s

mailto:rossano.venturini@gmail.com

Rust: Why?

= Modern tools
" cargo add, cargo fmt, cargo clippy, cargo test, cargo doc,...
= Modern language
= [terators, combinators, pattern matching, ...
= Efficiency
= Performance comparable to C/C++
= Zero-cost abstractions
= Safety
= Memory safety without a garbage collector
= Most common pitfalls (null pointers, buffer overflows) are impossible
= (Usually) if it compiles, it works!
= Concurrency

= Fearless concurrency with message passing, ownership, and data race prevention

Cargo new

$ cargo new my_project

Creating binary (application) "my_project' package
note: see more 'Cargo.toml’ keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

A folder is created with a template project.

$ cd my_project
$ cargo run

Compiling m v@.1.0 (/Users/rossanoventurini/Library/CloudStorage/Dropbox/myPaper/Teaching/RustIntro/m)
Finished ‘dev’ profile [unoptimized + debuginfo] target(s) in ©.59s

Running ‘target/debug/m’
Hello, world!

Use an external library

cargo add rand

You can now immediately use the external library in your code.

use rand: :Rng;

fn main() {
let mut rng = rand::thread_rng();
let n: u32 = rng.gen_range(l..101);
println!("Random number: {}", n);

cargo run

Compiling rand_chacha v0.3.1
Compiling rand v0.8.5
Compiling m v0.1.0 (/Users/rossanoventurini/Library/CloudStorage/Dropbox/myPaper/Teaching/RustIntro/m)
Finished ‘dev’ profile [unoptimized + debuginfo] target(s) in 3.49s
Running “target/debug/m’
Random number: 49

Testing

pub fn add(left: usize, right: usize) -> usize {
left + right

#[cfg(test)]
mod tests {
use super::¥*;

#[test]]
fn test_sum() {

let result = add(2, 2);
assert_eq!(result, 4);

$ cargo test

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; O ignored; O measured; @ filtered out; finished in 0.00s

Testing and Documentation

/// Adds two ‘usize' numbers and returns the result.

/17

/// # Examples

/17

/1]

/// let result = my_crate::add(2, 3);

/// assert_eq!(result, 5);

/1]

pub fn add(left: usize, right: usize) -> usize {
left + right

#[cfg(test)]
mod tests {
use super::¥*;

#[test]

fn test_sum() {
let result = add(2, 2);
assert_eq!(result, 4);

cargo test checks also the code in the documentation. This forces to keep the documentation updated.

Automatic Code Formatting with cargo fmt

= Unformatted Code:

fn main() {
let x= 42;println!("Value: {}", x);}

= Run cargo fmt :

$ cargo fmt

= Formatted Code:

fn main() {
let x = 42;
println!("Value: {}", x);
)

Improving Code Quality with cargo clippy

= Code with a naked loop:

fn main() {
let vec = vec![1, 2, 3, 4, 5];
let mut sum = 0;

for i in @..vec.len() {
sum += vec[i];
J
println!("Sum: {}", sum);
J

= Run cargo clippy for suggestions:

warning: the loop variable "i’ is only used to index ‘vec®
--> src/main.rs:5:11
|
5 | for i in @..vec.len() {
I
help: consider using an iterator
|

5 | for <item> in &vec {

Why Rust is Safe

= Type System

= Strong, static typing catches many errors at compile time.

= Lifetimes manage the scope and duration of references, ensuring memory safety.

= No Null or Undefined Behavior

= Rust avoids common pitfalls like null pointer dereferencing with its Option and Result types.

= Ownership System

= Rust’s unique ownership model ensures memory safety without a garbage collector.

= Borrowing and References

= Borrowing ensures controlled access to memory.
= Rust enforces strict rules on borrowing, preventing dangling pointers and data races.

= Only one mutable reference at a time or multiple immutable references.

Uninitialized Variables

#include <iostream
using namespace std;
int main() {

int x;

cout << x << end;

by

$ g++ uv.cpp -o uv

$./uv

0%

Uninitialized Variables

fn main() {
let x: 132;
println! ("{x3}");

$ cargo build

--> src/main.rs:3:15

2 let x: 132;
3 println!("{x3}");

[
[
| - binding declared here but left uninitialized
I
[

AAN T x® used here but it isn't initialized

Dangling Pointers 1/2

#include <iostream
using namespace std;
int* £0) {

int x = 10;
return &x;

int main() {
int* x = £0);
cout << *x << endl;;

$ g++ dangling.cpp -o dangling

dangling.cpp:5:10: warning: address of stack memory associated with local variable 'x' returned [-Wreturn-stack-address’
return &x;

$./dangling

10

Dangling Pointers 1/2

fn £ -> &i32 {
let x = 10;
&x

fn main() {
let x = £();
println! ("{*x3}");

$ cargo build

error[E@515]: cannot return reference to local variable "x°
--> src/main.rs:4:2
I
4 | &x
| AN returns a reference to data owned by the current function

Dangling Pointers 2/2

#include <iostream
#include <vector

using namespace std;

int main() {
vector<int> v;
v.push_back(42);
int* x = v.data();

v.push_back(20);
cout << *x << endl;

$ g++ free.cpp -o free

$./dangling

-1298153424

Dangling Pointers 2/2

fn main() {
let mut v = Vec::new();
v.push(42);
let x = &v[0@];
v.push(20);

println!("{}", x);

$ cargo build

error[EQ5027]: cannot borrow ‘v’ as mutable because it is also borrowed as immutable
--> src/main.rs:5:5

I
4 | let x = &v[0];

| - immutable borrow occurs here
5 | v.push(20);

| AANNAANAAN mutable borrow occurs here
6 | println!("{3}", X);

|

- immutable borrow later used here

Use-After-Free

#include <iostream
using namespace std;
int main() {

int* x = new int(10);

delete x;
std: :cout << *x;

$ g++ free.cpp -o free

$./free

0%

Use-After-Free

fn main() {
let x = Box::new(10);
drop(x);
println! ("{3}", *x);

3

$ cargo build

error[E@3827: borrow of moved value: "X’
--> src/main.rs:4:20

|

| let x = Box::new(10);

| - move occurs because X' has type 'Box<i32>", which does not implement the "Copy trait
3 | drop(x);

| - value moved here

| println!("{}", *x);

| AN value borrowed here after move

Out-of-Bounds Access

#include <iostream
using namespace std;
int main() {

vector<int> v = {1, 2, 3};
cout << v[5];

$ g++ -std=c++11 oob.cpp -0 oob

$./oob

0%

Out-of-Bounds Access

fn main() {
let v = vec![1, 2, 3];
println!("{}", v[51);

$ cargo build

$./target/debug/oop

thread 'main' panicked at src/main.rs:3:21:
index out of bounds: the len is 3 but the index is 5

Data Races in Multithreading

#include <iostream
#include <thread

using namespace std;

int main() {

int x = 9;
std: :thread t1([&]() { x++; });
std: :thread t2([&]() { x++; });

tl.join();
t2.join(); // Wait for both threads to complete

cout << x << endl; // Potential undefined behavior

$ g++ -std=c++11 mt.cpp -o mt

$./mt

Data Races in Multithreading

fn main() {
let mut x = 0;
let tl = thread::spawn(|| { x += 1; }); // Error: 'x cannot be borrowed mutably in multiple threads
let t2 = thread::spawn(|| { x += 1; });
tl.join().unwrap();
t2.join().unwrap();

$ cargo build

error[EQ4997]: cannot borrow ‘X as mutable more than once at a time
--> src/main.rs:8:28

5 | let tl = thread::spawn(|| {
| = -- first mutable borrow occurs here
| |
6 | | X += 13
|] - first borrow occurs due to use of 'x° in closure
7 1 | }); // Error: 'x' cannot be borrowed mutably in mult...
[- argument requires that 'x ' is borrowed for " 'static®
8 | let t2 = thread::spawn(|| {
| AN second mutable borrow occurs here
9 | X += 1;
|

- second borrow occurs due to use of “x° in closure

L.earn More

= The Rust Programming Language: The Book!

= Let’s Get Rusty: Video Lectures based on the book

= Rustlings: Exercises to familiarize with syntax

m List of Resources to Learn Rust

https://doc.rust-lang.org/book/
https://www.youtube.com/playlist?list=PLai5B987bZ9CoVR-QEIN9foz4QCJ0H2Y8
https://github.com/rust-lang/rustlings
https://github.com/ImplFerris/LearnRust

Slides

= Basic Syntax

= Ownership and References

https://teach-rs.trifectatech.org/full/basic-syntax.html
https://teach-rs.trifectatech.org/full/advanced-syntax.html
https://teach-rs.trifectatech.org/full/advanced-syntax.html
https://teach-rs.trifectatech.org/full/traits-and-generics.html

