedules and orchestration needs

 particularly, if these are to be PaaS-provisioned

Clustering and Distribution

 Cluster architecture:

 Multiple clusters in multiple clouds

Clustering and Distribution

Container clusters

Cluster

Host nodeHost node

Host node Host node

Container

Container

Container

Container

Service ContainerContainer

Service
Container

Container

Volume

Volume

Link

mounted

 Features:

 Failover

 Load

balancing

 Scalability

 API:
 Platform

service mgmt

 Lifecycle
mgmt

 Cluster head
node

Clustering and Distribution

 Requirements for a lightweight virtualised cluster

architecture :

 Hosting containerised services

 Providing secure communication between these services

 Auto-scalability and load balancing support

 Distributed and scalable service discovery and orchestration

 Transfer/migration of service deployments between clusters

 Tools:

 Mesos and Kubernetes …

Clustering and Orchestration

 Cluster architecture:

 Interoperable orchestration

Clustering and Distribution

 TOSCA supports a number of
features:

 interoperable description of
application & infrastructure
services

 here implemented as containers
hosted on nodes in an edge cloud,

 relationships between parts of
the service

 here service compositions and
links as relationships,

 operational behaviour of the
services in an orchestration plan

 such as deploy, patch or shutdown

TOSCA for Container Orchestration

 Needed: a TOSCA-based modelling language

 To describe the features of a container in abstract terms

 to compose multiple containers to build an application

 to orchestrate the deployment and management of multi-

container applications in distributed clusters

 Specifically:

 Need: manage applications over multiple and heterogeneous

clouds,

 Solution: services have to be described and orchestrated in a

standardized fashion

Clustering and Distribution

Orchestration and Topology

Cluster TOSCA

Topology Template

Node Type

Host

node

Host node

Container

Container

Container

Relationship Type

Link /

Service

Orchestration Plan

Host

node

Cluster

Template

Host

node

Host

node

node

type

relationship

type

TOSCA Service Templates for Containers

[joint work with A. Brogi, J.Soldani @ University of Pisa]

Docker Orchestration Example

Container-based Edge Cloud Deployment

 Cluster architecture for edge cloud scenarios:

 Cloud deployment on resource-constrained devices

PaaS & Container Ecosystem

Beyond PaaS: Devices for the Edge Cloud

 Driver:

 Bring computation to the edge

 infrastructure + application services placed at source of data

 Assumption:

 Resource-constrained devices

 Capable of carrying out some remote calculations

 Solution

 Hardware: Raspberry Pi (or similar)

 Software/application packaging: Docker

 Cluster management: Kubernetes

 Orchestration: TOSCA

Raspberry Pi and Linux

 Raspberry Pi 2 Model B - second generation Raspberry Pi

 900MHz quad-core ARM Cortex-A7 CPU

 1GB RAM

Replaced the original Raspberry Pi 1 Model B+ in Feb’15.

 Processor: ARMv7 + 1GB

 can run the full range of ARM GNU/Linux distributions,

 support of Raspbian - a free operating system based on Debian

optimized for Raspberry Pi hardware

Docker on Raspberry Pi

From [https://blog.docker.com/2015/09/update-raspberry-pi-

dockercon-challenge/]

 Describes demo running 500 Docker

containers on a Raspberry Pi 2 device.

 As of now (?), the current record

stands at 2334 web servers running in

containers on a single Raspberry Pi 2.

https://blog.docker.com/2015/09/update-raspberry-pi-dockercon-challenge/

Sample configuration

 Resources:

 A RPi 2 has 1Gb of RAM (about 975 Mb available)

 Memory footprint of single web server outside a container is 0.3 Mb

 Can use ~700 Mb (2300 instances) for “real” processes,

 Leaves 300 Mb for the system and the Docker engine

 Specs for set-up:

 Raspberry Pi 2 (4x core, 1 GByte memory)

 Docker 1.8.1 (stock version, without any optimisations)

 Linux: Debian Wheezy (HypriotOS) with Kernel 3.18.11 (used for

DockerCon demo)

 Web server: Docker Image “hypriot/rpi-nano-httpd:minimal” (available

on Docker Hub)

Raspberry Pi – Cloud and Cluster

 University of Glasgow:
 https://raspberrypicloud.wordpress.com/blog/

 Glasgow Raspberry Pi Cloud (PiCloud)

 scale model of data centre (DC) composed of clusters of Raspberry Pi

 The Pi Cloud emulates all layers of a cloud stack

 ranging from resource virtualisation to network behaviour

 University of Bozen-Bolzano:
 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6735414

 The UniBZ Raspberry Pi cluster creates a small DC infrastructure

https://raspberrypicloud.wordpress.com/blog/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6735414

The University of Bozen-Bolzano (BZ)

Raspberry Pi Cluster

 Aim:

 small-scale cloud data centre for teaching /research purposes.

 Focus:

 particularly interested in mobility

 i.e., how to move clusters to locations where they are needed

 e.g. in difficult terrain or in emergency circumstances

 Architecture:

 300 nodes in star topology

BZ Raspberry Pi Cluster

 Architecture: 300 nodes

 Network topology: star

 Rack: bespoke

 Power Supply …

 OS Debian 7

 Cluster management
 Own solution

 Low-level cluster configuration,
monitoring, and maintenance:

 boot master

 register RPis

 could use Kubernetes in the future …

BZ RPi Cluster Management

 Cloud platform

 include centralized

management of:

 resource pool

 usage monitoring

 automated service

provision

 online access to

acquired resources

 focus resource

management:

 subcluster organization

 storage

Cluster orchestration

 The whole cluster is split into subclusters:

 allowing different users to run processes in parallel on different

parts of the infrastructure

 Orchestration:

 Static orchestration:

 At the moment a subcluster is composed of a predefined set of RPis.

 Dynamic orchestration:

 It is possible to move an RPi from one subcluster to another one

 We are working on a solution to make this switch dynamically:

 i.e., switch while the system is running

 without burdening the system’s resources too heavily

Cluster storage

 SD cards slow: use a network storage system

 to improve the performance of the overall system

 to make a common filesystem for the cluster available

 Implementation:

 a four-bay Network Attached Storage (NAS) from QNAP Systems,
allows us to replace the original firmware with a custom Debian image.

 This NAS forms part of the master node

 Inside the NAS:

 every subcluster has a dedicated volume managed by LVM (logical vol mngr)

 which is shared by all the RPis belonging to that subcluster

 The RPis mount a volume locally via Network File System (NFS) v.4

 we used NFS rather than iSCSI (Internet Small Computer System Interface)

 allows sharing of same volume between different nodes,

 thus making inter-node communication via file system possible

Kubernetes on Raspberry Pi 2’s

 https://raspberrypicloud.wordpress.com/2015/08/11/how-
to-kubernetes-multi-node-on-raspberry-pi-2s/

 Kubernetes is a powerful orchestration tool for containerised
applications across multiple hosts.

 Glasgow Cluster:

 Fully running implementation of

Kubernetes on Raspberry Pi 2

 Min config:

 2 Raspberry Pi 2s

 Two SD cards loaded with Arch Linux | ARM

https://raspberrypicloud.wordpress.com/2015/08/11/how-to-kubernetes-multi-node-on-raspberry-pi-2s/

Edge Cluster Management Implementation

 Architecture

 Data and Software Management

Technology Stack

PaaS

TCP Sockets

REST API

Storm

Data Management Software Management

Applications

REST API

Device Layer

Service Layer

Application

Layer

Web Sockets

HTTP

Edge

/

IoT

Developer Portal

Orchestration

Entities

 Edge Object (EO) – Cloud Object (CO) – Data/Software

Processing (DSP)

40

Edge Objects

DSPs

Management Architecture

41

Configuration based on ServIoTicy

42

DSP

Aggregate

Filter

(rssi < -70dBm)

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

Configuration based on ServIoTicy

43

DSP

Aggregate

Filter

(rssi < -70dBm)

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

EO

WO Discovered

BLE

devices

Central Cloud

Use Cases - Requirements

Use Cases

 Smart City
 Traffic management

 Cameras

 Sensor coordination

 Space occupancy

 Smart Area
 Tourism

 Sensor management: temperature, people counters

 Agriculture
 Sensors and actuators: sun/precipitation -> irrigation

 Technology:
 Web objects

 HTTP-enabled devices

 connect to edge clouds DC or cloudlets (e.g. containers on Raspb Pi)

Requirements for use cases

 Why Docker/Kubernetes on Raspberry Pi:

 Need full data centre (DC) capabilities

 Need easy orchestration

 Need portability / interoperability

 Meets requirements of Edge Cloud architectures

Conclusions

Conclusions

 Edge clouds move the focus from heavy-weight data

centre clouds to more lightweight virtualised resources

 Use emerging container technology and container cluster

management for edge clouds

 Some PaaS have started to address limitations in the context of

programming (orchestration) and DevOps for clusters.

 Observation: cloud management platforms are still at an

earlier stage than the container platforms they build on

 Container technology has the potential to

 advance PaaS technology towards distributed heterogeneous

clouds

 through lightweightness and interoperability

Thank you!

Claus.Pahl@unibz.it

