
JXTA v2.3.x:
Java™Programmer’s Guide

Apr 7, 2005
1 JXTA v2.3.x: Java Programmer’s Guide

© 2005 Sun Microsystems, Inc. All rights reserved.
Sun, Sun Microsystems, the Sun Logo, and Java are trademarks, registered trademarks, or service marks of Sun
Microsystems, Inc. in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc., in
the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company,
Ltd.

♺
Please
Recycle

2 JXTA v2.3.x: Java Programmer’s Guide

Table of Contents
Chapter 1: Introduction..6
Why JXTATM ?..6
What can be done with JXTATM Technology? ..7
Where to get the JXTATMtechnology..8
Getting Involved..8

Chapter 2: JXTATMArchitecture..9
Overview...9
JXTAComponents..10
Key aspects of the JXTAarchitecture...10

Chapter 3: JXTAConcepts...11
Peers..11
Peer Groups...11
Network Services ...13
Modules...13
Pipes..14
Bidirectional reliable communication channels (JxtaSocket, and JxtaBiDiPipe)........16
Messages...17
Advertisements..18

Security..19
Security...19
IDs...20

Chapter 4: Network Architecture...21
Network Organization...21
Shared Resource Distributed Index (SRDI)..22
Queries..23

Firewalls and NAT..24
Chapter 5: JXTAProtocols..26
Peer Discovery Protocol..27
Peer Information Protocol...27
Peer Resolver Protocol..27
Pipe Binding Protocol...28
Endpoint Routing Protocol..28
Rendezvous Protocol...29

Chapter 6: Hello World Example...30
Getting Started..30
Accessing On-line Documentation ...30
Downloading Binaries...30
Compiling JXTACode..31
Configuration..32
HelloWorld Example..34
Running the Hello World Example...35
Source Code: SimpleJxtaApp...37

Chapter 7: Programming with JXTA...38
Peer Discovery..38

3 JXTA v2.3.x: Java Programmer’s Guide

Discovery Service...38
DiscoveryDemo..39
Source Code: DiscoveryDemo...42

Peer Group Discovery...44
Source Code: GroupDiscoveryDemo...46

Creating Peer Groups and Publishing Advertisements...49
groupsInLocalCache()..49
createGroup()..50
Source Code: PublishDemo..51

Joining a Peer Group...54
Membership Service...54
createGroup()..55
joinGroup()...55
Source Code: JoinDemo...57

Sending Messages Between Two Peers...60
JXTAPipe Service..60
PipeListener..61
pipeMsgEvent()..62
Source Code: PipeListener...63
PipeExample...67
outputPipeEvent() ..67
rendezvousEvent()..68
Source Code: PipeExample..69
examplepipe.adv...73

Using a JxtaBiDiPipe (A bidirectional reliable pipe)..74
JxtaBiDiPipe...74
JxtaServerPipeExample..75
Source Code: JxtaServerPipeExample...76
Example pipe advertisement: pipe.adv...81
JxtaBidiPipeExample...82
Source Code: JxtaBidiPipeExample...83

Using JxtaSockets (bidirectional reliable pipes with java.net.Socket interface)..........89
JxtaServerSocketExample..90
Source Code: JxtaServerSocketExample..91
Example pipe advertisement: socket.adv..95
JxtaSocketExample...96
Source Code: JxtaSocketExample..97

JXTAServices...103
Creating a JXTAService..104
Server..106
readMessages()...107
Source Code: Server...109
Example Service Advertisement:..114
Client..115
Source Code: Client..117

4 JXTA v2.3.x: Java Programmer’s Guide

The constructor method SecurePeerGroup()..122
createPeerGroup()...122
createPasswdMembershipPeerGroupModuleImplAdv ().......................................123
createPeerGroupAdvertisement()...124
discoverPeerGroup()...125
joinPeerGroup()..125
completeAuth()...125
Source Code: SecurePeerGroup...127

Chapter 8: References..139
Glossary...140
Troubleshooting...145
Errors compiling JXTAapplications...145
Errors running JXTAapplications...145
Unable to discover JXTA peers..145

Using the JXTAShell..145
Starting from a clean state...146
Displaying additional log information..146
Removing User name or Password...147

5 JXTA v2.3.x: Java Programmer’s Guide

Chapter 1: Introduction
JXTATM is a set of open, generalized peer-to-peer (P2P) protocols that allow any connected device on the
network — from cell phone to PDA, from PC to server — to communicate and collaborate as peers. The JXTA
protocols are independent of any programming language, and multiple implementations (called bindings in
JXTA) exist for different environments. This document specifically discusses the JXTAbinding on the Java™ 2
Platform, Standard Edition software (J2SE™).
This document is intended for software developers who would like to write and deploy P2P services and
applications using the Java programming language and JXTAtechnology. It provides an introduction to the
JXTAtechnology, describes the JXTAnetwork architecture and key concepts, and includes examples and
discussion of essential programming constructs using the JXTA platform J2SE binding.

Why JXTATM ?
As the Web continues to grow in both content and the number of connected devices, peer-to-peer computing is
becoming increasingly popular. Popular software based on P2P technologies includes file sharing, distributed
computing, and instant messenger services. While each of these applications performs different tasks, they all
share many of the same properties, such as discovery of peers, searching, and file or data transfer. Currently,
application development is inefficient, with developers solving the same problems and duplicating similar
infrastructure implementation. And, most applications are specific to a single platform and are unable to
communicate and share data with other applications.
One primary goal of JXTAis to provide a platform with the basic functions necessary for a P2P network. In
addition, JXTA technology seeks to overcome potential shortcomings in many of the existing P2P systems:

• One primary goal of JXTAis to provide a platform with the basic functions necessary for a P2P
network. In addition, JXTAtechnology seeks to overcome potential shortcomings in many of the
existing P2P systems:

• Interoperability— JXTA technology is designed to enable peers providing various P2P services to
locate each other and communicate with each other.

• Platform independence— JXTAtechnology is designed to be independent of programming
languages, transport protocols, and deployment platforms.

Ubiquity— JXTA technology is designed to be accessible by any device with a digital heartbeat, not just
PCs or a specific deployment platform.

One common characteristic of peers in a P2P network is that they often exist on the edge of the regular network.
Because they are subject to unpredictable connectivity with potentially variable network addresses, they are
outside the standard scope of DNS. JXTA accommodates peers on the edge of the network by providing a system
for uniquely addressing peers that is independent of traditional name services. Through the use of JXTAIDs, a
peer can wander across networks, changing transports and network addresses, even being temporarily
disconnected, and still be addressable by other peers.

6 JXTA v2.3.x: Java Programmer’s Guide

What is JXTATM?
JXTAis an open network computing platform designed for peer-to-peer (P2P) computing. Its goal is to develop
basic building blocks and services to enable innovative applications for peer groups.
The term “JXTA” is short for juxtapose, as in side by side. It is a recognition that P2P is juxtaposed to client-
server or Web-based computing, which is today’s traditional distributed computing model.
JXTAprovides a common set of open protocols and an open source reference implementation for developing
peer- to-peer applications. The JXTA protocols standardize the manner in which peers:

• Discover each other
• Self-organize into peer groups
• Advertise and discover network services
• Communicate with each other
• Monitor each other

The JXTAprotocols are designed to be independent of programming languages, and independent of transport
protocols. The protocols can be implemented in the Java programming language, C/C++, Perl, and numerous
other languages. They can be implemented on top of TCP/IP, HTTP,Bluetooth, HomePNA, or other transport
protocols.

What can be done with JXTATM Technology?
The JXTAprotocols enable developers to build and deploy interoperable P2P services and applications. Because
the protocols are independent of both programming language and transport protocols, heterogeneous devices
with completely different software stacks can interoperate with one another. Using JXTAtechnology, developers
can write networked, interoperable applications that can:

• Find other peers on the network with dynamic discovery across firewalls
• Easily share documents with anyone across the network
• Find up to the minute content at network sites
• Create a group of peers that provide a service
• Monitor peer activities remotely
• Securely communicate with other peers on the network

7 JXTA v2.3.x: Java Programmer’s Guide

Where to get the JXTATM technology
Information on JXTA technology can be found at the JXTAWeb site http://www.jxta.org. This Web site contains
project information, developer resources, and documentation. Source code, binaries, documentation, and
tutorials are all available for download.

Getting Involved
As with any open source project, a primary goal is to get the community involved by contributing to JXTA. Two
suggestions for getting started include joining a JXTAmailing list and chatting with other JXTAtechnology
enthusiasts.

• Join a mailing list
Join the mailing lists to post general feedback, feature requests, and requests for help. See the mailing
lists page http://www.jxta.org/maillist.html for details on how to subscribe.
Current mailing lists include:

• discuss@jxta.org— topics related to JXTAtechnology and the community
• announce@jxta.org— JXTA announcements and general information
• dev@jxta.org— technical issues for developers
• user@jxta.org— issues for new JXTAdevelopers and users
• guide@jxta.org — technical issues regarding this guide for developers and users

• Chat with other JXTA enthusiasts
You can chat with other JXTAusers and contributors using the myJXTA2 application which can be
downloaded at:

http://download.jxta.org/easyinstall/install.html.
The demonstration application is available for the following platforms: Microsoft Windows, Solaris™
Operating Environment, Linux, UNIX, Mac OS X, and other Java technology enabled platforms

As you gain experience working with the JXTAtechnology, you can continue to contribute by filing bug
reports, writing or extending tutorials, contributing to existing projects, and proposing new projects.

8 JXTA v2.3.x: Java Programmer’s Guide

Chapter 2: JXTATMArchitecture
Overview

The JXTA software architecture is divided into three layers, as shown in .

9 JXTA v2.3.x: Java Programmer’s Guide

Peers on the Expanded Web

Platform Layer (JXTA Core)
The platform layer, also known as the JXTAcore, encapsulates minimal and essential primitives that
are common to P2P networking. It includes building blocks to enable key mechanisms for P2P
applications, including discovery, transport (including firewall handling), the creation of peers and peer
groups, and associated security primitives.

• Services Layer
The services layer includes network services that may not be absolutely necessary for a P2P network to
operate, but are common or desirable in the P2P environment. Examples of network services include
searching and indexing, directory, storage systems, file sharing, distributed file systems, resource
aggregation and renting, protocol translation, authentication, and PKI (Public Key Infrastructure)
services.

• Applications Layer
The applications layer includes implementation of integrated applications, such as P2P instant
messaging, document and resource sharing, entertainment content management and delivery, P2P E-
mail systems, distributed auction systems, and many others.

The boundary between services and applications is not rigid. An application to one customer can be viewed as a
service to another customer. The entire system is designed to be modular, allowing developers to pick and
choose a collection of services and applications that suits their needs.

JXTAComponents
The JXTAnetwork consists of a series of interconnected nodes, or peers. Peers can self-organize into peer
groups, which provide a common set of services. Examples of services that could be provided by a peer group
include document sharing or chat applications.
JXTApeers advertise their services in XML documents called advertisements. Advertisements enable other peers
on the network to learn how to connect to, and interact with, a peer’s services.
JXTApeers use pipes to send messages to one another. Pipes are an asynchronous and unidirectional message
transfer mechanism used for service communication. Messages are simple XML documents whose envelope
contains routing, digest, and credential information. Pipes are bound to specific endpoints, such as a TCP port
and associated IP address.
These concepts are described in detail in the following chapters.

Key aspects of the JXTA architecture
Three essential aspects of the JXTAarchitecture distinguish it from other distributed network models:

• The use of XML documents (advertisements) to describe network resources.
• Abstraction of pipes to peers, and peers to endpoints without reliance upon a central naming/

addressing authority such as DNS.
• A uniform peer addressing scheme (peer IDs).

10 JXTA v2.3.x: Java Programmer’s Guide

Chapter 3: JXTAConcepts
This chapter defines key JXTA terminology and describes the primary components of the JXTAplatform.

Peers
A peer is any networked device that implements one or more of the JXTAprotocols. Peers can include sensors,
phones, and PDAs, as well as PCs, servers, and supercomputers. Each peer operates independently and
asynchronously from all other peers, and is uniquely identified by a Peer ID.
Peers publish one or more network interfaces for use with the JXTA protocols. Each published interface is
advertised as a peer endpoint, which uniquely identifies the network interface. Peer endpoints are used by peers
to establish direct point-to-point connections between two peers.
Peers are not required to have direct point-to-point network connections between themselves. Intermediary peers
may be used to route messages to peers that are separated due to physical network connections or network
configuration (e.g., NATS, firewalls, proxies).
Peers are typically configured to spontaneously discover each other on the network to form transient or persistent
relationships called peer groups.

Peer Groups
A peer group is a collection of peers that have agreed upon a common set of services. Peers self-organize into
peer groups, each identified by a unique peer group ID. Each peer group can establish its own membership
policy from open (anybody can join) to highly secure and protected (sufficient credentials are required to join).
Peers may belong to more than one peer group simultaneously. By default, the first group that is instantiated is
the Net Peer Group. All peers belong to the Net Peer Group. Peers may elect to join additional peer groups.
The JXTAprotocols describe how peers may publish, discover, join, and monitor peer groups; they do not
dictate when or why peer groups are created.

There are several motivations for creating peer groups:
• To create a secure environment
Groups create a local domain of control in which a specific security policy can be enforced. The
security policy may be as simple as a plain text user name/password exchange, or as sophisticated as
public key cryptography. Peer group boundaries permit member peers to access and publish protected
contents. Peer groups form logical regions whose boundaries limit access to the peer group resources.
• To create a scoping environment
Groups allow the establishment of a local domain of specialization. For example, peers may group
together to implement a document sharing network or a CPU sharing network. Peer groups serve to
subdivide the network into abstract regions providing an implicit scoping mechanism. Peer group
boundaries define the search scope when searching for a group’s content.
• To create a monitoring environment

11 JXTAv2.3.x: Java Programmer’s Guide

Peer groups permit peers to monitor a set of peers for any special purpose (e.g., heartbeat, traffic introspection, or
accountability).
Groups also form a hierarchical parent-child relationship, in which each group has single parent. Search requests
are propagated within the group. The advertisement for the group is published in the parent group in addition to
the group itself.
A peer group provides a set of services called peer group services. JXTAdefines a core set of peer group
services. Additional services can be developed for delivering specific services. In order for two peers to interact
via a service, they must both be part of the same peer group.
The core peer group services include the following:

• Discovery Service—The discovery service is used by peer members to search for peer group
resources, such as peers, peer groups, pipes and services.

• Membership Service—The membership service is used by current members to reject or accept a
new group membership application. Peers wishing to join a peer group must first locate a current
member, and then request to join. The application to join is either rejected or accepted by the
collective set of current members. The membership service may enforce a vote of peers or elect a
designated group representative to accept or reject new membership applications.

• Access Service—The access service is used to validate requests made by one peer to another. The
peer receiving the request provides the requesting peers credentials and information about the
request being made to determine if the access is permitted. [Note: not all actions within the peer
group need to be checked with the access service; only those actions which are limited to some
peers need to be checked.]

• Pipe Service—The pipe service is used to create and manage pipe connections between the peer
group members.

• Resolver Service—The resolver service is used to send generic query requests to other peers. Peers
can define and exchange queries to find any information that may be needed (e.g., the status of a
service or the state of a pipe endpoint).

• Monitoring Service—The monitoring service is used to allow one peer to monitor other members
of the same peer group.

Not all the above services must be implemented by every peer group. A peer group is free to implement only the
services it finds useful, and rely on the default net peer group to provide generic implementations of non-critical
core services.

12 JXTA v2.3.x: Java Programmer’s Guide

Network Services
Peers cooperate and communicate to publish, discover, and invoke network services. Peers can publish multiple
services. Peers discover network services via the Peer Discovery Protocol.
The JXTAprotocols recognize two levels of network services:

• Peer Services
A peer service is accessible only on the peer that is publishing that service. If that peer should fail, the
service also fails. Multiple instances of the service can be run on different peers, but each instance
publishes its own advertisement.

• Peer Group Services
A peer group service is composed of a collection of instances (potentially cooperating with each other)
of the service running on multiple members of the peer group. If any one peer fails, the collective peer
group service is not affected (assuming the service is still available from another peer member). Peer
group services are published as part of the peer group advertisement.

Services can be either pre-installed onto a peer or loaded from the network. In order to actually run a service, a
peer may have to locate an implementation suitable for the peer’s runtime environment. The process of finding,
downloading, and installing a service from the network is similar to performing a search on the Internet for a
Web page, retrieving the page, and then installing the required plug-in.

Modules
JXTAmodules are an abstraction used to represent any piece of "code" used to implement a behavior in the
JXTAworld. Network services are the most common example of behavior that can be instantiated on a peer. The
module abstraction does not specify what this "code" is: it can be a Java class, a Java jar, a dynamic library DLL,
a set of XMLmessages, or a script. The implementation of the module behavior is left to module implementors.
For instance, modules can be used to represent different implementations of a network service on different
platforms, such as the Java platform, Microsoft Windows, or the Solaris Operating Environment.
Modules provides a generic abstraction to allow a peer to instantiate a new behavior. As peers browse or join a
new peer group, they may find new behaviors that they may want to instantiate. For example, when joining a
peer group, a peer may have to learn a new search service that is only used in this peer group. In order to join
this group, the peer must instantiate this new search service. The module framework enables the representation
and advertisement of platform-independent behaviors, and allows peers to describe and instantiate any type of
implementation of a behavior. For example, a peer has the ability to instantiate either a Java or a C
implementation of the behavior.
The ability to describe and publish platform-independent behavior is essential to support peer groups composed
of heterogeneous peers. The module advertisements enable JXTApeers to describe a behavior in a platform-
independent manner. The JXTAplatform uses module advertisements to self-describe itself.

13 JXTA v2.3.x: Java Programmer’s Guide

The module abstraction includes a module class, module specification, and module implementation:
• Module Class

The module class is primarily used to advertise the existence of a behavior. The class definition
represents an expected behavior and an expected binding to support the module. Each module class is
identified by a unique ID, the ModuleClassID.

• Module Specification
The module specification is primarily used to access a module. It contains all the information necessary
to access or invoke the module. For instance, in the case of a service, the module specification may
contain a pipe advertisement to be used to communicate with the service.
Amodule specification is one approach to providing the functionality that a module class implies.
There can be multiple module specifications for a given module class. Each module specification is
identified by a unique ID, the ModuleSpecID. The ModuleSpecID contains the ModuleClass ID (i.e.,
the ModuleClassID is embedded in a ModuleSpecID), indicating the associated module class.
Amodule specification implies network compatibility.All implementations of a given module
specification must use the same protocols and are compatible, although they may be written in a
different language.

• Module Implementation
The module implementation is the implementation of a given module specification. There may be
multiple module implementations for a given module specification. Each module implementation
contains the ModuleSpecID of the associated specification it implements.

Modules are used by peer groups services, and can also be used by stand-alone services. JXTAservices can use
the module abstraction to identify the existence of the service (its Module Class), the specification of the service
(its Module Specification), or an implementation of the service (a Module Implementation). Each of these
components has an associated advertisement, which can be published and discovered by other JXTA peers.
As an example, consider the JXTADiscovery Service. It has a unique ModuleClassID, identifying it as a
discovery service — its abstract functionality. There can be multiple specifications of the discovery service, each
possibly incompatible with each other. One may use different strategies tailored to the size of the group and its
dispersion across the network, while another experiments with new strategies. Each specification has a unique
ModuleSpecID, which references the discovery service ModuleClassID. For each specification, there can be
multiple implementations, each of which contains the same ModuleSpecID.
In summary, there can be multiple specifications of a given module class, and each may be incompatible.
However, all implementations of any given specification are assumed to be compatible.

Pipes
JXTApeers use pipes to send messages to one another. Pipes are an asynchronous and unidirectional non reliable
(with the exception of unicast secure pipes) message transfer mechanism used for communication, and data
transfer. Pipes are indiscriminate; they support the transfer of any object, including binary code, data strings, and
Java technology-based objects.
The pipe endpoints are referred to as the input pipe (the receiving end) and the output pipe (the sending end).
Pipe endpoints are dynamically bound to peer endpoints at runtime. Peer endpoints correspond to available peer
network interfaces (e.g., a TCP port and associated IP address) that can be used to send and receive message.
JXTApipes can have endpoints that are connected to different peers at different times, or may not be connected
at all.

14 JXTA v2.3.x: Java Programmer’s Guide

Pipes are virtual communication channels and may connect peers that do not have a direct physical link. In this
case, one or more intermediary peer endpoints are used to relay messages between the two pipe endpoints.
Pipes offer two modes of communication, point-to-point and propagate, as seen in . The JXTA core also provides
secure unicast pipes, a secure variant of the point-to-point pipe.

• Point-to-point Pipes
A point-to-point pipe connects exactly two pipe endpoints together: an input pipe on one peer receives
messages sent from the output pipe of another peer, it is also possible for multiple peers to bind to a
single input pipe.

• Propagate Pipes
A propagate pipe connects one output pipe to multiple input pipes. Messages flow from the output pipe
(the propagation source) into the input pipes. All propagation is done within the scope of a peer group.
That is, the output pipe and all input pipes must belong to the same peer group.

• Secure Unicast Pipes
A secure unicast pipe is a type of point-to-point pipe that provides a secure, and reliable
communication channel.

15 JXTA v2.3.x: Java Programmer’s Guide

Bidirectional reliable communication channels (JxtaSocket, and JxtaBiDiPipe)
Since pipes provide unidirectional, unreliable communication channels, it is necessary to implement
bidirectional and reliable communication channels. The platform provides the following to address the level of
service quality required by applications :

• Reliability Library
• Ensures message sequencing
• Ensures delivery
• Exposes message, and stream interfaces

• JxtaSocket, JxtaServerSocket provides :
• Sub-class java.net.Socket, and java.net.ServerSocket respectively
• Built on top of pipes, endpoint messengers, and the reliability library
• Provides bidirectional and reliable communication channels
• Exposes stream based interface ala Socket
• Provides configurable internal buffering, and message chunking
• Does not implement the Nagels algorithm, therefore streams must be flushed as needed

• JxtaBiDiPipe, and JxtaServerPipe provides :
• Built on top of pipes, endpoint messengers, and the reliability library
• Provides bidirectional and reliable communication channels
• Exposes message based interface
• Provides no message chunking (applications need to ensure message size does not exceed

the platform message size limitation of 64K)
JxtaServerSocket, and JxtaServerPipe expose a input pipe to process connection requests, and negotiate
communication parameters, whereby JxtaSocket, and JxtaBiDpipe bind to respectively to establish private
dedicated pipes independent of the connection request pipe.

16 JXTA v2.3.x: Java Programmer’s Guide

Messages
Amessage is an object that is sent between JXTA peers; it is the basic unit of data exchange between peers.
Messages are sent and received by the Pipe Service and by the Endpoint Service. Typically, applications use the
Pipe Service to create, send, and receive messages. (In general, applications are not expected to need to use the
Endpoint Service directly. If, however, an application needs to understand or control the topology of the JXTA
network, the Endpoint Service can be used.)
Amessage is an ordered sequence of named and typed contents called message elements. Thus a message is
essentially a set of name/value pairs. The content can be an arbitrary type.
The JXTAprotocols are specified as a set of messages exchanged between peers. Each software platform binding
describes how a message is converted to and from a native data structure such as a Java technology object or a C
structure.
There are two representations for messages: XML and binary. The JXTA J2SE platform binding uses a binary
format envelop to encapsulate the message payload. Services can use the most appropriate format for that
transport (e.g., a service which requires a compact representation for a messages can use the binary
representation, while

17 JXTA v2.3.x: Java Programmer’s Guide

other services can use XML). Binary data may be encoded using a Base64 encoding scheme in the body of an
XMLmessage.

The use of XMLmessages to define protocols allows many different kinds of peers to participate in a protocol.
Because the data is tagged, each peer is free to implement the protocol in a manner best-suited to its abilities and
role. If a peer only needs some subset of the message, the XML data tags enable that peer to identify the parts of
the message that are of interest. For example, a peer that is highly constrained and has insufficient capacity to
process some or most of a message can use data tags to extract the parts that it can process, and can ignore the
remainder.

Advertisements
All JXTA network resources — such as peers, peer groups, pipes, and services — are represented by an
advertisement. Advertisements are language-neutral meta-data structures represented as XML documents. The
JXTAprotocols use advertisements to describe and publish the existence of a peer resources. Peers discover
resources by searching for their corresponding advertisements, and may cache any discovered advertisements
locally.
Each advertisement is published with a lifetime that specifies the availability of its associated resource. Lifetimes
enable the deletion of obsolete resources without requiring any centralized control. An advertisement can be
republished (before the original advertisement expires) to extend the lifetime of a resource.
The JXTAprotocols define the following advertisement types:

• Peer Advertisement— describes the peer resource. The primary use of this advertisement is to hold
specific information about the peer, such as its name, peer ID, available endpoints, and any run-time
attributes which individual group services want to publish (such as being a rendezvous peer for the
group).

• Peer Group Advertisement— describes peer group-specific resources, such as name, peer group ID,
description, specification, and service parameters.

• Pipe Advertisement— describes a pipe communication channel, and is used by the pipe service to
create the associated input and output pipe endpoints. Each pipe advertisement contains an optional
symbolic ID, a pipe type (point-to-point, propagate, secure, etc.) and a unique pipe ID.

• Module Class Advertisement— describes a module class. Its primary purpose is to formally
document the existence of a module class. It includes a name, description, and a unique ID
(ModuleClassID).

• Module Spec Advertisement — defines a module specification. Its main purpose is to provide
references to the documentation needed in order to create conforming implementations of that
specification. A secondary use is, optionally, to make running instances usable remotely, by
publishing information such as a pipe advertisement. It includes name, description, unique ID
(ModuleSpecID), pipe advertisement,and parameter field containing arbitrary parameters to be
interpreted by each implementation.

• Module Impl Advertisement — defines an implementation of a given module specification. It
includes name, associated ModuleSpecID, as well as code, package, and parameter fields which
enable a peer to retrieve data necessary to execute the implementation.

• Rendezvous Advertisement— describes a peer that acts as a rendezvous peer for a given peer group.

18 JXTA v2.3.x: Java Programmer’s Guide

• Peer Info Advertisement— describes the peer info resource. The primary use of this advertisement
is to hold specific information about the current state of a peer, such as uptime, inbound and
outbound message count, time last message received, and time last message sent.

Each advertisement is represented by an XML document. Advertisements are composed of a series of
hierarchically arranged elements. Each element can contain its data or additional elements. An element can also
have attributes. Attributes are name-value string pairs. An attribute is used to store meta-data, which helps to
describe the data within the element.

An example of a pipe advertisement is included in .

<?xml version="1.0"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>

urn:jxta:uuid-
59616261646162614E504720503250338E3E786229EA460DADC1A176B69B731504

</Id>
<Type>

JxtaUnicast
</Type>
<Name>

TestPipe.end1
</Name>

</jxta:PipeAdvertisement>

The complete specification of the JXTAadvertisements is given in the JXTA Protocols Specification. Services or
peer implementations may subtype any of the above advertisements to create their own advertisements.

Security
Dynamic P2P networks such as the JXTAnetwork need to support different levels of resource access. JXTA
peers operate in a role-based trust model, in which an individual peer acts under the authority granted to it by
another trusted peer to perform a particular task.
Five basic security requirements must be provided:

Figure 0Confidentiality— guarantees that the contents of a message are not disclosed to unauthorized
individuals.
Figure 1Authentication— guarantees that the sender is who he or she claims to be.
Figure 2Authorization— guarantees that the sender is authorized to send a message.
Figure 3Data integrity — guarantees that the message was not modified accidentally or deliberately in
transit.

Figure 4Refutability— guarantees that the message was transmitted by a properly identified sender and is
not a replay of a previously transmitted message.

19 JXTA v2.3.x: Java Programmer’s Guide

XMLmessages provide the ability to add meta-data such as credentials, certificates, digests, and public keys to
JXTAmessages, enabling these basic security requirements to be met. Message digests guarantee the data
integrity of messages. Messages may also be encrypted (using public keys) and signed (using certificates) for
confidentiality and refutability. Credentials can be used to provide message authentication and authorization.
A credential is a token that is used to identify a sender, and can be used to verify a sender’s right to send a
message to a specified endpoint. The credential is an opaque token that must be presented each time a message is
sent. The sending address placed in a JXTAmessage envelope is cross-checked with the sender’s identity in the
credential. Each credential’s implementation is specified as a plug-in configuration, which allows multiple
authentication configurations to co-exists on the same network.
It is the intent of the JXTA protocols to be compatible with widely accepted transport-layer security mechanisms
for message-based architectures, such as Secure Sockets Layer (SSL) and Internet Protocol Security (IPSec).
However, secure transport protocols such as SSL and IPSec only provide the integrity and confidentiality of
message transfer between two communicating peers. In order to provide secure transfer in a multi-hop network
like JXTA, a trust association must be established among all intermediary peers. Security is compromised if any
one of the communication links is not secured.

IDs
Peers, peer groups, pipes and other JXTAresources need to be uniquely identifiable. A JXTAID uniquely
identifies an entity and serves as a canonical way of referring to that entity. Currently, there are six types of
JXTAentities which have JXTA ID types defined: peers, peer group, pipes, contents, module classes, and
module specifications.
URNs are used to express JXTAIDs. URNs1 are a form of URI that “... are intended to serve as persistent,
location- independent, resource identifiers”. Like other forms of URI, JXTAIDs are presented as text.

An example JXTApeer ID is:
urn:jxta:uuid-

59616261646162614A78746150325033F3BC76FF13C2414CBC0AB663666DA53903

An example JXTApipe ID is:
urn:jxta:uuid-

59616261646162614E504720503250338E3E786229EA460DADC1A176B69B731504

Unique IDs are generated randomly by the JXTAJ2SE platform binding. There are two special reserved JXTA
IDs: the NULL ID and the Net Peer Group ID.

1 See IETF RFC 2141 for more information on URNs.

20 JXTA v2.3.x: Java Programmer’s Guide

Chapter 4: Network Architecture
Network Organization
The JXTAnetwork is an ad hoc, multi-hop, and adaptive network composed of connected peers. Connections in
the network may be transient, and message routing between peers is nondeterministic. Peers may join or leave
the network at any time, and routes may change frequently.
Peers may take any form as long as they can communicate using JXTA protocols. The organization of the
network is not mandated by the JXTAframework, but in practice four kinds of peers are typically used:

• Minimal edge peer
Aminimal edge peer can send and receive messages, but does not cache advertisements or route
messages for other peers. Peers on devices with limited resources (e.g., a PDA or cell phone) would
likely be minimal edge peers.

• Full-featured edge peer
A full-featured peer can send and receive messages, and will typically cache advertisements. A simple
peer replies to discovery requests with information found in its cached advertisements, but does not
forward any discovery requests. Most peers are likely to be edge peers.

• Rendezvous peer
A rendezvous peer is like any other peer, and maintains a cache of advertisements. However,
rendezvous peers also forward discovery requests to help other peers discover resources. When a peer
joins a peer group, it automatically seeks a rendezvous peer.2 If no rendezvous peer is found, it
dynamically becomes a rendezvous peer for that peer group. Each rendezvous peer maintains a list of
other known rendezvous peers and also the peers that are using it as a rendezvous.
Each peer group maintains its own set of rendezvous peers, and may have as many rendezvous peers as
needed. Only rendezvous peers that are a member of a peer group will see peer group specific search
requests.

Edge peers send search and discovery requests to rendezvous peers, which in turn forward requests they cannot
answer to other known rendezvous peers. The discovery process continues until one peer has the answer or the
request dies. Messages have a default time-to-live (TTL) of seven hops. Loopbacks are prevented by
maintaining the list of peers along the message path.

• Relay peer3

A relay peer maintains information about the routes to other peers and routes messages to peers. A peer
first looks in its local cache for route information. If it isn’t found, the peer sends queries to relay peers
asking for route information. Relay peers also forward messages on the behalf of peers that cannot

2 In the JXTA2.0 release, a peer will be connected to at most one rendezvous peer at any given time.

3 Relay peers were referred to as router peers in earlier documentation.

21 JXTA v2.3.x: Java Programmer’s Guide

directly address another peer (e.g., NAT environments), bridging different physical and/or logical networks
Any peer can implement the services required to be a relay or rendezvous peer. The relay and rendezvous
services can be implemented as a pair on the same peer.

Shared Resource Distributed Index (SRDI)
The JXTA2.0 J2SE platform supports a shared resource distributed index (SRDI) service to provide a more
efficient mechanism for propagating query requests within the JXTAnetwork. Rendezvous peers maintain an
index of advertisements published by edge peers. When edge peers publish new advertisements, they use the
SRDI service to push advertisement indices to their rendezvous. With this rendezvous-edge peer hierarchy,
queries are propagated between rendezvous only, which significantly reduces the number of peers involved in
the search for an advertisement.
Each rendezvous maintains its own list of known rendezvous in the peer group. A rendezvous may retrieve
rendezvous information from a pre-defined set of bootstrapping, or seeding, rendezvous. Rendezvous
periodically select a given random number of rendezvous peers and send them a random list of their known
rendezvous. Rendezvous also periodically purge non-responding rendezvous. Thus, they maintain a loosely-
consistent network of known rendezvous peers.
When a peer publishes a new advertisement, the advertisement is indexed by the SRDI service using keys such
as the advertisement name or ID. Only the indices of the advertisement are pushed to the rendezvous by SRDI,
minimizing the amount of data that needs to be stored on the rendezvous. The rendezvous also pushes the index
to additional rendezvous peers (selected by the calculation of a hash function of the advertisement index). 4

4 See JXTA: A Loosely-Consistent DHT Rendezvous Walker, a technical white paper by Bernard Traversat, Mohamed
Abdelaziz, and Eric Pouyoul, for more detailed information on the implementation.

22 JXTA v2.3.x: Java Programmer’s Guide

Queries
An example configuration is shown in . Peer A is an edge peer, and is configured to use Peer R1 as its
rendezvous. When Peer A initiates a discovery or search request, it is initially sent to its rendezvous peer — R1,
in this example — and also via multicast to other peers on the same subnet

.
Request propagation via rendezvous peers.

Local neighborhood queries (i.e., within a subnet) are propagated to neighboring peers using what a transport
defines as the broadcast or multicast method. Peers receiving the query respond directly to the requesting peer, if
they contain the information in their local cache.
Queries beyond the local neighborhood are sent to the connected rendezvous peer. The rendezvous peer attempts
to satisfy the query against its local cache. If it contains the requested information, it replies directly to the
requesting peer and does not further propagate the request. If it contains the index for the resource in its SRDI, it
will notify the peer that published the resource and that peer will respond directly to the requesting peer. (Recall
that the rendezvous stores only the index for the advertisement, and not the advertisement itself.)
If the rendezvous peer does not contain the requested information, a default limited-range walker algorithm is
used to walk the set of rendezvous looking for a rendezvous that contains the index. A hop count is used to
specify the maximum number of times the request can be forwarded. Once the query reaches the peer, it replies
directly to the originator of the query.
depicts a logical view of how the SRDI service works. Peer 2 publishes a new advertisement, and a SRDI
message is sent to its rendezvous, R3. Indices will be stored on R3, and may be pushed to other rendezvous in
the peer group. Now, Peer 1 sends a query request for this resource to its rendezvous, R1. Rendezvous R1 will
check its local cache of SRDI entries, and will propagate the query if it is not found. When the resource is
located on Peer 2, Peer 2 will respond directly to P1 with the requested advertisement.

23 JXTA v2.3.x: Java Programmer’s Guide

Inter net

JXTA Peerson local subnet

JXTA RDV R1

JXTA RDV JXTA Peer

JXTA RDV
(knowsR2andR3)

JXTA Peer
(usesR1)

A

request 1

Additional
rendezv ous
peers

Additional
rendezv ous
peers

request 2

request 3

request 3

R2

R3

request
(multicast)

Firewalls and NAT
A peer behind a firewall can send a message directly to a peer outside a firewall. But a peer outside the firewall
cannot establish a connection directly with a peer behind the firewall.
In order for JXTA peers to communicate with each other across a firewall, the following conditions must exist:

• At least one peer in the peer group inside the firewall must be aware of at least one peer outside of
the firewall.

• The peer inside and the peer outside the firewall must be aware of each other and must support
HTTP.

• The firewall has to allow HTTP data transfers.

24 JXTA v2.3.x: Java Programmer’s Guide

Figure 4-3 depicts a typical message routing scenario through a firewall. In this scenario, JXTA Peers A and B
want to pass a message, but the firewall prevents them from communicating directly. JXTA Peer A first makes a
connection to Peer C using a protocol such as HTTP that can penetrate the firewall. Peer C then makes a
connection to Peer B, using a protocol such as TCP/IP.A virtual connection is now made between Peers A and
B.

Figure 4-3 Message routing scenario across a firewall.

25 JXTA v2.3.x: Java Programmer’s Guide

Chapter 5: JXTA Protocols
JXTAdefines a series of XMLmessage formats, or protocols, for communication between peers. Peers use these
protocols to discover each other, advertise and discover network resources, and communication and route
messages.
There are six JXTAprotocols:

• Peer Discovery Protocol (PDP)— used by peers to advertise their own resources (e.g., peers, peer
groups, pipes, or services) and discover resources from other peers. Each peer resource is described
and published using an advertisement.

• Peer Information Protocol (PIP)— used by peers to obtain status information (uptime, state, recent
traffic, etc.) from other peers.

• Peer Resolver Protocol (PRP)— enables peers to send a generic query to one or more peers and
receive a response (or multiple responses) to the query. Queries can be directed to all peers in a peer
group or to specific peers within the group. Unlike PDP and PIP, which are used to query specific
pre- defined information, this protocol allows peer services to define and exchange any arbitrary
information they need.

• Pipe Binding Protocol (PBP)— used by peers to establish a virtual communication channel, or
pipe, between one or more peers. The PBP is used by a peer to bind two or more ends of the
connection (pipe endpoints).

• Endpoint Routing Protocol (ERP)— used by peers to find routes (paths) to destination ports on
other peers. Route information includes an ordered sequence of relay peer IDs that can be used to
send a message to the destination. (For example, the message can be delivered by sending it to Peer
A which relays it to Peer B which relays it to the final destination.)

• 5Rendezvous Protocol (RVP)—mechanism by which peers can subscribe or be a subscriber to a
propagation service. Within a peer group, peers can be rendezvous peers or peers that are listening
to rendezvous peers. the RVP allows a peer to send messages to all listening instances of the
service. The RVP is used by the Peer Resolver Protocol and the Pipe Binding Protocol to propagate
messages.

All JXTA protocols are asynchronous, and are based on a query/response model. A JXTApeer uses one of the
protocols to send a query to one or more peers in its peer group. It may receive zero, one, or more responses to
its query. For example, a peer may use PDP to send a discovery query asking for all known peers in the default
Net Peer Group. In this case, multiple peers will likely reply with discovery responses. In another example, a
peer may send a discovery request asking for a specific pipe named “aardvark”. If this pipe isn’t found, then zero
discovery responses will be sent in reply.
JXTApeers are not required to implement all six protocols; they only need implement the protocols they will
use. The current Project JXTAJ2SE platform binding supports all six JXTAprotocols. The Java programming
language API is used to access operations supported by these protocols, such as discovering peers or joining a
peer group.

5 For a complete description of the JXTA protocols, please see the JXTA Protocols Specification,
available for download from http://spec.jxta.org. This document is based on Revision 1.2.11 of the
specification.

26 JXTA v2.3.x: Java Programmer’s Guide

Peer Discovery Protocol
The Peer Discovery Protocol (PDP) is used to discover any published peer resources. Resources are represented
as advertisements. A resource can be a peer, peer group, pipe, service, or any other resource that has an
advertisement.
PDP enables a peer to find advertisements on other peers. The PDP is the default discovery protocol for all user
defined peer groups and the default net peer group. Custom discovery services may choose to leverage the PDP.
If a peer group does not have its own discovery service, the PDP is used to probe peers for advertisements.
There are multiple ways to discover distributed information. The current Project JXTA J2SE platform binding
uses a combination of IP multicast to the local subnet and the use of rendezvous peers, a technique based on
network- crawling. Rendezvous peers provide the mechanism of sending requests from one known peer to the
next (“crawling” around the network) to dynamically discover information. A peer may be pre-configured with a
pre-defined set of rendezvous peers. A peer may also choose to bootstrap itself by dynamically locating
rendezvous peers or network resources in its proximity environment.
Peers generate discovery query request messages to discover advertisements within a peer group. This message
contains the peer group credential of the probing peer and identifies the probing peer to the message recipient.
Messages can be sent to any peer within a region or to a rendezvous peer.
A peer may receive zero, one, or more responses to a discovery query request. The response message returns one
or more advertisements.

Peer Information Protocol
Once a peer is located, it capabilities and status may be queried. The Peer Information Protocol (PIP) provides a
set of messages to obtain peer status information. This information can be used for commercial or internal
deployment of JXTA applications. For example, in commercial deployments the information can be used to
determine the usage of a peer service and bill the service consumers for their use. In an internal IT deployment,
the information can be used by the IT department to monitor a node’s behavior and reroute network traffic to
improve overall performance. These hooks can be extended to provide the IT department control of the peer
node in addition to providing status information.
The PIP ping message is sent to a peer to check if the peer is alive and to get information about the peer. The
ping message specifies whether a full response (peer advertisement) or a simple acknowledgment (alive and
uptime) should be returned.
The PeerInfo message is used to send a message in response to a ping message. It contains the credential of the
sender, the source peer ID and target peer ID, uptime, and peer advertisement.

Peer Resolver Protocol
The Peer Resolver Protocol (PRP) enables peers to send generic query requests to other peers and identify
matching responses. Query requests can be sent to a specific peer, or can be propagated via the rendezvous
services within the scope of a peer group. The PRP uses the Rendezvous Service to disseminate a query to
multiple peers, and uses unicast messages to send queries to specified peers.
The PRP is a foundation protocol supporting generic query requests. Both PIP and PDP are built using PRP, and
provide specific query/requests: the PIP is used to query specific status information and PDP is used to discover
peer resources. The PRP can be used for any generic query that may be needed for an application. For example,
the PRP enables peers to define and exchange queries to find or search service information such as the state of
the service, the state of a pipe endpoint, etc.

27 JXTA v2.3.x: Java Programmer’s Guide

The resolver query message is used to send a resolver query request to a service on another member of a peer
group. The resolver query message contains the credential of the sender, a unique query ID, a specific service
handler, and the query. Each service can register a handler in the peer group resolver service to process resolver
query requests and generate replies. The resolver response message is used to send a message in response to a
resolver query message. The resolver response message contains the credential of the sender, a unique query ID,
a specific service handler and the response. Multiple resolver query messages may be sent. A peer may receive
zero, one, or more responses to a query request.
Peers may also participate in the Shared Resource Distributed Index (SRDI). SRDI provides a generic
mechanism, where JXTA services can utilize a distributed index of shared resources with other peers that are
grouped as a set of more capable peers such as rendezvous peers. These indices can be used to direct queries in
the direction where the query is most likely to be answered, and repropagate messages to peers interested in
these propagated messages. The PRP sends a resolver SRDI message to the named handler on one or more peers
in the peer group. The resolver SRDI message is sent to a specific handler, and it contains a string that will be
interpreted by the targeted handler.

Pipe Binding Protocol
The Pipe Binding Protocol (PBP) is used by peer group members to bind a pipe advertisement to a pipe
endpoint. The pipe virtual link (pathway) can be layered upon any number of physical network transport links
such as TCP/IP. Each end of the pipe works to maintain the virtual link and to re-establish it, if necessary, by
binding or finding the pipe’s currently bound endpoints.
A pipe can be viewed as an abstract named message queue, supporting create, open/resolve (bind), close
(unbind), delete, send, and receive operations. Actual pipe implementations may differ, but all compliant
implementations use PBP to bind the pipe to an endpoint. During the abstract create operation, a local peer binds
a pipe endpoint to a pipe transport.
The PBP query message is sent by a peer pipe endpoint to find a pipe endpoint bound to the same pipe
advertisement. The query message may ask for information not obtained from the cache. This is used to obtain
the most up- to-date information from a peer. The query message can also contain an optional peer ID, which if
present indicates that only the specified peer should respond to the query.
The PBP answer message is sent back to the requesting peer by each peer bound to the pipe. The message
contains the Pipe ID, the peer where a corresponding InputPipe has been created, and a boolean value indicating
whether the InputPipe exists on the specified peer.

Endpoint Routing Protocol
The Endpoint Routing Protocol (ERP) defines a set of request/query messages that are used to find routing
information. This route information is needed to send a message from one peer (the source) to another (the
destination). When a peer is asked to send a message to a given peer endpoint address, it first looks in its local
cache to determine if it has a route to this peer. If it does not find a route, it sends a route resolver query request
to its available peer relays asking for route information. When a peer relay receives a route query, it checks if
knows the route. If it does, it returns the route information as an enumeration of hops.
Any peer can query a peer relay for route information, and any peer in a peer group may become a relay. Peer
relays typically cache route information.
Route information includes the peer ID of the source, the peer ID of the destination, a time-to-live (TTL) for the
route, and an ordered sequence of gateway peer IDs. The sequence of peer IDs may not be complete, but should
contain at least the first relay.
Route query requests are sent by a peer to a peer relay to request route information. The query may indicate a
preference to bypass the cache content of the router and search dynamically for a new route.

28 JXTA v2.3.x: Java Programmer’s Guide

Route answer messages are sent by a relay peer in response to a route information requests. This message
contains the peer ID of the destination, the peer ID and peer advertisement of the router that knows a route to the
destination, and an ordered sequence of one or more relays.

Rendezvous Protocol
The Rendezvous Protocol (RVP) is responsible for propagating messages within a peer group. While different
peer groups may have different means to propagate messages, the Rendezvous Protocol defines a simple protocol
that allows:

• Peers to connect to service (be able to propagate messages and receive propagates messages)
• Control the propagation of the message (TTL, loopback detection, etc.).

The RVP is used by the Peer Resolver Protocol and by the Pipe Binding Protocol in order to propagate messages.

29 JXTA v2.3.x: Java Programmer’s Guide

Chapter 6: Hello World Example
This chapter discusses the steps required to run a simple "Hello World" example, including:

• System requirements
• Accessing the on-line documentation
• Downloading the Project JXTA binaries
• Compiling JXTAtechnology code
• Running JXTAtechnology application
• Configuring the JXTA environment

Getting Started
System Requirements
The current Project JXTA J2SE platform binding requires a platform that supports the Java Run-Time
Environment (JRE) or Software Development Kit (SDK) 1.4.1 release or later. This environment is currently
available on the Solaris Operating Environment, Microsoft Windows 95/98/2000/ME/NT 4.0, Linux, and Mac
OS X.
The J2SE platform JRE and SDK for Solaris SPARC/x86, Linux x86, and Microsoft Windows can be
downloaded from:
http://java.sun.com/j2se/downloads.html

Accessing On-line Documentation
On-line documentation for the Project JXTA source code is available using Javadoc software at:
http://platform.jxta.org/java/api/overview-summary.html

Downloading Binaries

Download the Companion Tutorial 2.x Programs 6 at http://www.jxta.org/ProgGuideExamples.zip. The
compressed archive contains all the JXTAplatform and supporting libraries, sources and binaries of the tutorials
covered in this guide, and run scripts.

You also may download the latest JXTA builds at http://download.jxta.org/index.html. There are two
types of project builds available:
Table 0Release Builds— the most recently saved stable build of the software; these are the best choice
for new JXTA users. Easy to use installers for these builds are available by following the link on the
Web page to the Project JXTAEasy Installers (http://download.jxta.org/index.html). These installers
provide an easy way to download JXTAonly (if you already have the JVM) or download both JXTA
and JVM in one convenient step.
Table 1Nightly Builds— the automated builds of the current "work in progress"; these builds are
provided for developer testing, and are not guaranteed to function correctly.
You can also download the Project JXTAsource code, and compile the various .jar files yourself.
Follow the directions on the Project JXTAWeb page to download the source code and then build the
binaries.

6 All of the covered tutorials are contained within the platform sources under
platform/www/java/tutorial/examples along with build tools.

30 JXTA v2.3.x: Java Programmer’s Guide

Compiling JXTACode
The application in this example, SimpleJxtaApp, requires the jxta.jar file for compilation.
When you run the Java compiler (javac7), you need to include the -classpath option specifying

the location of this.jar file. For example, users on the Window systems could use a command similar to , substituting the actual

location of thejxta.jar file on their system:

Example compilation command (Windows systems).

C:> javac -classpath .\lib\jxta.jar SimpleJxtaApp.java

Running JXTAApplications
When you enter the java8 command to run the application, you
need to include the -classpath option specifying the location of the required.jar files

(see). For example, users on Window systems could use a command similar to , substituting the actual location of their.jar files:

Example command to run application (Windows systems).

C:> java -classpath .\lib\jxta.jar;.\lib\log4j.jar;
.\lib\bcprov-jdk14.jar;. SimpleJxtaApp

Note – You may find it easiest to create a script or batch file containing the command to run your
application. This eliminates the need to type lengthy commands each time you want to run your
application.

7 Refer to your documentation for specific details on running the Java programming language compiler on your platform. Some compilers use the

-cp option to specify the classpath. Alternatively, you may choose to set theCLASSPATH environment variable, which has the

same effect as specifying the-classpath compilation option.

8 Again, see your Java documentation for specific details on running applications on your platform. Some environments use the

-cp option to specify the classpath. Alternatively, you may choose to set the CLASSPATH environment variable, which has the

same effect as specifying the -classpath command line option.

31 JXTA v2.3.x: Java Programmer’s Guide

Configuration

The are two modes of configuration a developer or user should consider :

1. Edge Peer
A peer which may or may not be behind a firewall or NAT (i.e. Directly adressable or not). It is
recommended that this class of peer should always be configured with TCP/IP enabled (both
incoming/outgoing, multicast on), and HTTP enabled outgoing only, it should also use a relay, and
a rendezvous. It is important to note that the JXTAplatform automatically determines whether
directs routes exists between peers, and will prefer such routes over relayed ones (hence the
recommeded configuration)

2. Rendezvous/Relay Peer
This class of peers is expected to provide infrastructure services and typically is directly reachable
on the internet. It is recommended that this class of peer should always be configured with TCP/IP
enabled (both incoming/outgoing, multicast on), and HTTP enabled incoming only, act as a relay,
and rendezvous.

The first time a JXTA technology application is run, an auto-configuration tool (JXTAConfigurator) is displayed
to configure the JXTAplatform for your network environment. This tool is used to specify configuration
information for TCP/IP and HTTP, configure rendezvous and relay peers, and enter a user name and password.
When the JXTA Configurator starts, it displays the Basic Settings panel (see). Additional panels are displayed
by selecting the tabs (Advanced, Rendezvous/Relay, Security) at the top of the panel.

• Basic: You can use any string for your peer name. If your peer is located behind a firewall, you will
also need to check the box "Use a proxy server" and enter your proxy server name and port
number9.

• Advanced: This panel is used to specify TCP and HTTP settings. Outgoing TCP connections should
be enabled for most situations. If you are not behind a firewall or NAT, incoming TCP connections
should also be enabled, and you do not need to use a relay. If you are behind a firewall or NAT,
incoming connections should be disabled and a relay is needed in order to communicate.

• Rendezvous/Relay: Download the list of rendezvous and relay peers. If you are behind a firewall or
NAT, select Use a Relay.

• Security: Enter a username and password.

Note – For more detailed information on using the JXTAConfigurator, please see
http://platform.jxta.org/java/confighelp.html.

9 Basic peer configuration

32 JXTA v2.3.x: Java Programmer’s Guide

JXTA Configurator: Basic settings.

JXTA Configurator: Transport settings.

33 JXTA v2.3.x: Java Programmer’s Guide

Configuration information is stored in the file ./.jxta/PlatformConfig; security
information (username and password) is stored in the cm. The next time the application runs, this
information is used to configure your peer. If you would like to re-run the auto-configuration tool, create
a file named reconf in the ./.jxta directory. If this file exists when you start your JXTA
application, the JXTAConfigurator will run and prompt you for new configuration information. (You can
also remove the PlatformConfig file and then start your application again; The JXTA
Configurator runs if there is no PlatformConfig file.)
Note – To specifiy an alternate location for the configuration information (rather than using the default
./.jxta subdirectory), use:

java -DJXTA_HOME="alternate dir"

HelloWorld Example
This example illustrates how an application can start the JXTAplatform. The application instantiates the JXTA
platform and then prints a message displaying the peer group name, peer group ID, peer name, and peer ID.
shows example output when this application is run:

0Example output: SimpleJxtaApp.

Starting JXTA
Hello from JXTA group NetPeerGroup
Group ID = urn:jxta:jxta-NetGroup
Peer name = suzi
Peer ID = urn:jxta:uuid-59616261646162614A78746150325033F3B

C76FF13C2414CBC0AB663666DA53903

Hello World Example: SimpleJxtaApp
The code for this example begins on page 35. We define a single class, SimpleJxtaApp, with one class variable:

• PeerGroup netPeerGroup— our peer group (the default net peer group) and two
methods:

• static public void main()—main routine; prints peer and peer group
information

• public void startJxta() — initializes the JXTA platform and creates the net
peer group

startJxta()
The startJxta() method uses a single call to instantiate the JXTAplatform :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

This call instantiates the default platform object and then creates and returns a PeerGroup object containing the
default net peer group. This object contains the default reference implementations of the various JXTA services
(DiscoveryService, MembershipService, RendezvousService, etc.). It also contains the peer group ID and peer
group name, as well as the name and ID of the peer on which we’re running.

34 JXTA v2.3.x: Java Programmer’s Guide

main()
This method first calls startJxta() to instantiate the JXTAplatform. Next, this method prints out various
information from our netPeerGroup:

• Group name— the name of the default net group, NetPeerGroup :
System.out.println("Hello from JXTA group " +

netPeerGroup.getPeerGroupName());

• Peer Group ID— the peer group ID of the default net peer group :
System.out.println(" Group ID = " +
netPeerGroup.getPeerGroupID().toString());

• Peer Name— our peer name; whatever we entered on the JXTA Configurator basic settings :
System.out.println(" Peer name = " +

netPeerGroup.getPeerName());

Peer ID— the unique peer ID that was assigned to our JXTA peer when we ran the application :
System.out.println(" Peer ID = " +

netPeerGroup.getPeerID().toString());

After printing this information, the application calls the stopApp() method to stop the group services and
then exits.

myapp.netPeerGroup.stopApp();

Running the Hello World Example
The first time SimpleJxtaApp is run, the auto-configuration tool is displayed. After you enter the
configuration information and click OK, the application continues and prints out information about the
JXTApeer and peer group.
When the application completes, you can investigate the various files and subdirectories that were
created in the
./.jxta subdirectory:

• PlatformConfig— the configuration file created by the auto-configuration tool
• cm— the local cache directory; it contains subdirectories for each group that is discovered. In

our example, we should see the jxta-NetGroup and jxta-WorldGroup
subdirectories. These subdirectories will contain index files (*.idx) and advertisement store
files (advertisements.tbl).

35 JXTA v2.3.x: Java Programmer’s Guide

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jxta:CP>
<jxta:CP type="jxta:PlatformConfig" xmlns:jxta="http://jxta.org">

<PID>urn:jxta:uuid-59616261646162614A78746150325033B87CDE2608EA417AB843B23370A8E9C403</PID>
<Name>e1</Name>
<Desc> Platform Config Advertisement created by :

net.jxta.impl.peergroup.DefaultConfigurator</Desc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000505</MCID>
<Parm type="jxta:PSEConfig" xmlns:jxta="http://jxta.org">
<RootCert>
<Certificate>
cert omitted
</Certificate>
<EncryptedPrivateKey algorithm="RSA">
cert omitted

</EncryptedPrivateKey>
</RootCert>
</Parm>

</Svc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000A05</MCID>

<Parm>
<jxta:TransportAdvertisement xmlns:jxta="http://jxta.org"

type="jxta:HTTPTransportAdvertisement">
<Protocol>http</Protocol>
<InterfaceAddress/>
<ConfigMode>auto</ConfigMode>
<Port>9700</Port>
<Proxy>myProxy.myDomain:8080</Proxy>
<ProxyOff/>
<ServerOff/>
<ClientOff/>
</jxta:TransportAdvertisement>
<isOff/>
</Parm>

</Svc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000E05</MCID>
<Parm><isOff/></Parm>
</Svc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000605</MCID>
<Parm type="jxta:RdvConfig" config="client" xmlns:jxta="http://jxta.org"/>

</Svc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000905</MCID>
<Parm>
<jxta:TransportAdvertisement xmlns:jxta="http://jxta.org"

type="jxta:TCPTransportAdvertisement">
<Protocol>TCP</Protocol>
<Port>9801</Port>
<MulticastAddr>224.0.1.85</MulticastAddr>
<MulticastPort>1234</MulticastPort>
<MulticastSize>16384</MulticastSize>
<ConfigMode>auto</ConfigMode>
</jxta:TransportAdvertisement>
</Parm>

</Svc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000F05</MCID>
<Parm>
<isServer>false</isServer>
<ServerMaximumClients/>
<ServerLeaseInSeconds/>
<isClient>false</isClient>
<ClientMaximumServers/>
<ClientLeaseInSeconds/>
<ClientQueueSize>20</ClientQueueSize>
<isOff/>
</Parm>

</Svc>
<Svc>
<MCID>urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000805</MCID>
<Parm>
<MessengerQueueSize>20</MessengerQueueSize>

</Parm>
</Svc>

</jxta:CP>

36 JXTA v2.3.x: Java Programmer’s Guide

Source Code: SimpleJxtaApp

import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.exception.PeerGroupException;

/**
* This is a simple example of how an application would start jxta
*/
public class SimpleJxtaApp {

static PeerGroup netPeerGroup = null;

public static void main(String args[]) {

System.out.println("Starting JXTA");
SimpleJxtaApp myapp = new SimpleJxtaApp();
myapp.startJxta();

System.out.println("Hello from JXTA group " +
netPeerGroup.getPeerGroupName());

System.out.println(" Group ID = " +
netPeerGroup.getPeerGroupID().toString());

System.out.println(" Peer name = " +
netPeerGroup.getPeerName());

System.out.println(" Peer ID = " +
netPeerGroup.getPeerID().toString());

System.out.println("Good Bye");
myapp.netPeerGroup.stopApp();
System.exit(0);

}

private void startJxta() {
try {

// create and start the default JXTA NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and

exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
}

}

37 JXTA v2.3.x: Java Programmer’s Guide

Chapter 7: Programming with JXTA
This chapter presents several JXTA programming examples that perform common tasks such as peer and
peer group discovery, creating and publishing advertisements, creating and joining a peer group, and
using pipes

Peer Discovery
This programming example illustrates how to discover other JXTA peers on the network. The application
instantiates the JXTA platform, and then sends out Discovery Query messages to the default
netPeerGroup looking for any JXTApeer. For each Discovery Response message received, the
application prints the name of the peer sending the response (if it is known) as well as the name of each
peer that was discovered.
shows example output when this application is run:
Example output: Peer discovery example.

Sending a Discovery Message
Sending a Discovery Message
Got a Discovery Response [5 elements] from peer : unknown
Peer name = suz
Peer name = jsoto-2K
Peer name = peertopeer
Peer name = JXTA.ORG 237
Peer name = Frog@SF05
Sending a Discovery message
Got a Discovery Response [5 elements] from peer : unknown
Peer name = Mr Magoo
Peer name = mypc
Peer name = yaro-work
Peer name = johnboy2
Peer name = Lomax@DIOXINE.NET

1

2 Because Discovery Responses are sent asynchronously, you may need to wait while several
Discovery Requests are sent before receiving any responses. If you don’t receive any Discovery
Responses when you run this application, you most likely haven’t configured your JXTAenvironment
correctly.You will typically want to specify at least one rendezvous peer. If your peer is located behind
a firewall or NAT,you will also need to specify a relay peer. Remove the PlatformConfig file
that was created in the current directory and re-run the application. When the JXTAConfigurator
appears, enter the correct configuration information. See http://platform.jxta.org/java/confighelp.html
for more details on using the JXTAConfigurator tool.

Discovery Service
The JXTADiscoveryService provides an asynchronous mechanism for discovering peer, peer group,
pipe, and service advertisements. Advertisements are stored in a persistent local cache (the
$JXTA_HOME which defaults to ./.jxta/cm directory). When a peer boots up, the same cache
is referenced. Within the ./.jxta/cm directory, subdirectories are created for each peer group
that is joined.
• ./.jxta/cm/jxta-NetGroup— contains advertisements for the net peer group
• ./.jxta/cm/group-ID— contains advertisements for this group
These directories will contain files of the following types:
• *.idx— index files
• record-offsets.tbl— entry list store

38 JXTA v2.3.x: Java Programmer’s Guide

• advertisements.tbl— advertisement store
A JXTA peer can use the getLocalAdvertisements() method to retrieve advertisements that are in its
local cache. If it wants to discover other advertisements, it uses getRemoteAdvertisements() to send a
Discovery Query message to other peers. Discovery Query messages can be sent to a specific peer or
propagated to the JXTA network. In the J2SE platform binding, Discovery Query messages not intended
for a specific peer are propagated on the local subnet utilizing IP multicast and also sent to the peer’s
rendezvous. Connection to the rendezvous peer occurs asynchronougly. If this peer has not yet
connected to a rendezvous, the Discovery Query message will only be sent to the local subnet via
multicast. Once the peer has connected to a rendezvous, the Discovery Query message will also be
propagated to the rendezvous peer. A peer includes its own advertisement in the Discovery Query
message, performing an announcement or automatic discovery mechanism.
There are two ways to receive DiscoveryResponse messages. You can wait for one or more peers to
respond with DiscoveryResponse messages, and then make a call to getLocalAdvertisements() to
retrieve any results that have been found and have been added to the local cache. Alternately,
asynchronous notification of discovered peers can be accomplished by adding a Discovery Listener
whose callback method, discoveryEvent(), is called when discovery events are received. If you choose
to add a Discovery Listener, you have two options. You can call addDiscoveryListener() to register a
listener. Or, you can pass the listener as an argument to the getRemoteAdvertisements() method.
The DiscoveryService is also used to publish advertisements. This is discussed in more detail in the
“Creating Peer Groups and Publishing Advertisement” tutorial.
The following classes are used in this example:
• net.jxta.discovery.DiscoveryService — asynchronous mechanism for discovering peer, peer group,
pipe and service advertisements and publishing advertisements.

• net.jxta.discovery.DiscoveryListener— the listener interface for receiving DiscoveryService events.
• net.jxta.DiscoveryEvent— contains Discovery Response messages.
• net.jxta.protocol.DiscoveryResponseMsg— defines the Discovery Service "response"

DiscoveryDemo
This example uses the DisoveryListener interface to receive asynchronous notification of discovery
events. [The code for this example begins on page 42 We define a single class, DiscoveryDemo, which
implements the DiscoveryListener interface. We also define a class variable:
PeerGroup netPeerGroup— our peer group (the default net peer group) and four
methods:
• public void startJxta() — initialize the JXTAplatform
• public void run() — thread to send DiscoveryRequest messages
• public void discoveryEvent(DiscoveryEvent ev) — handle

DiscoveryResponse messages that are received
• static public void main()—main routine

startJxta() method
The startJxta() method instantiates the JXTAplatform (the JXTAworld group) and creates the default
net peer group :
netPeerGroup = PeerGroupFactory.newNetPeerGroup();
Next, our discovery service is retrieved from our peer group, the netPeerGroup :
discovery = netPeerGroup.getDiscoveryService();
This discovery service will be used later to add ourselves as a DiscoveryListener for DiscoveryResponse
events and to send DiscoveryRequest messages.

run() method
The run() method first adds the calling object as a DiscoveryListener for DiscoveryResponse events :
discovery.AddDiscoveryListener(this);
Now, whenever a Discovery Response message is received, the discoveryEvent() method for this object
will be called. This enables our application to asynchronously be notified every time this JXTApeer
receives a Discovery Response message.

39 JXTA v2.3.x: Java Programmer’s Guide

Next, the run() method loops forever sending out DiscoveryRequest messages via the
getRemoteAdvertisements() method. The getRemoteAdvertisements() method takes 5 arguments:
• java.lang.string peerid— ID of a peer to send query to; if null, propagate query
request

• int type—DiscoveryService.PEER, DiscoveryService.GROUP, DiscoveryService.ADV
• java.lang.string attribute— attribute name to narrow discovery to
• java.lang.string value— value of attribute to narrow discovery to
• int threshold— the upper limit of responses from one peer
There are two main ways to send discovery requests via the Discovery Service. If a peer ID is specified
in the getRemoteAdvertisement() call, the message is sent to only that one peer. In this case, the Endpoint
Router attempts to resolve the destination peer’s endpoints locally; if necessary, it routes the message to
other relays in an attempt to reach the specified peer. If a null peer ID is specified in the
getRemoteAdvertisements() call, the discovery message
is propagated on the local subnet utilizing IP multicast, and the message is also propagated to the
rendezvous peer. Only peers in the same peer group will respond to a DiscoveryRequest message.
The type parameter specifies which type of advertisements to look for. The DiscoveryService class
defines three constants: DiscoveryService.PEER (looks for peer advertisements),
DiscoveryService.GROUP (looks for peer group advertisements), and DiscoveryService.ADV (looks for
all other advertisement types, such as pipe advertisements or module class advertisements).
The discovery scope can be narrowed down by specifying an Attribute and Value pair; only
advertisements that match will be returned. The Attribute must exactly match an element name in the
associated XML document. The Value string can use a wildcard (e.g., *) to determine the match. For
example, the following call would limit the search to peers whose name contained the exact string
"test1":
discovery.getRemoteAdvertisements(null, DiscoveryService.PEER,

"Name", "test1", 5);
while this example, using wildcards, would return any peer whose name contained the string "test":
discovery.getRemoteAdvertisements(null, DiscoveryService.PEER,

"Name", "*test*", 5);
The search can also be limited by specifying a threshold value, indicating the upper limit of responses
from one peer.
In our example, we send Discovery Request messages to the local subnet and the rendezvous peers,
looking for any peer. By specifying a threshold value of 5, we will get a maximum of 5 responses (peer
advertisements) in each Discovery Response message. If the peer has more than the specified number of
matches, it will select the elements to return at random.
discovery.getRemoteAdvertisements(null, DiscoveryService.PEER,

null, null, 5);
There is no guarantee that there will be a response to a DiscoveryRequest message. A peer may receive
zero, one, or more responses.

discoveryEvent() method
Because our class implements the DiscoveryListener interface, we must have a discoveryEvent()
method :

public void discoveryEvent(DiscoveryEvent ev)
The Discovery Service calls this method whenever a DiscoveryResponse message is received. Peers that
have been discovered are automatically added to the local cache (.jxta/cm/group_name) by
the Discovery Service.
The first part of this method prints out a message reporting which peer sent the response.
The discoveryEvent method is passed a single argument of type DiscoveryEvent. The getResponse()
method returns the response associated with this event. In our example, this method returns a
DiscoveryResponseMsg :
DiscoveryResponseMsg res = ev.getResponse();
Each DiscoveryResponseMsg object contains the responding peer’s peer advertisement, a count of the
number of responses returned, and an enumeration of peer advertisements (one for each discovered peer).
Our example retrieves the responding peer’s advertisement from the message :
PeerAdvertisement peerAdv = res.getPeerAdvertisement();

40 JXTA v2.3.x: Java Programmer’s Guide

Because some peers may not respond with their peer advertisement, the code checks if the peer
advertisement is null. If it is not null, it extracts the responding peer’s name :
name = peerAdv.getName();
Now we print a message stating we received a response and include the name of the responding peer (or
unknown, if the peer did not include its peer advertisement in its response) :
System.out.println("Got a Discovery Response [" +

res.getResponseCount()+ " elements] from peer : " +
name);

The second part of this method prints out the names of each discovered peer. The responses are returned
as an enumeration, and can be retrieved from the DiscoveryResponseMsg :
Enumeration en = res.getAdvertisements();
Each element in the enumeration is a PeerAdvertisement, and for each element we print the peer’s name :
adv = (PeerAdvertisement) en.nextElement();
System.out.println(" Peer name = " + adv.getName());

main()
The main() method first creates a new object of class DiscoveryDemo. It then calls the startJxta()
method , which instantiates the JXTAplatform. Finally, it calls the run() method, which loops
continuously sending out discovery requests.

41 JXTA v2.3.x: Java Programmer’s Guide

Source Code: DiscoveryDemo

import java.util.Enumeration;
import net.jxta.discovery.DiscoveryEvent;
import net.jxta.discovery.DiscoveryListener;
import net.jxta.discovery.DiscoveryService;
import net.jxta.exception.PeerGroupException;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.protocol.DiscoveryResponseMsg;
import net.jxta.protocol.PeerAdvertisement;

public class DiscoveryDemo implements Runnable, DiscoveryListener {

static PeerGroup netPeerGroup = null;
private DiscoveryService discovery;

//start the JXTA platform
private void startJxta() {

try {
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
// Get the discovery service from our peer group
discovery = netPeerGroup.getDiscoveryService();

}

/**
* This thread loops forever discovering peers
* every minute, and displaying the results.
*/
public void run() {

try {
// Add ourselves as a DiscoveryListener for Discovery events
discovery.addDiscoveryListener(this);
while (true) {

System.out.println("Sending a Discovery Message");
// look for any peer
discovery.getRemoteAdvertisements(null,

DiscoveryService.PEER,
null, null, 5);

// wait a bit before sending next discovery message
try {

42 JXTA v2.3.x: Java Programmer’s Guide

Thread.sleep(60 * 1000);
} catch(Exception e) {}

} //end while
} catch(Exception e) {

e.printStackTrace();
}

}

/**
* by implementing DiscoveryListener we must define this method
* to deal to discovery responses
*/

public void discoveryEvent(DiscoveryEvent ev) {

DiscoveryResponseMsg res = ev.getResponse();
String name = "unknown";

// Get the responding peer's advertisement
PeerAdvertisement peerAdv = res.getPeerAdvertisement();
// some peers may not respond with their peerAdv
if (peerAdv != null) {

name = peerAdv.getName();
}
System.out.println("Got a Discovery Response [" +

res.getResponseCount() +
" elements] from peer: " +
name);

//printout each discovered peer
PeerAdvertisement adv = null;
Enumeration en = res.getAdvertisements();
if (en != null) {

while (en.hasMoreElements()) {
adv = (PeerAdvertisement) en.nextElement();
System.out.println (" Peer name = " + adv.getName());

}
}

}

static public void main(String args[]) {
DiscoveryDemo myapp = new DiscoveryDemo();
myapp.startJxta();
myapp.run();

}
}

43 JXTA v2.3.x: Java Programmer’s Guide

Peer Group Discovery
Peer group discovery is very similar to the peer discovery in the previous example. The primary
difference is that instead of sending DiscoveryRequest messages looking for peers, we send
DiscoveryRequest messages looking for peer groups. Any DiscoveryResponse messages we receive will
contain peer group advertisements rather than peer advertisements. In this example, however, after
instantiating the JXTAplatform we wait until we are connected to a rendezvous peer before sending
Discovery Request messages. It would not be necessary to wait for a rendezvous connection if your
application was running locally on a subnet and communicating with other peers on that subnet via
multicast. However, in other configurations you might want to wait until a rendezvous connection is
established before sending requests. For each DiscoveryResponse message received, the application
prints the name of the peer sending the response (if it is known) as well as the name of each peer group
that was discovered. Figure 7-2 shows example output when this application is run:

Example output: Peer group discovery example.

Waiting to connect to rendezvous...connected!
Sending a Discovery message
Sending a Discovery message
Got a Discovery Response [6 elements] from peer : unknown
Peer Group = football
Peer Group = weaving
Peer Group = P2P-discuss
Peer Group = genome
Peer Group = mygroup
Peer Group = baseball
Sending a Discovery message
Got a Discovery Response [4 elements] from peer : unknown
Peer Group = testgroup1
Peer Group = soccer
Peer Group = osa_test
Peer Group = travel

Source code for this example begins on page . Differences from the previous peer discovery example are
indicated in bold font.

startJxta() method
The first part of this method is identical to that of the previous Peer Discovery example — it instantiates
the net peer group and extracts the discovery service from the peer group. However, this example also
extracts the RendezVousService from the peer group:
rdv = netPeerGroup.getRendezVousService();
Then it loops, waiting until a connection is established to a rendezvous peer. The method
isConnectedToRendezVous() returns true if this peer is currently connected to a rendezvous; otherwise, it
returns false. :
while (!rdv.isConnectedToRendezVous()) {

run() method
The only difference in this method is that we send out DiscoveryRequest messages looking for peer
groups, rather than peers :

discovery.getRemoteAdvertisements(null, DiscoveryService.GROUP,
null, null, 5;

The remainder of the code is identical to the peer discovery example.

44 JXTA v2.3.x: Java Programmer’s Guide

discoveryEvent() method
The first part of this method is identical to the peer discovery example: we retrieve the
DiscoveryResponseMsg, extract the responding peer’s advertisement, and then print a message stating
the name of the responding peer (if it is known) and the number of responses received.
The changes occur in the second part of the method, which prints out the names of each discovered peer
group. Like the peer discovery example, responses are returned as an enumeration and are retrieved from
the DiscoveryResponseMsg:

Enumeration en = res.getAdvertisements();
Now, instead of receiving an enumeration of peer advertisements, we receive an enumeration peer group
advertisements:

adv = (PeerGroupAdvertisement) en.nextElement();
System.out.println(" Peer Group = " + adv.getName());

45 JXTA v2.3.x: Java Programmer’s Guide

Source Code: GroupDiscoveryDemo

import java.util.Enumeration;
import net.jxta.discovery.DiscoveryEvent;
import net.jxta.discovery.DiscoveryListener;
import net.jxta.discovery.DiscoveryService;
import net.jxta.exception.PeerGroupException;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.protocol.DiscoveryResponseMsg;
import net.jxta.protocol.PeerAdvertisement;
import net.jxta.protocol.PeerGroupAdvertisement;
import net.jxta.rendezvous.RendezVousService;

public class GroupDiscoveryDemo implements DiscoveryListener {

static PeerGroup netPeerGroup = null;
private DiscoveryService discovery;
private RendezVousService rdv;

/**
* Method to start the JXTA platform.
* Waits until a connection to rdv is established.
*/

private void startJxta() {
try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();
} catch (PeerGroupException e) {

// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
// Extract the discovery and rendezvous services
// from our peer group
discovery = netPeerGroup.getDiscoveryService();
rdv = netPeerGroup.getRendezVousService();

// Wait until we connect to a rendezvous peer
System.out.print("Waiting to connect to rendezvous...");
while (! rdv.isConnectedToRendezVous()) {

try {
Thread.sleep(2000);

} catch (InterruptedException ex) {

46 JXTA v2.3.x: Java Programmer’s Guide

// nothing, keep going
}

}
System.out.println("connected!");

}

/**
* This thread loops forever discovering peers
* every minute, and displaying the results.
*/

public void run() {

try {
// Add ourselves as a DiscoveryListener for
// DiscoveryResponse events
discovery.addDiscoveryListener(this);
while (true) {

System.out.println("Sending a Discovery Message");
// look for any peer group
discovery.getRemoteAdvertisements(null,

DiscoveryService.GROUP,
null, null, 5);

// wait a bit before sending next discovery message
try {

Thread.sleep(60 * 1000);
} catch(Exception e) {}

}
}
catch(Exception e) {

e.printStackTrace();
}

}

/**
* by implementing DiscoveryListener we must define this method
* to deal to discovery responses
*/

public void discoveryEvent(DiscoveryEvent ev) {

DiscoveryResponseMsg res = ev.getResponse();
String name = "unknown";

// Get the responding peer's advertisement
PeerAdvertisement peerAdv = res.getPeerAdvertisement();
// some peers may not respond with their peerAdv
if (peerAdv != null) {

47 JXTA v2.3.x: Java Programmer’s Guide

name = peerAdv.getName();
}
System.out.println (" Got a Discovery Response [" +

res.getResponseCount()+ " elements]
from peer : " +
name);

// now print out each discovered peer group
PeerGroupAdvertisement adv = null;
Enumeration en = res.getAdvertisements();

if (en != null) {
while (en.hasMoreElements()) {

adv = (PeerGroupAdvertisement) en.nextElement();
System.out.println (" Peer Group = " + adv.getName());

}
}

}
static public void main(String args[]) {

GroupDiscoveryDemo myapp = new GroupDiscoveryDemo();
myapp.startJxta();
myapp.run();

}

}

48 JXTA v2.3.x: Java Programmer’s Guide

Creating Peer Groups and Publishing Advertisements
This example first prints the names and IDs of all peer groups in the local cache. The first time this
application is run, there should be no peer groups in the local cache. Then, it creates a new peer group,
prints its group name and group ID, and publishes its advertisement. Finally, it prints the names and IDs
of all peer groups now in the local cache.

--- local cache (Peer Groups) ---
--- end local cache ---
Creating a new group advertisement
Group = PubTest
Group ID = urn:jxta:uuid-791A0C3A50CE43D891E0BDC5689CC902

Group published successfully.
--- local cache (Peer Groups) ---
PubTest, group ID = urn:jxta:uuid-
791A0C3A50CE43D891E0BDC5689CC902
--- end local cache ---

The peer group advertisement that we create is added to the local cache directory,.jxta/cm. In
addition, a new directory with the same name as the peer group ID is created, and this directory contains
advertisements that are discovered in the context of this new peer group. An advertisement for our peer is
added to this cache directory. Advertisements for any additional peers that are discovered in the new peer
group would also be added here.
Figure 0./.jxta/cm/jxta-NetGroup— local cache directory containing advertisements
for the net peer group
Figure 1./.jxta/cm/1D5E451AF1B243C1AD39B9D331AE858C02— cache
directory for the new peer group

main()
This method calls startJxta() to instantiate the JXTA platform and create the default netPeerGroup. It then
calls groupsInLocalCache() to display the names and IDs of all groups currently in the local cache (this
should be empty the first time this application is run). Next, it calls createGroup() to create a new JXTA
peer group and to publish the new peer group’s advertisement. Finally, it calls groupsInLocalCache()
again to display the names and IDS of all groups now in the local cache. The group that we just created
and published should be displayed.

startJxta()
This method is identical to earlier examples. It instantiates the JXTA platform and extracts information
needed later in the application:
Figure 0Instantiates the JXTAplatform and creates the default net peer group :

myGroup = PeerGroupFactory.newNetPeerGroup();
Figure 0Extracts the discovery service from the peer group; this is used later to publish the new group
advertisement :

discoSvc = myGroup.getDiscoveryService();

groupsInLocalCache()
This method prints the names and IDs of all groups in the local cache. It first calls the
getLocalAdvertisements() method to retrieve advertisements in the local cache. The
getLocalAdvertisements() method takes 3 arguments:
Figure 0int type—DiscoveryService.PEER, DiscoveryService.GROUP, DiscoveryService.ADV
Figure 1java.lang.string attribute— attribute name to narrow discovery to
Figure 2java.lang.string value— value of attribute to narrow discovery to

In our example. we are looking for all peer group advertisements in the local cache :
Enumeration en = discoSvc.getLocalAdvertisements(discoSvc.GROUP,

49 JXTA v2.3.x: Java Programmer’s Guide

null, null);
This method returns an enumeration of peer group advertisements. We step through the enumeration,
printing out the name and peer group ID of each element :
adv = (PeerGroupAdvertisement) en.nextElement();
System.out.println(adv.getName() + ", group ID = " +

adv.getPeerGroupID().toString());

createGroup()
This method is used to create a new peer group and publish its advertisement.
The first part of this method [lines to] creates the new peer group. First, we call
getAllPurposePeerGroupImpleAdvertisement() to create a ModuleImplAdvertisenent, which contains
entries for all of the core peer group services:
ModuleImplAdvertisement implAdv =

myGroup.getAllPurposePeerGroupImplAdvertisement();
Next, we use newGroup() to create a new peergroup:
PeerGroup pg = myGroup.newGroup(null, // Assign new group ID

implAdv, // The implem. adv
"PubTest", // The name
"testing group adv"); // Helpful descr.

We pass four arguments to newGroup():
Figure 0PeerGroup ID gid— the peer group ID of the group to be created; if null, a new peer
group ID is generated
Figure 1Advertisement implAdv— the implementation advertisement
Figure 2String name— the name of the new group
Figure 3String description— a group description
When a new group is created with DiscoveryService.newGroup(), its advertisement is always added to
the local cache (i.e., it is published locally). It uses the default values for advertisement expiration: a local
lifetime (the time the advertisement is going to be kept locally on the peer that originally created it) of
365 days, and a remote lifetime (the time the advertisement is going to be kept in the cache of peers that
have searched and retrieved the advertisement) of two hours.

Note – Since the myGroup.newGroup() method publishes the new group for us, it is not
necessary to explicitly call DiscoveryService.publish().
After the group is created, we print the name of the group and its peer group ID.

The second part of this method publishes the new peer group advertisement remotely :
discoSvc.remotePublish(adv);
This method takes two arguments: the advertisement to be published and the advertisement type. It uses
the default advertisement expiration. This call uses the discovery service to send messages on the local
subnet and also to the rendezvous peer.

Note – If the peer is not connected to a rendezvous when the remotePublish() method is called, the peer
group advertisement will be sent only to peers on the local subnet via multicast. If the peer is connected
to a rendezvous when the remotePublish() method is called, the peer group advertisement will also be
sent to the rendezvous peer. If it is important to publish the group advertisement outside the local subnet,
you should ensure that you are connected to a rendezvous peer before calling the remotePublish()
method. (For more information on waiting until a connection to a rendezvous is established, please see “
” on page)

50 JXTA v2.3.x: Java Programmer’s Guide

Source Code: PublishDemo
import java.util.Enumeration;
import net.jxta.discovery.DiscoveryService;
import net.jxta.exception.PeerGroupException;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.peergroup.PeerGroupID;
import net.jxta.protocol.PeerGroupAdvertisement;
import net.jxta.protocol.ModuleImplAdvertisement;

public class PublishDemo {

static PeerGroup myGroup = null;
private DiscoveryService discoSvc;

public static void main(String args[]) {
PublishDemo myapp = new PublishDemo();
System.out.println ("Starting PublishDemo");
myapp.startJxta();
myapp.groupsInLocalCache();
myapp.createGroup();
myapp.groupsInLocalCache();
System.exit(0);

}

private void startJxta() {
try {

// create, and start the default jxta NetPeerGroup
myGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
// obtain the the discovery service
discoSvc = myGroup.getDiscoveryService();

}

// print all peer groups found in the local cache
private void groupsInLocalCache() {

System.out.println("--- local cache (Peer Groups) ---");
try {

PeerGroupAdvertisement adv = null;
Enumeration en = discoSvc.getLocalAdvertisements(

discoSvc.GROUP, null, null);
if (en != null) {

while (en.hasMoreElements()) {
adv = (PeerGroupAdvertisement) en.nextElement();

51 JXTA v2.3.x: Java Programmer’s Guide

System.out.println(adv.getName() +
", group ID = " +
adv.getPeerGroupID().toString());

}
}

} catch (Exception e) {}
System.out.println("--- end local cache ---");

}

// create and publish a new peer group
private void createGroup() {

PeerGroupAdvertisement adv;
System.out.println("Creating a new group advertisement");
try {

// create a new all purpose peergroup.
ModuleImplAdvertisement implAdv =

myGroup.getAllPurposePeerGroupImplAdvertisement();
PeerGroup pg = myGroup.newGroup(null, // Assign new group ID

implAdv, // The implem. adv
"PubTest",// The name
"testing group adv"); // descr.

// print the name of the group and the peer group ID
adv = pg.getPeerGroupAdvertisement();
PeerGroupID GID = adv.getPeerGroupID();
System.out.println(" Group = " +adv.getName() +

"\n Group ID = " + GID.toString());
} catch (Exception eee) {

System.out.println("Group creation failed with " +
eee.toString());

return;
}
try {

// publish this advertisement
//(send out to other peers and rendezvous peer)
discoSvc.remotePublish(adv);
System.out.println("Group published successfully.");

} catch (Exception e) {
System.out.println("Error publishing group advertisement");
e.printStackTrace();
return;

}
}

}

52 JXTA v2.3.x: Java Programmer’s Guide

53 JXTA v2.3.x: Java Programmer’s Guide

Joining a Peer Group
This example creates and publishes a new peer group, joins the peer group, and prints its authorization
credential.
shows example output when this application is run:

Example output: Creating and joining a peer group.

Starting JoinDemo
Creating a new group advertisement
Group = JoinTest
Group ID = urn:jxta:uuid-1D5E451AF1B243C1AD39B9D331AE858C02

Group published successfully.

Joining peer group...
Successfully joined group JoinTest

Credential:
NullCredential :

PeerGroupID: urn:jxta:uuid-
1D5E451AF1B243C1AD39B9D331AE858C02

PeerID : urn:jxta:uuid-
59616261646162614A78746150325033F3B
C76FF13C2414CBC0AB663666DA53903

Identity : nobody

Good Bye

This example builds upon the previous example which created and published a new group. The new code
in this example is in the joinGroup() method, which illustrates how to apply for group membership and
then join a group. This example uses the default mechanism for joining a group. An example of how to
join a secure group is included later in this document.

Membership Service
In JXTA, the Membership Service is used to apply for peer group membership, join a peer group, and
resign from a peer group. The membership service allows a peer to establish an identity within a peer
group. Once an identity has been established, a credential is available which allows the peer to prove that
it rightfully has that identity. Identities are used by services to determine the capabilities which should be
offered to peers.
When a peer group is instantiated on a peer, the membership service for that peer group establishes a
default temporary identity for the peer within the peergroup. This identity, by convention, only allows the
peer to establish its true identity.
The sequence for establishing an identity for a peer within a peer group is as follows:
Figure 0Apply
The peer provides the membership service an initial credential which may be used by the service to
determine which method of authentication is to be used to establish the identity of this peer. If the service
allows authentication using the requested mechanism, then an appropriate authenticator object is
returned.
The peer group instance is assumed to know how to interact with the authenticator object (remember that
it requested the authentication method earlier in the apply process).
Figure 0Join
The completed authenticator is returned to the Membership Service and the identity of this peer is
adjusted based on the new credential available from the authenticator. The identity of the peer remains as
it was until the Join operation completes.

54 JXTA v2.3.x: Java Programmer’s Guide

Figure 0Resign
Whatever existing identity that is established for this peer is discarded and the current identity reverts to
the "nobody" identity.
Authentication credentials are used by the JXTAMembershipService services as the basis for
applications for peer group membership. The AuthenticationCredential provides two important pieces of
information: the authentication method being requested and the identity information which will be
provided to that authentication method. Not all authentication methods use the identity information.

main()
This method calls the remaining three class methods:
Figure 0startJxta() — to instantiate the JXTAplatform and create the default net peer group
Figure 1createGroup() — to create and publish a new peer group
Figure 2joinGroup() — to join the new group

startJxta()
This method is identical to the startJxta() method in previous examples: it instantiates the JXTA platform
and creates the default netPeerGroup, and extracts our discovery service from the netPeerGroup. The
discovery service will be used later to publish the peer group we create.

createGroup()
This method is almost identical to the createGroup() method in the previous example (see description on
page 50). It is used to create a new peer group and publish its advertisement. The only significant change
is that if the group is successfully created, this method returns the new PeerGroup. If there is an error
creating the new peer group, this method returns null.

joinGroup()
This method is used to join the peer group that is passed as an argument :

private void joinGroup(PeerGroup grp)
In the example code, the joinGroup() method first generates the authentication credentials for the peer in
the specified peer group :

AuthenticationCredential authCred =
new AuthenticationCredential(grp, null, creds);

This constructor takes three arguments:
Figure 0PeerGroup peergroup— the peer group context in which this
AuthenticationCredential is created (i.e., the peer group that you want to join).
java.lang.String method—The authentication method which will be requested when
the AuthenticationCredential is provided to the peer group MembershipService service.
Figure 0Element IdentityInfo—Optional additional information about the identity
being requested, which is used by the authentication method. This information is passed to the
authentication method during the apply operation of the MembershipService service.
AuthenticationCredentials are created in the context of a PeerGroup. However, they are generally
independent of peer groups. The intent is that the AuthenticationCredential will be passed to the
MembershipService of the same peer group.
Next, our example extracts the MembershipService from the peer group we want to join :

MembershipService membership = grp.getMembershipService();
And uses the MembershipService.apply() method to apply for group membership :

Authenticator auth = membership.apply(authCred);
The authentication credentials created earlier in the method are passed to the apply() method. Included in
the credentials is information about our peer group ID, our peer ID, and our identity to be used when
joining this group. The apply method returns an Authenticator object, which is used to check if
authentication has completed correctly. The mechanism for completing the authentication object is unique
for each authentication method. The only common operation is isReadyForJoin(), which provides
information on whether the authentication process has completed correctly.
After applying for membership, the next step is to join the group. First, the Authenticator.isReadyForJoin
() method is called to verify the authentication process. This method returns true if the authenticator
object is complete and ready for submitting to the MembershipService service for joining; otherwise, it

55 JXTA v2.3.x: Java Programmer’s Guide

returns false. If everything is okay to join the group, the MembershipService.join() method is called to
join the group :

if (auth.isReadyForJoin()){
Credential myCred = membership.join(auth);

The MembershipService.join() method returns a Credential object.

Note – Some authenticators may behave asynchronously, and this method can be used to determine if the
authentication process has completed. This method makes no distinction between incomplete
authentication and failed authentication.

Note – When a peer joins a peer group, it will automatically seek a rendezvous peer for that peer group.
If it finds no rendezvous peer, it will dynamically become a rendezvous for this peer group.

56 JXTA v2.3.x: Java Programmer’s Guide

Source Code: JoinDemo

import java.io.StringWriter;
import net.jxta.credential.AuthenticationCredential;
import net.jxta.credential.Credential;
import net.jxta.document.StructuredDocument;
import net.jxta.document.StructuredTextDocument;
import net.jxta.document.MimeMediaType;
import net.jxta.membership.Authenticator;
import net.jxta.membership.MembershipService;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupID;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.protocol.PeerGroupAdvertisement;
import net.jxta.protocol.ModuleImplAdvertisement;
import net.jxta.discovery.DiscoveryService;
import net.jxta.exception.PeerGroupException;

public class JoinDemo {

static PeerGroup myGroup = null; // my initial group
private DiscoveryService discoSvc;

public static void main(String args[]) {

System.out.println("Starting JoinDemo");
JoinDemo myapp = new JoinDemo();

myapp.startJxta();
PeerGroup newGroup = myapp.createGroup();
if (newGroup != null) {

myapp.joinGroup(newGroup);
}
System.out.println("Good Bye");
System.exit(0);

}

private void startJxta() {
try {

// create, and Start the default jxta NetPeerGroup
myGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and

exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}

57 JXTA v2.3.x: Java Programmer’s Guide

// Extract the discovery service from our peer group
discoSvc = myGroup.getDiscoveryService();

}

private PeerGroup createGroup() {
PeerGroup pg; // new peer group
PeerGroupAdvertisement adv; // advertisement for the new group

System.out.println("Creating a new group advertisement");

try {
// create a new all purpose peergroup.
ModuleImplAdvertisement implAdv =

myGroup.getAllPurposePeerGroupImplAdvertisement();

pg = myGroup.newGroup(null, // Assign new group ID
implAdv, // The implem. adv
"JoinTest", // The name
"testing group adv"); // descr.

// print the name of the group and the peer group ID
adv = pg.getPeerGroupAdvertisement();
PeerGroupID GID = adv.getPeerGroupID();
System.out.println(" Group = " +adv.getName() +

"\n Group ID = " + GID.toString());

} catch (Exception eee) {
System.out.println("Group creation failed with " +

eee.toString());
return (null);

}

try {
// publish this advertisement
// (send out to other peers and rendezvous peer)
discoSvc.remotePublish(adv);
System.out.println("Group published successfully.\n");

}
catch (Exception e) {

System.out.println("Error publishing group advertisement");
e.printStackTrace();
return (null);

}
return(pg);

}

58 JXTA v2.3.x: Java Programmer’s Guide

private void joinGroup(PeerGroup grp) {
System.out.println("Joining peer group...");

StructuredDocument creds = null;
try {

// Generate the credentials for the Peer Group
AuthenticationCredential authCred =

new AuthenticationCredential(grp, null, creds);

// Get the MembershipService from the peer group
MembershipService membership = grp.getMembershipService();

// Get the Authenticator from the Authentication creds
Authenticator auth = membership.apply(authCred);

// Check if everything is okay to join the group
if (auth.isReadyForJoin()){

Credential myCred = membership.join(auth);

System.out.println("Successfully joined group " +
grp.getPeerGroupName());

// display the credential as a plain text document.
System.out.println("\nCredential: ");
StructuredTextDocument doc = (StructuredTextDocument)

myCred.getDocument(new MimeMediaType("text/plain"));

StringWriter out = new StringWriter();
doc.sendToWriter(out);
System.out.println(out.toString());
out.close();

} else
System.out.println("Failure: unable to join group");

} catch (Exception e){
System.out.println("Failure in authentication.");
e.printStackTrace();

}
}

}

59 JXTA v2.3.x: Java Programmer’s Guide

Sending Messages Between Two Peers
This example illustrates how to use pipes to send messages between two JXTA peers, and also shows
how to implement the RendezvousListener interface. Two separate applications are used in this example:
• PipeListener — Reads in a pipe advertisement from a file (examplepipe.adv), creates an

input pipe, and listens for messages on this pipe
• PipeExample — Reads in a pipe advertisement from a file (examplepipe.adv), creates an

output pipe, and sends a message on this pipe
shows example output when the PipeListener application is run, and shows example output from the
PipeExample application:
0Example output: PipeListener.

Reading in examplepipe.adv
Creating input pipe
Waiting for msgs on input pipe
Received message: Hello from peer suz-pipe[Wed Mar 26 16:27:15
PST 2003]

message received at: Wed Mar 26 16:27:16 PST 2003

0Example output: PipeExample.

Reading in examplepipe.adv
Attempting to create an OutputPipe...
Waiting for Rendezvous Connection
Got an output pipe event

Sending message: Hello from peer suz-pipe[Wed Mar 26
16:27:15 PST 2003]

Note – If you are running both applications on the same system, you will need to run each application
from a separate subdirectory so that they can be configured to use separate ports.
The following section provides background information on the JXTA pipe service, input pipes, and
output pipes. The PipeListener example begins on page 61.

JXTA Pipe Service
The PipeService class defines a set of interfaces to create and access pipes within a peer group. Pipes are
the core mechanism for exchanging messages between two JXTA applications or services. Pipes provide
a simple, uni-directional and asynchronous channel of communication between two peers. JXTA
messages are exchanged between input pipes and output pipes. An application that wants to open a
receiving communication with other peers creates an input pipe and binds it to a specific pipe
advertisement. The application then publishes the pipe advertisement so that other applications or
services can obtain the advertisement and create corresponding output pipes to send messages to that
input pipe.
Pipes are uniquely identified throughout the JXTAworld by a PipeId (UUID) enclosed in a pipe
advertisement. This unique PipeID is used to create the association between input and output pipes.
Pipes are non-localized communication channels that are not bound to specific peers. This is a unique
feature of JXTApipes. The mechanism to resolve the location of pipes to a physical peer is done in a
completely decentralized manner in JXTA via the JXTAPipe Binding Protocol. The Pipe Binding
Protocol does not rely on a centralized protocol such as DNS (bind Hostname to IP) to bind a pipe
advertisement (i.e., symbolic name) to an instance of a pipe on a physical peer (i.e., IP address). Instead,
the resolver protocol uses a dynamic and adaptive search mechanism that attempts at all times to find the
peers where an instance of that pipe is running.

60 JXTA v2.3.x: Java Programmer’s Guide

The following classes are used in the PipeListener and PipeExample applications:
• net.jxta.pipe.PipeService— defines the API to the JXTA Pipe Service.
• net.jxta.pipe.InputPipe— defines the interface for receiving messages from a PipeService. An

application that wants to receive messages from a pipe will create an input pipe. An InputPipe is
created and returned by the PipeService.

• net.jxta.pipe.PipeMsgListener — the listener interface for receiving PipeMsgEvent events.
• net.jxta.pipe.PipeMsgEvent— contains events received on a pipe.
• net.jxta.pipe.OutputPipe— defines the interface for sending messages from a PipeService.

Applications that want to send messages onto a Pipe must first get an OutputPipe from the
PipeService.

• net.jxta.pipe.OutputPipeListener—the listener interface for receiving OutputPipe resolution events.
• net.jxta.pipe.OutputPipeEvent— contains events received when an output pipe is resolved.
• net.jxta.endpoint.Message— defines the interface of messages sent or received to and from pipes

using the PipeService API. A message contains a set MessageElements. Each MessageElement
contains a namespace, name, data, and signature.

PipeListener
This application creates and listens for messages on an input pipe. It defines a single class, PipeListener,
which implements the PipeMsgListener interface. Two class constants contain information about the pipe
to be created:
• String FILENAME— the XML file containing the text representation of our pipe

advertisement. (This file must exist, and must contain a valid pipe advertisement, in order for our
application to run correctly.)

• String TAG— the message element name, or tag, which we are expecting in any message we
receive

We also define four instance fields:
• PeerGroup netPeerGroup— our peer group, the default net peer group
• PipeService pipeSvc— the pipe service we use to create the input pipe and listen for

messages
• PipeAdvertisement pipeAdv — the pipe advertisement we use to create our input

pipe
• InputPipe pipeIn— the input pipe that we create

main()
This method creates a new PipeListener object, calls startJxta() to instantiate the JXTAplatform and
create the default net peer group, and then calls run() which creates the input pipe and registers this object
as a PipeMsgListener. (Note: This application never ends, because of the “invisible” Java thread which
does the input pipe event dispatching.)
startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();
Then it retrieves the PipeService from the default net peer group . This service is used later when we
create an input pipe:

pipeSvc = netPeerGroup.getPipeService();

Next, we create a pipe advertisement by reading it in from the existing file examplepipe.adv :
FileInputStream is = new FileInputStream(FILENAME);

The file examplepipe.adv must exist and it must be valid XML document containing a pipe
advertisement, or an exception is raised by the JXTA platform. Both this application (which creates the
input pipe) and the partner application (which creates the output pipe) read their pipe advertisement from
the same file. The contents of the examplepipe.adv file are listed in on page 73.
The AdvertisementFactory.newAdvertisement() method is called to create a new pipe advertisement :

pipeAdv = (PipeAdvertisement)
AdvertisementFactory.newAdvertisement

61 JXTA v2.3.x: Java Programmer’s Guide

(MimeMediaType.XML_DEFAULTENCODING, is);

The two arguments to AdvertisementFactory.newAdvertisement() are the MIME type ("text/xml" in this
example) to associate with the resulting StructuredDocument (i.e. advertisement) and the InputStream
containing the body of the advertisement. The type of the advertisement is determined by reading the
input stream.
After the pipe advertisement is created, the input stream is closed and the method returns:

is.close();
run()
This method uses the PipeService.createInputPipe() to create a new input pipe for our application :

pipeIn = pipeSvc.createInputPipe(pipeAdv, this);
Because we want to listen for input pipe events, we call createInputPipe() with two arguments:
• PipeAdvertisement adv— the advertisement of the pipe to be created
• PipeMsgListener listener— the object which will receive input pipe event

messages
By registering our object as a listener when we create the input pipe, our method pipeMsgEvent() will be
called asynchronously whenever a pipeMsgEvent occurs on this pipe (i.e., whenever a message is
received).

pipeMsgEvent()
This method is called asynchronously whenever a pipe event occurs on our input pipe. This method is
passed one argument:
• PipeMsgEvent event — the event that occurred on the pipe
Our method first calls PipeMsgEvent.getMessage() to retrieve the message associated with the event :

msg = event.getMessage();
Each message contains zero or more elements, each with an associated element name (or tag) and
corresponding data string. Our method calls Message.getMessageElement() to extract the element with
the specified namespace and name :

MessageElement el = msg.getMessageElement(null, TAG);
If an element with the specified namespace/name is not present within the message, this method returns
null.

Recall that both the input pipe and the output pipe must agree on the namespace and the element name,
or tag, that is used in the messages. In our example, we use the default (null) namespace and we set a
constant in the PipeListener class to refer to the message element name :

private final static String TAG = "PipeListenerMsg";
Finally, our method prints out a message with the current time and the message that was received :
System.out.println("Received message: " + el.toString());
System.out.println(" message received at: " + date.toString());

62 JXTA v2.3.x: Java Programmer’s Guide

Source Code: PipeListener

import java.io.FileInputStream;
import java.util.Date;
import java.util.Enumeration;

import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.MessageElement;
import net.jxta.endpoint.Message.ElementIterator;
import net.jxta.exception.PeerGroupException;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.pipe.InputPipe;
import net.jxta.pipe.PipeMsgEvent;
import net.jxta.pipe.PipeMsgListener;
import net.jxta.pipe.PipeService;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.impl.endpoint.WireFormatMessage;
import net.jxta.impl.endpoint.WireFormatMessageFactory;
import net.jxta.util.CountingOutputStream;
import net.jxta.util.DevNullOutputStream;
/**
* this application creates an instance of an input pipe,
* and waits for msgs on the input pipe
*
*/

public class PipeListener implements PipeMsgListener {

static PeerGroup netPeerGroup = null;
private final static String SenderMessage = "PipeListenerMsg";
private PipeService pipe;
private PipeAdvertisement pipeAdv;
private InputPipe pipeIn = null;

/**
* main
*
* @param args command line args
*/
public static void main(String args[]) {

PipeListener myapp = new PipeListener();
myapp.startJxta();
myapp.run();

}

63 JXTA v2.3.x: Java Programmer’s Guide

public static void printMessageStats(Message msg, boolean verbose){
try {

CountingOutputStream cnt;
ElementIterator it = msg.getMessageElements();
System.out.println("------------------Begin

Message---------------------");
WireFormatMessage serialed =

WireFormatMessageFactory.toWire(
msg,
new MimeMediaType("application/x-jxta-msg"),
(MimeMediaType[]) null);

System.out.println("Message Size :" +
serialed.getByteLength());

while (it.hasNext()) {
MessageElement el = (MessageElement) it.next();
String eName = el.getElementName();
cnt = new CountingOutputStream(new

DevNullOutputStream());
el.sendToStream(cnt);
long size = cnt.getBytesWritten();
System.out.println("Element " + eName + " : " + size);
if (verbose) {

System.out.println("["+el+"]");
}

}
System.out.println("-------------------End

Message----------------------");
} catch (Exception e) {

e.printStackTrace();
}

}

/**
* wait for msgs
*
*/
public void run() {

try {
// the following creates the inputpipe, and registers
// “this” as the PipeMsgListener, when a message arrives
// pipeMsgEvent is called
System.out.println("Creating input pipe");
pipeIn = pipe.createInputPipe(pipeAdv, this);

} catch (Exception e) {
return;

}
if (pipeIn == null) {

System.out.println(" cannot open InputPipe");

64 JXTA v2.3.x: Java Programmer’s Guide

System.exit(-1);
}
System.out.println("Waiting for msgs on input pipe");

}

/**
* Starts jxta
*
*/
private void startJxta() {

try {
// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

// uncomment the following line if you want to start the
// app defined the NetPeerGroup Advertisement
// (by default it's the shell) at which case you
// must include jxtashell.jar in the classpath
// in this case we want use jxta directly.
// netPeerGroup.startApp(null);

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and

exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}

pipe = netPeerGroup.getPipeService();
System.out.println("Reading in pipexample.adv");
try {

FileInputStream is = new FileInputStream("pipexample.adv");
pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(
MimeMediaType.XMLUTF8, is);

is.close();
} catch (Exception e) {

System.out.println("failed to read/parse pipe
advertisement");

e.printStackTrace();
System.exit(-1);

}
}

/**
* By implementing PipeMsgListener, define this method to deal with
* messages as they arrive

65 JXTA v2.3.x: Java Programmer’s Guide

*/

public void pipeMsgEvent(PipeMsgEvent event) {

Message msg=null;
try {

// grab the message from the event
msg = event.getMessage();
if (msg == null) {

return;
}
printMessageStats(msg, true);

} catch (Exception e) {
e.printStackTrace();
return;

}

// get all the message elements
Message.ElementIterator en = msg.getMessageElements();
if (!en.hasNext()) {

return;
}

// get the message element named SenderMessage
MessageElement msgElement = msg.getMessageElement(null,

SenderMessage);
// Get message
if (msgElement.toString() == null) {

System.out.println("null msg received");
} else {

Date date = new Date(System.currentTimeMillis());
System.out.println("Message received at :"+

date.toString());
System.out.println("Message created at :"+

msgElement.toString());
}

}

}

66 JXTA v2.3.x: Java Programmer’s Guide

PipeExample
This example creates an output pipe and sends a message on it. It defines a single class, PipeExample,
which implements the Runnable, OutputPipeListener, and RendezvousListener interfaces. Like the
partner class, PipeListener, it defines two class constants to contain information about the pipe to be
created:
• String FILENAME— the XML file containing the text representation of our pipe

advertisement
• String TAG— the message element name, or tag, which we will include in any message that

we send

main()
This method creates a new PipeExample object, calls startJxta() to instantiate the JXTAplatform and
create the default net peer group, and then calls run() which creates the output pipe.

run()
This method uses the PipeService.createOutputPipe() to create a new output pipe with a listener for our
application :

pipeSvc.createOutputPipe(pipeAdv, this);
Because we want to be notified when the pipe endpoints are resolved, we call createOutputPipe() with
two arguments:
• PipeAdvertisement adv— the advertisement of the pipe to be created
• OutputPipeListener listener— the listener to be called back when the pipe is

resolved
By registering our object as a listener when we create the output pipe, our method outputPipeEvent()
will be called asynchronously when the pipe endpoints are resolved.
We then check if we are connected to a JXTArendezvous peer :

if (!rdvSvc.isConnectedToRendezVous()) {
If we are not connected, we call wait() to wait until we receive notification that we have connected to a
rendezvous peer. Then, we send a second request to create an OutputPipe.

outputPipeEvent()
Because we implemented the OutputPipeListener interface, we must define the outputPipeEvent()
method. This method is called asynchronously by the JXTA platform when our pipe endpoints are
resolved. This method is passed one argument:
OutputPipeEvent event— the event that occurred on this pipe
Our method first calls OutputPipeEvent.getOutputPipe() to retrieve the output pipe that was created :

OutputPipe op = event.getOutputPipe();
Next, we begin to assemble the message we want to send. We create the String, containing our peer
name and the current time, to send. Then, we create an empty Message :

msg = new Message();
Each message contains zero or more elements, each with an associated element namespace, name (or
tag), and corresponding string. Both the input pipe and the output pipe must agree on the element
namespace and name that are used in the messages. In this example, we will use the default (null)
namespace. Recall that we set a constant in both the PipeListener class and the PipeExample class to
contain the element name:

private final static String TAG = "PipeListenerMsg";
We next create a new StringMessageElement. The constructor takes three argument: the element tag (or
name), the data, and a signature :
StringMessageElement sme = new StringMessageElement(TAG, myMsg, null);
After creating our new MessageElement, we add it our our Message. In this example, we add our
element to the null namespace :
msg.addMessageElement(null, sme);

67 JXTA v2.3.x: Java Programmer’s Guide

Now that our message object is created and it contains our text message, we send it on the output pipe
with a call to OutputPipe.send() :
op.send(msg);
After sending this message, we close the output pipe and return from this method :
op.close();

rendezvousEvent()
This method is called asynchronously whenever we receive a RendezvousEvent. This method is passed
one argument:
• RendezvousEvent event — the event that we received from the Rendezvous Service
We expect to receive a connection event (RDVCONNECT) when our peer connects to its rendezvous
peer. Other possible events include disconnection events (RDVDISCONNECT), reconnection events
(RDVRECONNECT), and rendezvous failure events (RDVFAILED).10

When we receive an event of type RendezvousEvent.RDVCONNECT, we notify the thread in the run()
method :
if (event.getType() == event.RDVCONNECT) {

notify();
}

startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();
Then it retrieves the Pipe, Discovery, and Rendezvous Services from the default net peer group . These
services are used later when we create an input pipe:

pipeSvc = netPeerGroup.getPipeService();
discoverySvc = netPeerGroup.getDiscoveryService();
rdvSvc = netPeerGroup.getRendezVousService();

We then register a rendezvous listener :
rdvSvc.addListener(this);

Our method rendezvousEvent() will be called whenever we receive an event from the Rendezvous
Service.
Lastly, we create a pipe advertisement by reading it in from the existing XML file
examplepipe.adv :

FileInputStream is = new FileInputStream(FILENAME);

The file examplepipe.adv must exist and it must be valid XML document containing a pipe
advertisement, or an exception is raised by the JXTA platform. Recall that the application which creates
the input pipe also reads its pipe advertisement from the same file. The contents of the
examplepipe.adv file are listed in on page 73.
As in the previous PipeListener example, the AdvertisementFactory.newAdvertisement() method is
called to create a new pipe advertisement :

pipeAdv = (PipeAdvertisement)
AdvertisementFactory.newAdvertisement(
new MimeMediaType("text/xml"), is);

After the pipe advertisement is created, the input stream is closed and the method returns:
is.close();

10 See class RendezvousEvent for a complete list of possible RendezvousEvents.

68 JXTA v2.3.x: Java Programmer’s Guide

Source Code: PipeExample

import java.io.FileInputStream;
import java.io.IOException;
import java.util.Date;

import net.jxta.discovery.DiscoveryService;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.StringMessageElement;
import net.jxta.exception.PeerGroupException;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.pipe.OutputPipe;
import net.jxta.pipe.OutputPipeEvent;
import net.jxta.pipe.OutputPipeListener;
import net.jxta.pipe.PipeService;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.rendezvous.RendezvousEvent;
import net.jxta.rendezvous.RendezvousListener;
import net.jxta.rendezvous.RendezVousService;

/**
* This exapmle illustrates how to use the OutputPipeListener interface
*
*/
public class PipeExample implements

Runnable,
OutputPipeListener,
RendezvousListener {

static PeerGroup netPeerGroup = null;
private final static String SenderMessage = "PipeListenerMsg";
private PipeService pipe;
private DiscoveryService discovery;
private PipeAdvertisement pipeAdv;
private RendezVousService rendezvous;

/**
* main
*
*@param args command line arguments
*/
public static void main(String args[]) {

PipeExample myapp = new PipeExample();
myapp.startJxta();
myapp.run();

}

69 JXTA v2.3.x: Java Programmer’s Guide

/**
* the thread which creates (resolves) the output pipe
* and sends a message once it's resolved
*/

public synchronized void run() {
try {

// create output pipe with asynchronously
// Send out the first pipe resolve call
System.out.println("Attempting to create a OutputPipe");
pipe.createOutputPipe(pipeAdv, this);
// send out a second pipe resolution after we connect
// to a rendezvous
if (!rendezvous.isConnectedToRendezVous()) {

System.out.println("Waiting for Rendezvous Connection");
try {

wait();
System.out.println("Connected to Rendezvous,

attempting to create a OutputPipe");
pipe.createOutputPipe(pipeAdv, this);

} catch (InterruptedException e) {
// got our notification

}
}

} catch (IOException e) {
System.out.println("OutputPipe creation failure");
e.printStackTrace();
System.exit(-1);

}
}

/**
* by implementing OutputPipeListener we must define this method
* which is called when the output pipe is created
*
*@param event event object from which to get output pipe object
*/

public void outputPipeEvent(OutputPipeEvent event) {

System.out.println(" Got an output pipe event");
OutputPipe op = event.getOutputPipe();
Message msg = null;

try {
System.out.println("Sending message");
msg = new Message();

70 JXTA v2.3.x: Java Programmer’s Guide

Date date = new Date(System.currentTimeMillis());
StringMessageElement sme = new StringMessageElement(

SenderMessage, date.toString() , null);
msg.addMessageElement(null, sme);
op.send(msg);

} catch (IOException e) {
System.out.println("failed to send message");
e.printStackTrace();
System.exit(-1);

}
op.close();
System.out.println("message sent");

}

/**
* rendezvousEvent the rendezvous event
*
*@param event rendezvousEvent
*/
public synchronized void rendezvousEvent(RendezvousEvent event) {

if (event.getType() == event.RDVCONNECT ||
event.getType() == event.RDVRECONNECT) {
notify();

}
}

/**
* Starts jxta, and get the pipe, and discovery service
*/
private void startJxta() {

try {
// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();
rendezvous = netPeerGroup.getRendezVousService();
rendezvous.addListener(this);
// uncomment the following line if you want to start
// the app defined the NetPeerGroup Advertisement
// (by default it's the shell)
// in this case we want use jxta directly.
// netPeerGroup.startApp(null);

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(-1);

}

// get the pipe service, and discovery

71 JXTA v2.3.x: Java Programmer’s Guide

pipe = netPeerGroup.getPipeService();
discovery = netPeerGroup.getDiscoveryService();
System.out.println("Reading in pipexample.adv");
try {

FileInputStream is = new FileInputStream("pipexample.adv");
pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(
MimeMediaType.XMLUTF8, is);

is.close();
} catch (Exception e) {

System.out.println("failed to read/parse pipe
advertisement");

e.printStackTrace();
System.exit(-1);

}
}

}

72 JXTA v2.3.x: Java Programmer’s Guide

Pipe Advertisement: examplepipe.adv file
The XML file containing the pipe advertisement, examplepipe.adv, is listed in . This file is
read by both the PipeListener and PipeExample classes to create the input and output pipes. Both classes
must use the same pipe ID in order to communicate with each other.

0Pipe advertisement file, examplepipe.adv.

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>
urn:jxta:uuid-

59616261646162614A757874614D504725184FBC4E5D498AA0919F662E400
28B04

</Id>
<Type>
JxtaUnicast
</Type>
<Name>
PipeExample
</Name>

</jxta:PipeAdvertisement>

Note – Both the PipeListener and PipeExample applications read this file from the current directory. If
this file does not exist, or it contains an invalid pipe advertisement, the applications raise an exception
and exit.

73 JXTA v2.3.x: Java Programmer’s Guide

Using a JxtaBiDiPipe (A bidirectional reliable pipe)
This example illustrates how to use the JxtaBiDiPipe to send messages between two JXTApeers. Two
separate applications are used in this example:
• JxtaServerPipeExample —creates a JxtaServerPipe and awaits bi-directional connections
• JxtaBidiPipeExample — connects to a JxtaServerPipe and reliably exchanges messages over the

connection,
shows example output when the JxtaServerPipeExample is run, and shows example input from the
JxtaServerPipeExample:
Example output: JxtaServerPipeExample.

Reading in pipe.adv
Waiting for JxtaBidiPipe connections on JxtaServerPipe
JxtaBidiPipe accepted, sending 100 messages to the other end
Sending :Message #0
Sending :Message #1
Sending :Message #2
Sending :Message #3
Sending :Message #4
Sending :Message #5
Sending :Message #6
Sending :Message #7
Sending :Message #8
Sending :Message #9
Sending :Message #10

Example output: JxtaBidiPipeExample.

reading in pipe.adv
creating the BiDi pipe
Attempting to establish a connection
Message :Message #0
Message :Message #1
Message :Message #2
Message :Message #3
Message :Message #4
Message :Message #5
Message :Message #6
Message :Message #7
Message :Message #8
Message :Message #9
Message :Message #10

Note – If you are running both applications on the same system, you will need to run each one from a
separate subdirectory so that they can be configured to use separate ports. The JxtaServerPipeExample
application must be run first. It reads in pipe.adv which contains the pipe advertisement. After the pipe
advertisement is read JxtaServerPipeExample listens for JxtaBiDiPipe connections.

JxtaBiDiPipe
The JxtaBiDiPipe uses the core JXTAuni-directional pipes (InputPipe and OutputPipe) to simulate bi-
directional pipes in the platform J2SE binding. The JxtaServerPipe defines the following methods:
• bind — binds to the pipe within the specified group
• connect — connects JxtaBiDiPipe to a JxtaServerPipe within the specified group
• setPipeTimeout — Sets the Timeout to establish a JxtaBiDiPipe connection
JxtaBiDiPipe defines the following methods:

74 JXTA v2.3.x: Java Programmer’s Guide

• setReliable() — toggles reliability
• setListener() — registers a message listener for asynchronous message delivery
• sendMessage — asynchronously delivers a message
• getMessage() — synchronously waits for messages within specified timeout
• setPipeTimeout — Sets the Timeout to establish a JxtaBiDiPipe connection

JxtaServerPipeExample
This application creates JxtaServerPipe and awaits connections. File pipe.adv contains the pipe
advertisement which both ends bind to.
• File pipe.adv—The XML file containing the text representation of our pipe

advertisement
• String SenderMessage— the message element name, or tag, which we are expecting

in any message we receive
We also define the following instance fields:
• PeerGroup netPeerGroup— our peer group, the default net peer group
• JxtaServerPipe serverPipe— the JxtaServerPipe we use to accept connections

and receive messages

main()
This method creates a new JxtaServerPipeExample object, calls startJxta() to instantiate the JXTA
platform and create the default net peer group, and calls run().

startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

run()
This method uses the JxtaServerPipe to accept connections, and send messages.

JxtaBiDiPipe bipipe = serverPipe.accept();

Once a connection is returned, JxtaServerPipeExample send 100, then resumes to accept new
connections. This step is repeated until the process is killed.

75 JXTA v2.3.x: Java Programmer’s Guide

Source Code: JxtaServerPipeExample

import java.io.File;
import java.io.FileOutputStream;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Date;
import net.jxta.credential.AuthenticationCredential;
import net.jxta.credential.Credential;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.MessageElement;
import net.jxta.endpoint.Messenger;
import net.jxta.endpoint.StringMessageElement;
import net.jxta.exception.PeerGroupException;
import net.jxta.membership.InteractiveAuthenticator;
import net.jxta.membership.MembershipService;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.util.JxtaBiDiPipe;
import net.jxta.util.JxtaServerPipe;
import net.jxta.document.MimeMediaType;
import net.jxta.document.StructuredDocument;
import net.jxta.impl.protocol.PlatformConfig;
import org.apache.log4j.Logger;

/**
* This example illustrates how to utilize the JxtaBiDiPipe Reads in
* pipe.adv and attempts to bind to a JxtaServerPipe
*/
public class JxtaServerPipeExample {

public static final int ITERATIONS = 100;
private PeerGroup netPeerGroup = null;
private PipeAdvertisement pipeAdv;
private JxtaServerPipe serverPipe;
private static final MimeMediaType MEDIA_TYPE = new

MimeMediaType("application/bin");
private final static Logger LOG = Logger.getLogger(

JxtaServerPipeExample.class.getName
());

private final static String SenderMessage = "pipe_tutorial";

/**
* main
*

76 JXTA v2.3.x: Java Programmer’s Guide

* @param args command line args
*/
public static void main(String args[]) {

JxtaServerPipeExample eg = new JxtaServerPipeExample();
eg.startJxta();
System.out.println("Reading in pipe.adv");
try {

FileInputStream is = new FileInputStream("pipe.adv");
eg.pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(
MimeMediaType.XMLUTF8, is);

is.close();
eg.serverPipe = new JxtaServerPipe(eg.netPeerGroup,

eg.pipeAdv);
// we want to block until a connection is established
eg.serverPipe.setPipeTimeout(0);

} catch (Exception e) {
System.out.println("failed to bind to the JxtaServerPipe

due to the following exception");
e.printStackTrace();
System.exit(-1);

}
// run on this thread
eg.run();

}

private void sendTestMessages(JxtaBiDiPipe pipe) {
try {

for (int i =0; i<ITERATIONS; i++) {
Message msg = new Message();
String data = "Message #"+i;
msg.addMessageElement(SenderMessage,

new StringMessageElement(SenderMessage,
data,
null));

System.out.println("Sending :"+data);
pipe.sendMessage(msg);
//Thread.sleep(100);
}

} catch (Exception ie) {
ie.printStackTrace();

}
}

/**
* wait for msgs
*

77 JXTA v2.3.x: Java Programmer’s Guide

*/
public void run() {

System.out.println("Waiting for JxtaBidiPipe
connections on JxtaServerPipe");

while (true) {
try {

JxtaBiDiPipe bipipe = serverPipe.accept();
if (bipipe != null) {

System.out.println("JxtaBidiPipe accepted,
sending 100 messages to the other end");

//Send a 100 messages
sendTestMessages(bipipe);

}
} catch (Exception e) {

e.printStackTrace();
return;

}
}

}

/**
* Starts jxta
*
*/
private void startJxta() {

try {
System.setProperty("net.jxta.tls.principal", "server");
System.setProperty("net.jxta.tls.password", "password");
System.setProperty("JXTA_HOME",
System.getProperty("JXTA_HOME", "server"));
File home = new File(

System.getProperty("JXTA_HOME", "server"));
if (!configured(home)) {

createConfig(home, "JxtaServerPipeExample", true);
}
// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();
JxtaBidiPipeExample.login(netPeerGroup, "server", "password");
//netPeerGroup.startApp(null);

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit

System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
}

/**

78 JXTA v2.3.x: Java Programmer’s Guide

*Returns a resource InputStream
*
*@param resource resource name
*@return returns a resource InputStream
*@exception IOException if an I/O error occurs
*/
protected static InputStream getResourceInputStream(

String resource) throws IOException {
ClassLoader cl = JxtaServerPipeExample.class.getClassLoade();
return cl.getResourceAsStream(resource);

}
/**
*Returns true if the node has been configured, otherwise false
*
*@param home node jxta home directory
*@return true if home/PlatformConfig exists
*/
protected static boolean configured(File home) {

File platformConfig = new File(home, "PlatformConfig");
return platformConfig.exists();

}
/**
* Creates a PlatformConfig with peer name set to name
*
*@param home node jxta home directory
*@param name node given name (can be hostname)
*/
protected static void createConfig(File home,

String name, boolean server) {
try {

String fname = null;
if (server) {

fname = "ServerPlatformConfig.master";
} else {

fname = "PlatformConfig.master";
}
InputStream is = getResourceInputStream(fname);
home.mkdirs();
PlatformConfig platformConfig = (PlatformConfig)
AdvertisementFactory.newAdvertisement(

MimeMediaType.XMLUTF8, is);
is.close();
platformConfig.setName(name);
File newConfig = new File(home, "PlatformConfig");
OutputStream op = new FileOutputStream(newConfig);
StructuredDocument doc = (StructuredDocument)

platformConfig.getDocument(MimeMediaType.XMLUTF8);
doc.sendToStream(op);
op.close();

79 JXTA v2.3.x: Java Programmer’s Guide

} catch (IOException e) {
e.printStackTrace();

}
}

}

80 JXTA v2.3.x: Java Programmer’s Guide

Example pipe advertisement: pipe.adv
An example pipe advertisement, saved to the file pipe.adv, is listed below:

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>

urn:jxta:uuid-59616261646162614E504720503250338944BCED387C4A2BBD8E9415B78C484104
</Id>
<Type>

JxtaUnicast
</Type>
<Name>

ServerPipe tutorial
</Name>

</jxta:PipeAdvertisement>

81 JXTA v2.3.x: Java Programmer’s Guide

JxtaBidiPipeExample
This application creates JxtaDiDiPipe and attempts to connect to JxtaServerPipe. pipe.adv contains the
pipe advertisement which both ends binds to.
• File pipe.adv—The XML file containing the text representation of our pipe

advertisement
• String SenderMessage— the message element name, or tag, which we must include

in any message we send to the JxtaServerPipeExample (the sender and the receiver must agree on
the tags used)

• We also define the following instance fields:
• PeerGroup netPeerGroup— our peer group, the default net peer group
• PipeAdvertisement pipeAdv— the pipe advertisement used in this example
• JxtaBiDiPipe pipe — the JxtaBiDiPipe used to connect to JxtaServerPipe

main()
This method creates a new JxtaBidiPipeExample object, calls startJxta() to instantiate the JXTA
platform and create the default net peer group, and then awaits to be notified when messages arrive.
When a messages the message content is printed on the console.

FileInputStream is = new FileInputStream("pipe.adv");
eg.pipeAdv = (PipeAdvertisement) AdvertisementFactory.

newAdvertisement(MimeMediaType.XMLUTF8, is);
is.close();
System.out.println("creating the BiDi pipe");
eg.pipe = new JxtaBiDiPipe();
// ensure reliability
eg.pipe.setReliable(true);
System.out.println("Attempting to establish a connection")
eg.pipe.connect(eg.netPeerGroup,

// any peer listening on the server pipe will do
null,
eg.pipeAdv,
// wait upto 3 minutes
180000,
// register as a message listener
eg);

startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();
It then gets establishes it's credentials within the netpeerGroup :

login(netPeerGroup, "principal", "password");

82 JXTA v2.3.x: Java Programmer’s Guide

Source Code: JxtaBidiPipeExample

import java.io.File;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.util.Date;
import net.jxta.credential.AuthenticationCredential;
import net.jxta.credential.Credential;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.MessageElement;
import net.jxta.endpoint.Messenger;
import net.jxta.endpoint.StringMessageElement;
import net.jxta.exception.PeerGroupException;
import net.jxta.impl.membership.pse.StringAuthenticator;
import net.jxta.membership.InteractiveAuthenticator;
import net.jxta.membership.MembershipService;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.pipe.PipeMsgEvent;
import net.jxta.pipe.PipeMsgListener;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.util.JxtaBiDiPipe;
import net.jxta.rendezvous.RendezvousEvent;
import net.jxta.rendezvous.RendezvousListener;
import net.jxta.rendezvous.RendezVousService;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

/**
* This example illustrates how to utilize the JxtaBiDiPipe Reads in
* pipe.adv and attempts to bind to a JxtaServerPipe
*/

public class JxtaBidiPipeExample implements PipeMsgListener,
RendezvousListener {

private PeerGroup netPeerGroup = null;
private PipeAdvertisement pipeAdv;
private JxtaBiDiPipe pipe;
private RendezVousService rendezvous;
private final static String SenderMessage = "pipe_tutorial";
private final static String completeLock = "completeLock";
private int count = 0;

83 JXTA v2.3.x: Java Programmer’s Guide

private final static Logger LOG = Logger.getLogger
(JxtaBidiPipeExample.class.getName());

/**
* Starts jxta
*/
private void startJxta() {

try {
System.setProperty("net.jxta.tls.principal", "client");
System.setProperty("net.jxta.tls.password", "password");
System.setProperty("JXTA_HOME",

System.getProperty("JXTA_HOME", "client"));
File home = new File(System.getProperty("JXTA_HOME",

"client"));
if (!JxtaServerPipeExample.configured(home)) {

JxtaServerPipeExample.createConfig(home,
"JxtaBidiPipeExample", false);

}

// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();
rendezvous = netPeerGroup.getRendezVousService();
login(netPeerGroup, "client", "password");
netPeerGroup.startApp(null);

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
}

public static void login(PeerGroup group,
String principal, String password) {

try {
StringAuthenticator auth = null;
MembershipService membership = group.getMembershipService();
Credential cred = membership.getDefaultCredential();
if (cred == null) {

AuthenticationCredential authCred = new
AuthenticationCredential(group,

"StringAuthentication", null);
try {

auth = (StringAuthenticator)
membership.apply(authCred);

} catch(Exception failed) {
;

}

84 JXTA v2.3.x: Java Programmer’s Guide

if (auth != null) {
auth.setAuth1_KeyStorePassword(

password.toCharArray());
auth.setAuth2Identity(group.getPeerID());
auth.setAuth3_IdentityPassword(

principal.toCharArray());
if (auth.isReadyForJoin()) {

membership.join(auth);
}

}
}

cred = membership.getDefaultCredential();
if (null == cred) {

AuthenticationCredential authCred = new
AuthenticationCredential(group,

"InteractiveAuthentication", null);
InteractiveAuthenticator iAuth =

(InteractiveAuthenticator) membership.apply(
authCred);

if (iAuth.interact() && iAuth.isReadyForJoin()) {
membership.join(iAuth);

}
}

} catch(Throwable e) {
// make sure output buffering doesn't wreck console display.
System.out.flush();
System.err.println("Uncaught Throwable caught by 'main':");
e.printStackTrace();
System.exit(1);

} finally {
System.err.flush();
System.out.flush();

}
}
/**
* when we get a message, print out the message on the console
*
*@param event message event
*/
public void pipeMsgEvent(PipeMsgEvent event) {

Message msg = null;
try {

// grab the message from the event
msg = event.getMessage();
if (msg == null) {

if (LOG.isEnabledFor(Level.DEBUG)) {

85 JXTA v2.3.x: Java Programmer’s Guide

LOG.debug("Received an empty message, returning");
}
return;

}
if (LOG.isEnabledFor(Level.DEBUG)) {

LOG.debug("Received a response");
}
// get the message element named SenderMessage
MessageElement msgElement = msg.getMessageElement(

SenderMessage, SenderMessage);
// Get message
if (msgElement.toString() == null) {

System.out.println("null msg received");
} else {

Date date = new Date(System.currentTimeMillis());
System.out.println("Message :"+ msgElement.toString());
count ++;

}
if (count >= JxtaServerPipeExample.ITERATIONS) {

synchronized(completeLock) {
completeLock.notify();

}
}

} catch (Exception e) {
if (LOG.isEnabledFor(Level.DEBUG)) {

LOG.debug(e);
}
return;

}
}
/**
* rendezvousEvent the rendezvous event
*
*@param event rendezvousEvent
*/
public synchronized void rendezvousEvent(RendezvousEvent event) {

if (event.getType() == event.RDVCONNECT ||
event.getType() == event.RDVRECONNECT) {
notify();

}
}
/**
* awaits a rendezvous connection
*/
private synchronized void waitForRendezvousConncection() {

if (!rendezvous.isConnectedToRendezVous()) {
System.out.println("Waiting for Rendezvous Connection");
try {

wait();

86 JXTA v2.3.x: Java Programmer’s Guide

System.out.println("Connected to Rendezvous");
} catch (InterruptedException e) {

// got our notification
}

}
}

private void waitUntilCompleted() {
try {

synchronized(completeLock) {
completeLock.wait();

}
System.out.println("Done.");

} catch (InterruptedException e) {
System.out.println("Interrupted.");

}
}

/**
* main
*
*@param args command line args
*/
public static void main(String args[]) {

JxtaBidiPipeExample eg = new JxtaBidiPipeExample();
eg.startJxta();
System.out.println("reading in pipe.adv");
try {

FileInputStream is = new FileInputStream("pipe.adv");
eg.pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(
MimeMediaType.XMLUTF8, is);

is.close();
System.out.println("creating the BiDi pipe");
eg.pipe = new JxtaBiDiPipe();
eg.pipe.setReliable(true);
eg.waitForRendezvousConncection();
System.out.println("Attempting to establish a connection");
eg.pipe.connect(eg.netPeerGroup,

null,
eg.pipeAdv,
180000,
// register as a message listener
eg);

//at this point we need to keep references around
//until data xchange is complete
eg.waitUntilCompleted();
System.exit(0);

87 JXTA v2.3.x: Java Programmer’s Guide

} catch (Exception e) {
System.out.println("failed to bind the JxtaBiDiPipe due

to the following exception");
e.printStackTrace();
System.exit(-1);

}
}

}

88 JXTA v2.3.x: Java Programmer’s Guide

Using JxtaSockets (bidirectional reliable pipes with java.net.Socket interface)

JxtaSocket is a bidirectional Pipe, which exposes a java.net.Socket interface. JxtaSockets behave as
closely as possible as a regular java socket, with the following differences:
• JxtaSockets do not implement Nagel's algorithm and therefore applications must flush data at the end

of data transmission, or as the application necessitates.
• JxtaSockets do not implement keep alive, for most applications it is not required, however is good to

note.
This example illustrates how to use the JxtaSockets to send data between two JXTApeers. Two separate
applications are used in this example:
• JxtaServerSocketExample —creates a JxtaServerSocket and awaits bi-directional connections
• JxtaSocketExample — connects to a JxtaSocket and reliably exchanges data over the connection,
shows example output when the JxtaServerPipeExample is run, and shows example input from the
JxtaServerSocketExample:

Example output: JxtaSocketExample.
Starting JXTA
reading in socket.adv
Connecting to the server
Reading in data
received 299 bytes
Sending back 65536 * 1824 bytes
Completed in :21673 msec
Data Rate :43089 Kbit/sec
Connecting to the server
Reading in data
received 299 bytes
Sending back 65536 * 1824 bytes
Completed in :14743 msec
Data Rate :63344 Kbit/sec

Example output: JxtaServerSocketExample.
Reading in socket.adv
starting ServerSocket
Calling accept
socket created
299 bytes sent

Note – If you are running both applications on the same system, you will need to run each one from a
separate subdirectory so that they can be configured to use separate ports. The JxtaServerSocketExample
application must be run first. It reads in pipe.adv which contains the pipe advertisement. After the pipe
advertisement is read JxtaServerSocketExample listens for JxtaSocket connections.

JxtaSocket
The JxtaSocket uses the core JXTAuni-directional pipes (InputPipe and OutputPipe) to simulate a socket
connection in the platform J2SE binding.

The JxtaServerSocket defines the following methods:
• bind — binds to the pipe within the specified group
• accept — waits for JxtaSocket connections within the specified group
• setSoTimeout — Sets the ServerSocket Timeout
JxtaSocket defines the following methods:

• create() — toggles reliability

89 JXTA v2.3.x: Java Programmer’s Guide

• getOutputStream ()— returns the output stream for the socket
• getInputStream() — returns the intput stream for the socket
• setSoTimeout() — Sets the Socket Timeout

JxtaServerSocketExample
This application creates JxtaServerSocket and awaits connections. File socket.adv contains the pipe
advertisement which both ends bind to.
• File socket.adv—The XML file containing the text representation of our pipe

advertisement
We also define the following instance fields:
• PeerGroup netPeerGroup— our peer group, the default net peer group
• JxtaServerSocket serverSocket— the JxtaServerSocket we use to accept

connections

main()
This method creates a new JxtaServerPipeExample object, calls startJxta() to instantiate the JXTA
platform and create the default net peer group, and calls run().

startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

run()
This method uses the JxtaServerSocket to accept connections, and send and receive data.

Socket socket = serverSocket.accept();

Once a connection is returned, JxtaServerSocketExample sends the content of the socket.adv file then
awaits data from the remote side

90 JXTA v2.3.x: Java Programmer’s Guide

Source Code: JxtaServerSocketExample

import java.io.File;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.net.Socket;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.exception.PeerGroupException;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.socket.JxtaServerSocket;
import net.jxta.protocol.PipeAdvertisement;

/**
* This tutorial illustrates the use JxtaServerSocket It creates a
* JxtaServerSocket with a back log of 10. it also blocks indefinitely,
until a
* connection is established Once a connection is established, it sends
* the content of socket.adv and reads data from the remote side.
*
*/

public class JxtaServerSocketExample {

private transient PeerGroup netPeerGroup = null;
private transient PipeAdvertisement pipeAdv;
private transient JxtaServerSocket serverSocket;

/**
* Sends data over socket
*
*@param socket the socket
*/
private void sendAndReceiveData(Socket socket) {

try {
// get the socket output stream
OutputStream out = socket.getOutputStream();
// read a file into a buffer
File file = new File("socket.adv");
FileInputStream is = new FileInputStream(file);
int size = 4096;
byte[] buf = new byte[size];
int read = is.read(buf, 0, size);

// send some bytes over the socket (the socket adv is used,
// but that could be anything. It's just a handshake.)

91 JXTA v2.3.x: Java Programmer’s Guide

out.write(buf, 0, read);
out.flush();
System.out.println(read + " bytes sent");
InputStream in = socket.getInputStream();

// this call should block until bits are avail.
long total = 0;
long start = System.currentTimeMillis();
while (true) {

read = in.read(buf, 0, size);
if (read < 1) {

break;
}
total += read;
//System.out.print(".");
//System.out.flush();

}
System.out.println("");
long elapsed = System.currentTimeMillis() - start;
System.out.println("EOT. Received " + total + " bytes in " +

elapsed + " ms. Throughput = " +
((total * 8000) / (1024 * elapsed)) + " Kbit/s.");

socket.close();
System.out.println("Closed connection. Ready for next

connection.");
} catch (IOException ie) {

ie.printStackTrace();
}

}

/**
* wait for data
*/
public void run() {

System.out.println("starting ServerSocket");
while (true) {

try {
System.out.println("Calling accept");
Socket socket = serverSocket.accept();
// set reliable
if (socket != null) {

System.out.println("socket created");
sendAndReceiveData(socket);

}
} catch (Exception e) {

e.printStackTrace();
}

}

92 JXTA v2.3.x: Java Programmer’s Guide

}

/**
* Starts jxta
*/
private void startJxta() {

try {
System.setProperty("net.jxta.tls.principal", "server");
System.setProperty("net.jxta.tls.password", "password");
System.setProperty("JXTA_HOME", System.getProperty("JXTA_HOME",

"server"));
File home = new File(System.getProperty("JXTA_HOME",

"server"));
if (!JxtaSocketExample.configured(home)) {

JxtaSocketExample.createConfig(home,
"JxtaServerSocketExample", true);

}

// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();
//JxtaSocketExample.login(netPeerGroup, "server", "password");

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
}

/**
* main
*
*@param args command line args
*/
public static void main(String args[]) {

JxtaServerSocketExample socEx = new JxtaServerSocketExample();
socEx.startJxta();
System.out.println("Reading in socket.adv");
try {

FileInputStream is = new FileInputStream("socket.adv");
socEx.pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(MimeMediaType.XMLUTF8, is);
is.close();
socEx.serverSocket = new JxtaServerSocket(socEx.netPeerGroup,

socEx.pipeAdv, 10);
// block until a connection is available
socEx.serverSocket.setSoTimeout(0);

} catch (Exception e) {

93 JXTA v2.3.x: Java Programmer’s Guide

System.out.println("failed to read/parse pipe advertisement");
e.printStackTrace();
System.exit(-1);

}
socEx.run();

}
}

94 JXTA v2.3.x: Java Programmer’s Guide

Example pipe advertisement: socket.adv
An example pipe advertisement, saved to the file socket.adv, is listed below:

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>

urn:jxta:uuid-59616261646162614E5047205032503393B5C2F6CA7A41FBB0F890173088E79404
</Id>
<Type>

JxtaUnicast
</Type>
<Name>

socket tutorial
</Name>

</jxta:PipeAdvertisement>

95 JXTA v2.3.x: Java Programmer’s Guide

JxtaSocketExample
This application creates JxtaSocket and attempts to connect to JxtaServerSocket. socket.adv contains
the pipe advertisement which both ends binds to.
• File socket.adv—The XML file containing the text representation of our pipe

advertisement
• We also define the following instance fields:
• PeerGroup netPeerGroup— our peer group, the default net peer group
• PipeAdvertisement pipeAdv— the pipe advertisement used in this example
• JxtaSocket socket — the JxtaSocket used to connect to JxtaServerSocket

main()
This method creates a new JxtaSocketExample object, calls startJxta() to instantiate the JXTAplatform
and create the default net peer group, and then calls the run method to establish a connection to receive
and send data.

JxtaSocketExample socEx = new JxtaSocketExample();
System.out.println("Starting JXTA");
socEx.startJxta();
System.out.println("reading in socket.adv");
FileInputStream is = new FileInputStream("socket.adv");
socEx.pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(
MimeMediaType.XMLUTF8, is);

is.close();
// run it once
socEx.run();
// run it again, to exclude any object
// initialization overhead
socEx.run();

startJxta()
This method creates a configuration from a default configuration, and then instantiates the JXTA
platform and creates the default net peer group :

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

96 JXTA v2.3.x: Java Programmer’s Guide

Source Code: JxtaSocketExample

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.OutputStream;
import net.jxta.credential.AuthenticationCredential;
import net.jxta.credential.Credential;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.document.StructuredDocument;
import net.jxta.exception.PeerGroupException;
import net.jxta.impl.membership.pse.StringAuthenticator;
import net.jxta.impl.protocol.PlatformConfig;
import net.jxta.membership.InteractiveAuthenticator;
import net.jxta.membership.MembershipService;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.protocol.PipeAdvertisement;
import net.jxta.socket.JxtaSocket;

/**
* This tutorial illustrates the use JxtaSocket. It attempts to bind a
* JxtaSocket to an instance of JxtaServerSocket bound socket.adv. Once a
* connection is established, it reads in expected data from the remote
* side, and then sends 1824 64K chunks and measures data rate achieved
*
*/

public class JxtaSocketExample {

private transient PeerGroup netPeerGroup = null;
private transient PipeAdvertisement pipeAdv;
private transient JxtaSocket socket;
// number of iterations to send the payload
private static int ITERATIONS = 1824;
// payload size
private static int payloadSize = 64 * 1024;

/**
* Interact with the server.
*
*@exception IOException if an io exception occurs
*/
public void run() throws IOException {

97 JXTA v2.3.x: Java Programmer’s Guide

int bufsize = 1024;
System.out.println("Connecting to the server");
socket = new JxtaSocket(netPeerGroup,

//no specific peerid
null,
pipeAdv,
//general TO: 30 seconds
30000,
// reliable connection
true);

// Set buffer size to payload size
socket.setOutputStreamBufferSize(65536);

// The server initiates communication by sending a small data packet
// and then awaits data from the client
System.out.println("Reading in data");
InputStream in = socket.getInputStream();
byte[] inbuf = new byte[bufsize];
int read = in.read(inbuf, 0, bufsize);
System.out.println("received " + read + " bytes");

// Server is awaiting this data
// Send data and time it.
System.out.println("Sending back " + payloadSize +

" * " + ITERATIONS + " bytes");
OutputStream out = socket.getOutputStream();
byte[] payload = new byte[payloadSize];
long t0 = System.currentTimeMillis();
for (int i = 0; i < ITERATIONS; i++) {

out.write(payload, 0, payloadSize);
}
out.flush();
// include close in timing since it may need to flush the
// tail end of the stream.
socket.close();
long t1 = System.currentTimeMillis();
System.out.println("Completed in :" + (t1 - t0) + " msec");
System.out.println("Data Rate :" +

((long) 64 * ITERATIONS * 8000) / (t1 - t0) + " Kbit/sec");
}

/**
* Starts the NetPeerGroup, and logs in
*
*@exception PeerGroupException if a PeerGroupException occurs
*/

98 JXTA v2.3.x: Java Programmer’s Guide

private void startJxta() throws PeerGroupException {
System.setProperty("net.jxta.tls.principal", "client");
System.setProperty("net.jxta.tls.password", "password");
System.setProperty("JXTA_HOME",

System.getProperty("JXTA_HOME", "client"));
File home = new File(System.getProperty("JXTA_HOME", "client"));
if (!configured(home)) {

createConfig(home, "JxtaSocketExample", false);
}

// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

}

/**
* Establishes credentials with the specified peer group
*
*@param group PeerGroup
*@param principal Principal
*@param password password
*/
public static void login(PeerGroup group, String principal, String

password) {
try {

StringAuthenticator auth = null;
MembershipService membership = group.getMembershipService();
Credential cred = membership.getDefaultCredential();
if (cred == null) {

AuthenticationCredential authCred = new
AuthenticationCredential(group, "StringAuthentication", null);

try {
auth = (StringAuthenticator) membership.apply(authCred);

} catch (Exception failed) {
;

}

if (auth != null) {
auth.setAuth1_KeyStorePassword(password.toCharArray());
auth.setAuth2Identity(group.getPeerID());
auth.setAuth3_IdentityPassword(principal.toCharArray());
if (auth.isReadyForJoin()) {

membership.join(auth);
}

}
}

cred = membership.getDefaultCredential();

99 JXTA v2.3.x: Java Programmer’s Guide

if (null == cred) {
AuthenticationCredential authCred = new
AuthenticationCredential(group,

"InteractiveAuthentication", null);

InteractiveAuthenticator iAuth = (InteractiveAuthenticator)
membership.apply(authCred);

if (iAuth.interact() && iAuth.isReadyForJoin()) {
membership.join(iAuth);

}
}

} catch (Throwable e) {
System.out.flush();
// make sure output buffering doesn't wreck console display.
System.err.println("Uncaught Throwable caught by 'main':");
e.printStackTrace();
System.exit(1);
// make note that we abended

}
finally {

System.err.flush();
System.out.flush();

}
}

/**
* returns a resource InputStream
*
*@param resource resource name
*@return returns a resource InputStream
*@exception IOException if an I/O error occurs
*/
protected static InputStream getResourceInputStream(String resource)

throws IOException {
ClassLoader cl = JxtaSocketExample.class.getClassLoader();
return cl.getResourceAsStream(resource);

}
/**
* Returns true if the node has been configured, otherwise false
*
*@param home node jxta home directory
*@return true if home/PlatformConfig exists
*/
protected static boolean configured(File home) {

File platformConfig = new File(home, "PlatformConfig");
return platformConfig.exists();

}
/**

100 JXTA v2.3.x: Java Programmer’s Guide

* Creates a PlatformConfig with peer name set to name
*
*@param home node jxta home directory
*@param name node given name (can be hostname)
*/
protected static void createConfig(File home, String name,

boolean server) {
try {

String fname = null;
if (server) {

fname = "ServerPlatformConfig.master";
} else {

fname = "PlatformConfig.master";
}
InputStream is = getResourceInputStream(fname);
home.mkdirs();
PlatformConfig platformConfig = (PlatformConfig)

AdvertisementFactory.newAdvertisement(MimeMediaType.XMLUTF8, is);
is.close();
platformConfig.setName(name);
File newConfig = new File(home, "PlatformConfig");
OutputStream op = new FileOutputStream(newConfig);
StructuredDocument doc = (StructuredDocument)

platformConfig.getDocument(MimeMediaType.XMLUTF8);
doc.sendToStream(op);
op.close();

} catch (IOException e) {
e.printStackTrace();

}
}
/**
* main
*
*@param args none recognized.
*/
public static void main(String args[]) {

try {
JxtaSocketExample socEx = new JxtaSocketExample();
System.out.println("Starting JXTA");
socEx.startJxta();
System.out.println("reading in socket.adv");
FileInputStream is = new FileInputStream("socket.adv");
socEx.pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(MimeMediaType.XMLUTF8, is);
is.close();
// run it once
socEx.run();
// run it again, to exclude any object initialization overhead

101 JXTA v2.3.x: Java Programmer’s Guide

socEx.run();
} catch (Throwable e) {

System.out.println("failed : " + e);
e.printStackTrace();
System.exit(-1);

}
System.exit(0);

}
}

102 JXTA v2.3.x: Java Programmer’s Guide

JXTA Services
JXTA-enabled services are services that are published by a ModuleSpecAdvertisement. Amodule spec
advertisement may include a pipe advertisement that can be used by a peer to create output pipes to
invoke the service. Each Jxta-enabled service is uniquely identified by its ModuleSpecID.
There are three separate service-related advertisements:
• ModuleClassAdvertisement— defines the service class; its main purpose is to formally document the

existence of a module class. It is uniquely identified by a ModuleClassID.
• ModuleSpecAdvertisement— defines a service specification; uniquely identified by a ModuleSpecID.

Its main purpose is to provide references to the documentation needed in order to create conforming
implementations of that specification. A secondary use is to make running instances usable remotely,
by publishing any or all of the following:

• PipeAdvertisement
• ModuleSpecID of a proxy module
• ModuleSpecID of an authenticator module
• ModuleImplAdvertisement— defines an implementation of a given service specification.

Each of these advertisements serves different purposes, and should be published separately. For example,
there are typically more specifications than classes, and more implementations than specifications, and in
many cases only the implementation needs to be discovered.
ModuleClassIDs and ModuleSpecIDs are used to uniquely identify the components:
• ModuleClassID
AModuleClassID uniquely identifies a particular module class. AModuleClassID is optionally described
by a published ModuleClassAdvertisement. It is not required to publish a Module Class Advertisement
for a Module Class ID to be valid, although it is a good practice.
• ModuleSpecID
AModuleSpecID uniquely identifies a particular module specification. Each ModuleSpecID embeds a
ModuleClassID which uniquely identifies the base Module class. The specification that corresponds to a
given ModuleSpecID may be published in a ModuleSpecAdvertisement. It is not required to publish a
Module Spec Advertisement for a ModuleSpecID to be valid, although it is a good practice.
In our example JXTA-enabled service, we create a ModuleClassID and publish it in a
ModuleClassAdvertisement. We then create a ModuleSpecID (based on our ModuleClassID) and add it
to a ModuleSpecAdvertisement. We then add a pipe advertisement to this ModuleSpecAdvertisement and
publish it. Other peers can now discover this ModuleSpecAdvertisement, extract the pipe advertisement,
and communicate with our service.

Note – Modules are also used by peer groups to describe peer group services. That discussion is beyond
the scope of this example which creates a stand-alone service.

103 JXTA v2.3.x: Java Programmer’s Guide

Creating a JXTA Service
This example illustrates how to create a new JXTAservice and its service advertisement, publish and
search for advertisements via the Discovery service, create a pipe via the Pipe service, and send
messages through the pipe. It consists of two separate applications:
• Server
The Server application creates the service advertisements (ModuleClassAdvertisement and
ModuleSpecAdvertisement) and publishes them in the NetPeerGroup. The ModuleSpecAdvertisement
contains a PipeAdvertisement required to connect to the service. The Server application then starts the
service by creating an input pipe to receive messages from clients. The service loops forever, waiting
for messages to arrive.
• Client
The Client application discovers the ModuleSpecAdvertisement, extracts the PipeAdvertisement and
creates an output pipe to connect to the service, and sends a message to the service.

shows example output when the Server application is run, and shows example input from the Client
application:

Example output: Server application.

Starting Service Peer
Start the Server daemon
Reading in file pipeserver.adv
Created service advertisement:
jxta:MSA :

MSID : urn:jxta:uuid-B6F8546BC21D4A8FB47AA68579C9D89EF3670BB315A
C424FA7D1B74079964EA206

Name : JXTASPEC:JXTA-EX1
Crtr : sun.com
SURI : http://www.jxta.org/Ex1
Vers : Version 1.0
jxta:PipeAdvertisement :

Id : urn:jxta:uuid-9CCCDF5AD8154D3D87A391210404E59BE4B888
209A2241A4A162A10916074A9504

Type : JxtaUnicast
Name : JXTA-EX1

Waiting for client messages to arrive
Server: received message: Hello my friend!
Waiting for client messages to arrive

Example output: Client application.

104 JXTA v2.3.x: Java Programmer’s Guide

Starting Client peer
Start the Client
searching for the JXTASPEC:JXTA-EX1 Service advertisement
We found the service advertisement:
jxta:MSA :

MSID : urn:jxta:uuid-
FDDF532F4AB543C1A1FCBAEE6BC39EFDFE0336E05D31465CBE9
48722030ECAA306

Name : JXTASPEC:JXTA-EX1
Crtr : sun.com
SURI : http://www.jxta.org/Ex1
Vers : Version 1.0
jxta:PipeAdvertisement :

Id : urn:jxta:uuid-
9CCCDF5AD8154D3D87A391210404E59BE4B888209A224
1A4A162A10916074A9504

Type : JxtaUnicast
Name : JXTA-EX1

message "Hello my friend!" sent to the Server
Good Bye

1

If you are running both applications on the same system, you will need to run each one from a separate
subdirectory so that they can be configured to use separate ports. The Server application must be run
first.

105 JXTA v2.3.x: Java Programmer’s Guide

Server
Note – This is the server side of the JXTA-EX1 example. The server side application advertises the
JXTA-EX1 service, starts the service, and receives messages on a service-defined pipe endpoint. The
service associated module spec and class advertisement are published in the NetPeerGroup. Clients can
discover the module advertisements and create output pipes to connect to the service. The server
application creates an input pipe that waits to receive messages. Each message received is printed to the
screen. We run the server as a daemon in an infinite loop, waiting to receive client messages.
This application defines a single class, Server. Four class constants contain information about the
service:

• String SERVICE— the name of the service we create and advertise
• String TAG— the message element name, or tag, which we are expecting in any

message we receive; the client application must use this same tag.
• String NAMESPACE— the namespace used by the message element; the client

application must use this same space.
• String FILENAME— the name of the file that contains our pipe advertisement.

(This file must exist and contain a valid pipe advertisement in order for our application to
run correctly.)

• We also define several instance fields:
• PeerGroup group— our peer group, the default net peer group
• DiscoveryService discoSvc— the discovery service; used to publish

our new service
• PipeService pipeSvc— the pipe service; used to create our input pipe and

read messages
• InputPipe myPipe— the pipe used to receive messages

main()
This method creates a new Server object, calls startJxta() to instantiate the JXTAplatform and create the
default net peer group, calls startServer() to create and publish the service, and finally calls readMessages
() to read messages received by the service.

startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

group = PeerGroupFactory.newNetPeerGroup();
Then it retrieves the discovery and pipe services :

discoSvc = group.getDiscoveryService();
pipeSvc = group.getPipeService();

The discovery service is used later when we publish our service advertisements. The pipe service is used
later when we create our input pipe and wait for messages on it.

startServer()
This method creates and publishes the service advertisements. It starts by creating a module class
advertisement, which is used to simply advertise the existence of the service. The
AdvertisementFactory.newAdvertisement() method is used to create a new advertisement :
ModuleClassAdvertisement mcadv = (ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(
ModuleClassAdvertisement.getAdvertisementType());

It is passed one argument: the type of advertisement we want to construct. After we create our module class
advertisement, we initialize it :

mcadv.setName("JXTAMOD:JXTA-EX1");
mcadv.setDescription("Tutorial example to use JXTA module advertisement

Framework");

ModuleClassID mcID = IDFactory.newModuleClassID();
mcadv.setModuleClassID(mcID);

The name and description can be any string. A suggested naming convention is to choose a name that starts with

106 JXTA v2.3.x: Java Programmer’s Guide

"JXTAMOD" to indicate this is a JXTAmodule. Each module class has a unique ID, which is generated by calling
the IDFactory.newModuleClassID() method.
Now that the module class advertisement is created and initialized, it is published in the local cache and propagated
to our rendezvous peer :

discoSvc.publish(mcadv);
discoSvc.remotePublish(mcadv);

Next, we create the module spec advertisement associated with the service. This advertisement contains all the
information necessary for a client to contact the service. For instance, it contains a pipe advertisement to be
used to contact the service. Similar to creating the module class advertisement,
AdvertisementFactory.newAdvertisement() is used to create a new module spec advertisement :

ModuleSpecAdvertisement mdadv = (ModuleSpecAdvertisement)
AdvertisementFactory.newAdvertisement(
ModuleSpecAdvertisement.getAdvertisementType());

After the advertisement is created, we initialize the name, version, creator, ID, and URI :
mdadv.setName(SERVICE);
mdadv.setVersion("Version 1.0");
mdadv.setCreator("sun.com");
mdadv.setModuleSpecID(IDFactory.newModuleSpecID(mcID));
mdadv.setSpecURI("http://www.jxta.org/Ex1");

We use IDFactory.newModuleSpecID() to create the ID for our module spec advertisement. This method takes one
argument, which is the ID of the associated module class advertisement (created above in line).

Note – In practice, you should avoid creating a new ModuleSpecID every time you run your application,
because it tends to create many different but equivalent and interchangeable advertisements. This, in turn,
would clutter the cache space. It is preferred to allocate a new ModuleSpecID only once, and then hard-
code it into your application. A simplistic way to do this is to run your application (or any piece of code)
that creates the ModuleSpecID once:

IDFactory.newModuleSpecID(mcID)
Then print out the resulting ID and use it in your application to recreate the same ID every time:

(ModuleSpecID) IDFactory.fromURL(new URL("urn", "",
"jxta:uuid-<...ID created...>")

We now create a new pipe advertisement for our service. The client must see use the same advertisement to talk to
the server. When the client discovers the module spec advertisement, it will extract the pipe advertisement to create
its pipe. We read the pipe advertisement from a default configuration file to ensure that the service will always
advertise the same pipe :

FileInputStream is = new FileInputStream(FILENAME);
pipeadv = (PipeAdvertisement)
AdvertisementFactory.newAdvertisement(

new MimeMediaType("text/xml"), is);
is.close();

After we successfully create our pipe advertisement, we add it to the module spec advertisement :
mdadv.setPipeAdvertisement(pipeadv);

Now, we have initialized everything we need in our module spec advertisement. We print the complete
module spec advertisement as a plain text document , and then we publish it to our local cache and
propagate it to our rendezvous peer :

discoSvc.publish(mdadv);
discoSvc.remotePublish(mdadv);

We’re now ready to start the service. We create the input pipe endpoint that clients will use to connect to
the service :

myPipe = pipeSvc.createInputPipe(pipeadv);

readMessages()
This method loops continuously waiting for client messages to arrive on the service’s input pipe. It calls
PipeService.waitForMessage() :

msg = myPipe.waitForMessage();
This will block and wait indefinitely until a message is received. When a message is received, we extract
the message element with the expected namespace and tag :

el = msg.getMessageElement(NAMESPACE, TAG);
The Message.getMessageElement() method takes two arguments, a string containing the namespace and

107 JXTA v2.3.x: Java Programmer’s Guide

a string containing the tag we are looking for. The client and server application must agree on the
namespace and tag names; this is part of the service protocol defined to access the service.
Finally, assuming we find the expected message element, we print out the message element line]:
System.out.println("Server: Received message: " +

el.toString());
and then continue to wait for the next message.

108 JXTA v2.3.x: Java Programmer’s Guide

Source Code: Server

import java.io.FileInputStream;
import java.io.StringWriter;

import net.jxta.discovery.DiscoveryService;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.Element;
import net.jxta.document.MimeMediaType;
import net.jxta.document.StructuredDocument;
import net.jxta.document.StructuredDocumentFactory;
import net.jxta.document.StructuredDocumentUtils;
import net.jxta.document.StructuredTextDocument;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.MessageElement;
import net.jxta.exception.PeerGroupException;
import net.jxta.id.ID;
import net.jxta.id.IDFactory;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.pipe.InputPipe;
import net.jxta.pipe.PipeService;
import net.jxta.platform.ModuleClassID;
import net.jxta.protocol.ModuleClassAdvertisement;
import net.jxta.protocol.ModuleSpecAdvertisement;
import net.jxta.protocol.PeerGroupAdvertisement;
import net.jxta.protocol.PipeAdvertisement;

public class Server {

static PeerGroup group = null;
static PeerGroupAdvertisement groupAdvertisement = null;
private DiscoveryService discovery;
private PipeService pipes;
private InputPipe myPipe; // input pipe for the service
private Message msg; // pipe message received
private ID gid; // group id

public static void main(String args[]) {
Server myapp = new Server();
System.out.println ("Starting Service Peer");
myapp.startJxta();
System.out.println ("Good Bye");
System.exit(0);

}

109 JXTA v2.3.x: Java Programmer’s Guide

private void startJxta() {
try {

// create, and Start the default jxta NetPeerGroup
group = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}

// this is how to obtain the group advertisement
groupAdvertisement = group.getPeerGroupAdvertisement();

// get the discovery, and pipe service
System.out.println("Getting DiscoveryService");
discovery = group.getDiscoveryService();
System.out.println("Getting PipeService");
pipes = group.getPipeService();
startServer();

}

private void startServer() {

System.out.println("Start the Server daemon");

// get the peergroup service we need
gid = group.getPeerGroupID();

try {

// First create the Service Module class advertisement
// build the module class advertisement using the
// AdvertisementFactory by passing the Advertisement type
// we want to construct. The Module class advertisement
// is to be used to simply advertise the existence of
// the service. This is a very small advertisement
// that only advertise the existence of service
// In order to access the service, a peer must
// discover the associated module spec advertisement.
ModuleClassAdvertisement mcadv = (ModuleClassAdvertisement)

AdvertisementFactory.newAdv
ertisement(

ModuleClassAdvertisemen
t.getAdvertisementType());

mcadv.setName("JXTAMOD:JXTA-EX1");

110 JXTAv2.3.x: Java Programmer’s Guide

mcadv.setDescription("Tutorial example to use JXTA
module advertisement Framework");

ModuleClassID mcID = IDFactory.newModuleClassID();
mcadv.setModuleClassID(mcID);

// Once the Module Class advertisement is created, publish
// it in the local cache and within the peergroup.
discovery.publish(mcadv);
discovery.remotePublish(mcadv);

// Create the Service Module Spec advertisement
// build the module Spec Advertisement using the
// AdvertisementFactory class by passing in the
// advertisement type we want to construct.
// The Module Spec advertisement contains
// all the information necessary for a client to reach
// the service
// i.e. it contains a pipe advertisement in order
// to reach the service

ModuleSpecAdvertisement mdadv = (ModuleSpecAdvertisement)
AdvertisementFactory.newAdvertisement(
ModuleSpecAdvertisement.getAdvertisementType());

// Setup some information about the servive. In this
// example, we just set the name, provider and version
// and a pipe advertisement. The module creates an input
// pipes to listen on this pipe endpoint
mdadv.setName("JXTASPEC:JXTA-EX1");
mdadv.setVersion("Version 1.0");
mdadv.setCreator("sun.com");
mdadv.setModuleSpecID(IDFactory.newModuleSpecID(mcID));
mdadv.setSpecURI("http://www.jxta.org/Ex1");

// Create the service pipe advertisement.
// The client MUST use the same pipe advertisement to
// communicate with the server. When the client
// discovers the module advertisement it extracts
// the pipe advertisement to create its pipe.
// So, we are reading the advertisement from a default
// config file to ensure that the
// service will always advertise the same pipe
//
System.out.println("Reading in pipeserver.adv");
PipeAdvertisement pipeadv = null;

try {
FileInputStream is = new FileInputStream(

111 JXTAv2.3.x: Java Programmer’s Guide

"pipeserver.adv");
pipeadv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(
MimeMediaType.XMLUTF8, is);

is.close();
} catch (Exception e) {

System.out.println("failed to read/parse pipe
advertisement");

e.printStackTrace();
System.exit(-1);

}

// Store the pipe advertisement in the spec adv.
// This information will be retrieved by the client when it
// connects to the service
mdadv.setPipeAdvertisement(pipeadv);

// display the advertisement as a plain text document.
StructuredTextDocument doc = (StructuredTextDocument)

mdadv.getDocument
(MimeMediaType.XMLUTF8);

StringWriter out = new StringWriter();
doc.sendToWriter(out);
System.out.println(out.toString());
out.close();

// Ok the Module advertisement was created, just publish
// it in my local cache and into the NetPeerGroup.
discovery.publish(mdadv);
discovery.remotePublish(mdadv);

// we are now ready to start the service
// create the input pipe endpoint clients will
// use to connect to the service
myPipe = pipes.createInputPipe(pipeadv);

} catch (Exception ex) {
ex.printStackTrace();
System.out.println("Server: Error publishing the module");

}

// Ok no way to stop this daemon, but that's beyond the point
// of the example!
while (true) { // loop over every input received from clients

System.out.println("Waiting for client messages to arrive");

try {

112 JXTAv2.3.x: Java Programmer’s Guide

// Listen on the pipe for a client message
msg = myPipe.waitForMessage();

} catch (Exception e) {
myPipe.close();
System.out.println("Server: Error listening for

message");
return;

}

// Read the message as a String
String ip = null;

try {

// NOTE: The Client and Service must agree on the tag
// names. This is part of the Service protocol defined
// to access the service.
// get all the message elements
Message.ElementIterator en = msg.getMessageElements();
if (!en.hasNext()) {

return;
}
// get the message element named SenderMessage
MessageElement msgElement = msg.getMessageElement(null,

"DataTag");
// Get message
if (msgElement.toString() != null) {

ip = msgElement.toString();
}

if (ip != null) {
// read the data
System.out.println("Server: receive message: " + ip);

} else {
System.out.println("Server: error could not find

the tag");
}

} catch (Exception e) {
System.out.println("Server: error receiving message");

}
}

}
}

113 JXTAv2.3.x: Java Programmer’s Guide

Example Service Advertisement: pipeserver.adv file
An example pipe advertisement, stored in the pipeserver.adv file, is listed below:

<?xml version="1.0"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>
urn:jxta:uuid-

9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504
</Id>
<Type>
JxtaUnicast
</Type>
<Name>

JXTA-EX1
</Name>

</jxta:PipeAdvertisement>

114 JXTAv2.3.x: Java Programmer’s Guide

Client

Note – This is the client side of the EX1 example that looks for the JXTA-EX1 service and connects to
its advertised pipe. The Service advertisement is published in the NetPeerGroup by the server
application. The client discovers the service advertisement and creates an output pipe to connect to the
service input pipe. The server application creates an input pipe that waits to receive messages. Each
message receive is displayed to the screen. The client sends an hello message.
This application defines a single class, Client. Three class constants contain information about the
service:
• String SERVICE— the name of the service we are looking for (advertised by Server)
• String TAG— the message element name, or tag, which we include in any message we send;

the Server application must use this same tag.
• String NAMESPACE— the namespace used by the message element; the client application

must use this same space.
• We also define several instance fields:
• PeerGroup netPeerGroup— our peer group, the default net peer group
• DiscoveryService discoSvc— the discovery service; used to find the service
• PipeService pipeSvc— the pipe service; used to create our output pipe and send

messages

main()
This method creates a new Client object, calls startJxta() to instantiate the JXTA platform and create the
default net peer group, calls startClient() to find the service and send a messages.

startJxta()
This method instantiates the JXTA platform and creates the default net peer group :

group = PeerGroupFactory.newNetPeerGroup();
Then it retrieves the discovery and pipe services :

discoSvc = group.getDiscoveryService();
pipeSvc = group.getPipeService();

The discovery service is used later when we look for the service advertisement. The pipe service is used
later when we create our output pipe and send a message on it.

startClient()
This method loops until it locates the service advertisement. It first looks in the local cache to see if it can
discover an advertisement which has the (Name, JXTASPEC: JXTA-EX1) tag and value pair :

en = discoSvc.getLocalAdvertisements(DiscoveryService.ADV,
"Name",
SERVICE);

We pass the DiscoveryService.getLocalAdvertisements() method three arguments: the type of
advertisement we’re looking for, the tag ("Name"), and the value for that tag. This method returns an
enumeration of all advertisements that exactly match this tag/value pair; if no matching advertisements
are found, this method returns null.
If we don’t find the advertisement in our local cache, we send a remote discovery request searching for
the service :

discoSvc.getRemoteAdvertisements(null,
DiscoveryService.ADV,
"Name",
SERVICE,
1,
null);

115 JXTAv2.3.x: Java Programmer’s Guide

We pass the DiscoveryService.getRemoteAdvertisements() method 6 arguments:
• java.lang.string peerid— id of a peer to connect to; if null, connect to
rendezvous peer

• int type— PEER, GROUP, ADV
• java.lang.string attribute— attribute name to narrow discovery to
• java.lang.string value— value of attribute to narrow discovery to
• int threshold— the upper limit of responses from one peer
• net.jxta.discovery.DiscoveryListener listener— discovery
listener service to be used

Since discovery is asynchronous, we don’t know how long it will take. We sleep as long as we want, and
then try again.
When a matching advertisement is found, we break from the loop and continue on. We retrieve the
module spec advertisement from the enumeration of advertisements that were found :

ModuleSpecAdvertisement mdsadv = (ModuleSpecAdvertisement)
en.nextElement();
We print the advertisement as a plain text document and then extract the pipe advertisement from the
module spec advertisement :

PipeAdvertisement pipeadv = mdsadv.getPipeAdvertisement();
Now that we have the pipe advertisement, we can create an output pipe and use it to connect to the
server. In our example, we try three times to bind the pipe endpoint to the listening endpoint pipe of the
service using PipeService.createOutputPipe() :

myPipe = pipeSvc.createOutputPipe(pipeadv, 10000);
Next, we create a new (empty) message and a new element. The element contains the agreed-upon
element tag, the data (our message to send), and a null signature :

Message msg = new Message();
StringMessageElement sme = new StringMessageElement(TAG, data,

null);
We add the element to our message in the agreed-upon namespace:

msg.addMessageElement(NAMESPACE, sme);
The only thing left to do is send the message to the service using the PipeService.send() method :

myPipe.send(msg);

116 JXTAv2.3.x: Java Programmer’s Guide

Source Code: Client

1. import java.io.IOException;
import java.io.StringWriter;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.Enumeration;

import net.jxta.discovery.DiscoveryService;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.MimeMediaType;
import net.jxta.document.StructuredTextDocument;
import net.jxta.document.TextElement;
import net.jxta.endpoint.Message;
import net.jxta.endpoint.StringMessageElement;
import net.jxta.exception.PeerGroupException;
import net.jxta.id.IDFactory;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.pipe.OutputPipe;
import net.jxta.pipe.PipeID;
import net.jxta.pipe.PipeService;
import net.jxta.protocol.ModuleSpecAdvertisement;
import net.jxta.protocol.PeerGroupAdvertisement;
import net.jxta.protocol.PipeAdvertisement;

/**
* Client Side: This is the client side of the JXTA-EX1
* application. The client application is a simple example on how to
* start a client, connect to a JXTA enabled service, and invoke the
* service via a pipe advertised by the service. The
* client searches for the module specification advertisement
* associated with the service, extracts the pipe information to
* connect to the service, creates a new output to connect to the
* service and sends a message to the service.
* The client just sends a string to the service no response
* is expected from the service.
*/

public class Client {

static PeerGroup netPeerGroup = null;
static PeerGroupAdvertisement groupAdvertisement = null;
private DiscoveryService discovery;
private PipeService pipes;
private OutputPipe myPipe; // Output pipe to connect the service

117 JXTAv2.3.x: Java Programmer’s Guide

private Message msg;

public static void main(String args[]) {
Client myapp = new Client();
System.out.println ("Starting Client peer");
myapp.startJxta();
System.out.println ("Good Bye");
System.exit(0);

}

private void startJxta() {
try {

// create, and Start the default jxta NetPeerGroup
netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}

// this is how to obtain the group advertisement
groupAdvertisement = netPeerGroup.getPeerGroupAdvertisement();
// get the discovery, and pipe service
System.out.println("Getting DiscoveryService");
discovery = netPeerGroup.getDiscoveryService();
System.out.println("Getting PipeService");
pipes = netPeerGroup.getPipeService();
startClient();

}

// start the client
private void startClient() {

// Let's initialize the client
System.out.println("Start the Client");

// Let's try to locate the service advertisement
// we will loop until we find it!
System.out.println("searching for the JXTA-EX1 Service

advertisement");
Enumeration en = null;
while (true) {

try {

// let's look first in our local cache to see
// if we have it! We try to discover an adverisement
// which as the (Name, JXTA-EX1) tag value

118 JXTAv2.3.x: Java Programmer’s Guide

en = discovery.getLocalAdvertisements
(DiscoveryService.ADV,
"Name",
"JXTASPEC:JXTA-EX1");

// Ok we got something in our local cache does not
// need to go further!
if ((en != null) && en.hasMoreElements()) {

break;
}

// nothing in the local cache?, let's remotely query
// for the service advertisement.
discovery.getRemoteAdvertisements(null,

DiscoveryService.ADV,
"Name",
"JXTASPEC:JXTA-EX1",
1, null);

// The discovery is asynchronous as we do not know
// how long is going to take
try { // sleep as much as we want. Yes we

// should implement asynchronous listener pipe...
Thread.sleep(2000);

} catch (Exception e) {}

} catch (IOException e) {
// found nothing! move on

}
System.out.print(".");

}

System.out.println("we found the service advertisement");

// Ok get the service advertisement as a Spec Advertisement
ModuleSpecAdvertisement mdsadv = (ModuleSpecAdvertisement)

en.nextElement();
try {

// let's print the advertisement as a plain text document
StructuredTextDocument doc = (StructuredTextDocument)

mdsadv.getDocument
(MimeMediaType.TEXT_DEFAULTENCODING);

StringWriter out = new StringWriter();
doc.sendToWriter(out);
System.out.println(out.toString());
out.close();

// we can find the pipe to connect to the service

119 JXTAv2.3.x: Java Programmer’s Guide

// in the advertisement.
PipeAdvertisement pipeadv = mdsadv.getPipeAdvertisement();

// Ok we have our pipe advertiseemnt to talk to the service
// create the output pipe endpoint to connect
// to the server, try 3 times to bind the pipe endpoint to
// the listening endpoint pipe of the service
for (int i=0; i<3; i++) {

myPipe = pipes.createOutputPipe(pipeadv, 10000);
}

// create the data string to send to the server
String data = "Hello my friend!";

// create the pipe message
msg = new Message();
StringMessageElement sme = new StringMessageElement(

"DataTag", data , null);
msg.addMessageElement(null, sme);

// send the message to the service pipe
myPipe.send (msg);
System.out.println("message \"" + data

+ "\" sent to the Server");
} catch (Exception ex) {

ex.printStackTrace();
System.out.println("Client: Error sending message

to the service");
}

}
}

120 JXTA v2.3.x: Java Programmer’s Guide

Creating a Secure Peer Group
This example11 illustrates how to create and join a new peer group that implements authentication via a
login and a password.
shows example output when this application is run:
0Example output: Creating and joining a peer group that requires authentication.

JXTA platform Started ...
Peer Group Created ...
Peer Group Found ...
Peer Group Joined ...
--
XML Advertisement for Peer Group Advertisement
<?xml version="1.0"?>

<!DOCTYPE jxta:PGA>

<jxta:PGA xmlns:jxta="http://jxta.org">
<GID>

urn:jxta:uuid-
4D6172676572696E204272756E6F202002

</GID>
<MSID>

urn:jxta:uuid-
DEADBEEFDEAFBABAFEEDBABE000000010406

</MSID>
<Name>

SatellaGroup
</Name>
<Desc>

Peer Group using Password Authentication
</Desc>
<Svc>

<MCID>
urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE0000000505
</MCID>
<Parm>

<login>
SecurePeerGroups:FZUH:

</login>
</Parm>

</Svc>
</jxta:PGA>
--

Note – The password encryption used in net.jxta.impl.membership.PasswdMembershipService is
extremely weak and has been cracked over 2 millenniums ago. So, this method is highly unsecure. But
the principle for joining a group with better password encryption method remains the same.
You can also join the authenticated peer group with other JXTAapplications, such as the JXTA shell,
using the following user and password:
• Login: SecurePeerGroups

11 This example was provided by Bruno Margerin of Science System &Applications, Inc. Portions of the code were taken from the Instant P2P and
JXTA Shell projects.

121 JXTA v2.3.x: Java Programmer’s Guide

• Password: RULE

main()
This method call the constructor SecurePeerGroup() of the class and instantiates a new SecurePeerGroup
Object called satellaRoot.

The constructor method SecurePeerGroup()
This method creates and joins the secure peer group, and then prints the peer group’s advertisement.
More specifically, this method:

• Instantiates the JXTAplatform and creates the default netPeerGroup by calling the
startJxta() method

• Instantiates the user login, password, group name and group ID
• Creates the authenticated peer group called "SatellaGroup" by calling the createPeerGroup

() method
• Searches for the "SatellaGroup" peer group by calling the discoverPeerGroup() method
• Joins the "SatellaGroup" peer group by calling the joinPeerGroup() method
• Prints on standard output the XMLAdvertisement of the "SatellaGroup" peer group by

calling the printXmlAdvertisement() method

StartJxta()
This method instantiates the JXTA platform, creates (and later returns) the default netPeerGroup called
myNetPeeGroup :
myNetPeerGroup=PeerGroupFactory.newNetPeerGroup();

createPeerGroup()
The peer group that is being built does not have the same characteristics than the standard peer group.
Indeed, it has a different membership implementation: it uses the
net.jxta.impl.membership.PasswdMembershipService instead of the regular
net.jxta.impl.membership.NullMembershipService. Therefore, it is required to create and publish a new
Peer Group Module Implementation that reflects this new implementation of the Membership Service :
passwdMembershipModuleImplAdv=

this.createPasswdMembershipPeerGroupModuleImplAdv(rootPeerGroup);
Once created, this advertisement is published locally and remotely in the parent group using the parent
peer group’s Discovery Service :
rootPeerGroupDiscoveryService.publish(passwdMembershipModuleImplAdv

PeerGroup.DEFAULT_LIFETIME,

PeerGroup.DEFAULT_EXPIRATION);
rootPeerGroupDiscoveryService.remotePublish(passwdMembershipModuleImplAdv,

PeerGroup.DEFAULT_EXPIRATION);
Once this Peer Group Module Implementation in created and published, the createPeerGroup() method
binds the new Module Implementation advertisement, peer group name, login and password together into
the actual Peer Group advertisement by calling the createPeerGroupAdvertisement() method,:
satellaPeerGroupAdv =

this.createPeerGroupAdvertisement(passwdMembershipModuleImplAdv,
groupName,login,passwd);

And publishes it locally and remotely in the parent group using the parent peer group’s Discovery
Service :
rootPeerGroupDiscoveryService.publish(satellaPeerGroupAdv,

PeerGroup.DEFAULT_LIFETIME,
PeerGroup.DEFAULT_EXPIRATION);

rootPeerGroupDiscoveryService.remotePublish(satellaPeerGroupAdv,
PeerGroup.DEFAULT_EXPIRATION);

Finally the peer group is created from the peer group advertisement :
satellaPeerGroup=rootPeerGroup.newGroup(satellaPeerGroupAdv);
And returned :

122 JXTA v2.3.x: Java Programmer’s Guide

return satellaPeerGroup;

createPasswdMembershipPeerGroupModuleImplAdv ()
This method creates the module implementation advertisement for the peer group. It relies on a second
method createPasswdMembershipServiceModuleImplAdv () for creating the module implementation
advertisement for the membership service.
This method relies on generic, standard "allPurpose" Advertisements that it modifies to take into account
the new membership implementation. (Appendix E contains a typical All Purpose Peer Group Module
Implementation Advertisement for your reference.)
You can see that the "Param" Element contains all the peer group services including the Membership
Service (see). Therefore, most of the work will be performed of this piece of the document.
The following tasks are performed:
• Create a standard generic peer group module implementation advertisement :

allPurposePeerGroupImplAdv=
rootPeerGroup.getAllPurposePeerGroupImplAdvertisement();

• Extract its "Param" element. As mentioned above, this contains the services provided by the peer
group :
passwdMembershipPeerGroupParamAdv =

new StdPeerGroupParamAdv(allPurposePeerGroupImplAdv.getParam());
From this "Param" element, extract the peer group services and their associated service IDs :

Hashtable allPurposePeerGroupServicesHashtable=
passwdMembershipPeerGroupParamAdv.getServices();

Enumeration allPurposePeerGroupServicesEnumeration=
allPurposePeerGroupServicesHashtable.keys();

• Loop through all this services looking for the Membership Services. The search is performed by
looking for the ID matching the MembershipService ID :
if (allPurposePeerGroupServiceID.equals(PeerGroup.membershipClassID))

• Once found, extract the generic membership service advertisement :
ModuleImplAdvertisement

allPurposePeerGroupMemershipServiceModuleImplAdv=
(ModuleImplAdvertisement)
allPurposePeerGroupServicesHashtable.get

(allPurposePeerGroupServiceID);

• Use this generic advertisement to generate a custom one for the Password Membership Service using
the createPasswdMembershipServiceModuleImplAdv() method :
passwdMembershipServiceModuleImplAdv=

this.createPasswdMembershipServiceModuleImplAdv
(allPurposePeerGroupMemershipServiceModuleImplAdv);

• Remove the generic Membership advertisement :
allPurposePeerGroupServicesHashtable.remove

(allPurposePeerGroupServiceID);

• And replace it by the new one :
allPurposePeerGroupServicesHashtable.put

(PeerGroup.membershipClassID,passwdMembershipServiceModuleImplAdv);

• Finally replace the "Param" element that has just been updated with the new
PasswdMembershipService in the peer group module implementation :
passwdMembershipPeerGroupModuleImplAdv.setParam(

(Element)PasswdMembershipPeerGroupParamAdv.getDocument(new
MimeMediaType("text/xml")));

• And Update the Password Membership peer group module implementation advertisement spec ID .
Since the new Peer group module implementation advertisement is no longer the "AllPurpose" one, it
should therefore not refer to the "allPurpose" peer group spec advertisement:
passwdGrpModSpecID = IDFactory.fromURL(new URL("urn","",

"jxta:uuid-"+"DeadBeefDeafBabaFeedBabe00000001" +"04" +"06"));

passwdMembershipPeerGroupModuleImplAdv.setModuleSpecID(
(ModuleSpecID) passwdGrpModSpecID);

123 JXTA v2.3.x: Java Programmer’s Guide

CreatePasswdMembershipServiceModuleImplAdv()
This method works like the previous one: it takes a generic advertisement and uses it to create a
customized one.
lists the generic advertisement that is receives as argument by this method.

0XML representation of a typical MembershipService, extracted from the Parm element of a peer group
module implementation advertisement.

<Svc>
<jxta:MIA>

<MSID>
urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000050106

</MSID>
<Comp>
<Efmt>

JDK1.4
</Efmt>
<Bind>

V1.0 Ref Impl
</Bind>

</Comp>
<Code>
net.jxta.impl.membership.NullMembershipService

</Code>
<PURI>
http://www.jxta.org/download/jxta.jar

</PURI>
<Prov>
sun.com

</Prov>
<Desc>
Reference Implementation of the MembershipService

service
</Desc>

</jxta:MIA>
</Svc>

This method needs only to update the Module Spec ID, the code, and description with values specific to
the PasswdMembershipService :
passwdMembershipServiceModuleImplAdv.setModuleSpecID(

PasswdMembershipService.passwordMembershipSpecID);

passwdMembershipServiceModuleImplAdv.setCode(
PasswdMembershipService.class.getName());

passwdMembershipServiceModuleImplAdv.setDescription(
"Module Impl Advertisement for the PasswdMembership Service");

The rest of the PasswdMembershipServiceAdvertisement is just plain copies of the generic one :
passwdMembershipServiceModuleImplAdv.setCompat(

allPurposePeerGroupMemershipServiceModuleImplAdv.getCompat());

passwdMembershipServiceModuleImplAdv.setUri(
allPurposePeerGroupMemershipServiceModuleImplAdv.getUri());

passwdMembershipServiceModuleImplAdv.setProvider(
allPurposePeerGroupMemershipServiceModuleImplAdv.getProvider());

createPeerGroupAdvertisement()
This methods creates peer group advertisement from scratch using the advertisement factory :
PeerGroupAdvertisement satellaPeerGroupAdv=

(PeerGroupAdvertisement)

124 JXTA v2.3.x: Java Programmer’s Guide

AdvertisementFactory.newAdvertisement(
PeerGroupAdvertisement.getAdvertisementType());

And initializes the specifics of this instance of our authenticated peer group. That is:
• Its peer group ID. In this example, the peer group ID is fixed, so that each time the platform is started

the same peer group is created :
satellaPeerGroupAdv.setPeerGroupID(satellaPeerGroupID);

• Its Module Spec ID advertisement from which the peer group will find which peer group
implementation to use. In this example, this implementation is the Password Membership Module
Implementation
satellaPeerGroupAdv.setModuleSpecID(
passwdMembershipModuleImplAdv.getModuleSpecID());

• Its name and description :
satellaPeerGroupAdv.setName(groupName);

satellaPeerGroupAdv.setDescription(
"Peer Group using Password Authentication");

User and password information is structured as a "login" XML Element and is included into the XML
document describing the Service Parameters of the Peer group.
Line shows the creation of this Service Parameters XML document:
StructuredTextDocument loginAndPasswd= (StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument(new MimeMediaType

("text/xml"),"Parm");
Whereas lines - show the creation of the "login" XML Element:
String loginAndPasswdString =

login + ":" + PasswdMembershipService.makePsswd(passwd) + ":";
TextElement loginElement =

loginAndPasswd.createElement("login",loginAndPasswdString);

discoverPeerGroup()
This method extracts the discovery service from the parent group (netpeergroup, in our example) :
myNetPeerGroupDiscoveryService = myNetPeerGroup.getDiscoveryService();

And uses this service to look for the newly created peer group ("SatellaGroup") advertisement in the
local cache. The search is conducted by looking for peer group advertisements whose peer group ID
matches the "SatellaGroup"

one. The method loops until it finds it. Since we published the peer group Advertisement locally we know
it is there, and therefore there is no need to remote query the P2P network :
localPeerGroupAdvertisementEnumeration=

myNetPeerGroupDiscoveryService.getLocalAdvertisements(
DiscoveryService.GROUP,"GID",satellaPeerGroupID.toString());

Once the correct peer group advertisement is found, the corresponding peer group is created using the
parent group (here, netPeerGroup) newgroup() method :
satellaPeerGroup=myNetPeerGroup.newGroup(satellaPeerGroupAdv);

joinPeerGroup()
This method is very similar to the joinGroup() method described earlier (see “ ” on page 111). It uses the
same "apply" and "join" steps. But, unlike the nullAuthenticationService where there is no authentication
to complete, the PasswdAuthenticationService requires some authentication. It essentially resides in
providing a user login and a password :
completeAuth(auth, login, passwd);

completeAuth()
This method performs the authentication completion required before being able to join the peer group. In
orders to complete the authentication, the authentication methods needs to be extracted from the
Authenticator. These method’s name starts with "setAuth". Specifically the "setAuth1Identity" method need
to be provided with the correct login and "setAuth2_Password" with the correct password.
The methods are extracted from the Authenticator :
Method [] methods = auth.getClass().getMethods();

125 JXTA v2.3.x: Java Programmer’s Guide

Then the Authenticator method are filtered and sorted and placed into a Vector, keeping only the ones that
are relevant to the authentication process (starting with "setAuth")
And goes through all the Authentication method place into looking for "setAuth1Identity" and
"setAuth2_Password" and invokes them with the appropriate parameters:

Object [] AuthId = {login};
Object [] AuthPasswd = {passwd};

for(int eachAuthMethod=0;eachAuthMethod<authMethods.size();
eachAuthMethod++) {

Method doingMethod = (Method) authMethods.elementAt(eachAuthMethod);

String authStepName = doingMethod.getName().substring(7);
if (doingMethod.getName().equals("setAuth1Identity")) {

// Found identity Method, providing identity
doingMethod.invoke(auth, AuthId);

}
else if (doingMethod.getName().equals("setAuth2_Password")){

// Found Passwd Method, providing passwd
doingMethod.invoke(auth, AuthPasswd);

}
}

}

126 JXTA v2.3.x: Java Programmer’s Guide

Source Code: SecurePeerGroup

import java.io.StringWriter;
import java.lang.reflect.Method;
import java.lang.reflect.Modifier;
import java.net.URL;
import java.util.Enumeration;
import java.util.Hashtable;
import java.util.Vector;
import net.jxta.credential.AuthenticationCredential;
import net.jxta.discovery.DiscoveryService;
import net.jxta.document.Advertisement;
import net.jxta.document.AdvertisementFactory;
import net.jxta.document.Element;
import net.jxta.document.MimeMediaType;
import net.jxta.document.StructuredDocument;
import net.jxta.document.StructuredDocumentFactory;
import net.jxta.document.StructuredTextDocument;
import net.jxta.document.TextElement;
import net.jxta.endpoint.*;
import net.jxta.exception.PeerGroupException;
import net.jxta.id.ID;
import net.jxta.id.IDFactory;
import net.jxta.impl.membership.PasswdMembershipService;
import net.jxta.impl.protocol.*;
import net.jxta.membership.Authenticator;
import net.jxta.membership.MembershipService;
import net.jxta.peergroup.PeerGroup;
import net.jxta.peergroup.PeerGroupFactory;
import net.jxta.peergroup.PeerGroupID;
import net.jxta.platform.ModuleSpecID;
import net.jxta.protocol.ModuleImplAdvertisement;
import net.jxta.protocol.PeerGroupAdvertisement;

import net.jxta.impl.peergroup.StdPeerGroupParamAdv ;

public class SecurePeerGroup {

private PeerGroup myNetPeerGroup=null,
satellaPeerGroup=null,discoveredSatellaPeerGroup=null;

private static PeerGroupID satellaPeerGroupID;
private final static String GROUPID = "jxta:uuid-

4d6172676572696e204272756e6f202002";

/** Creates new RootWS */
public SecurePeerGroup() {

// Starts the JXTA Platform
myNetPeerGroup=this.startJxta();

127 JXTA v2.3.x: Java Programmer’s Guide

if (myNetPeerGroup!=null) {
System.out.println("JXTA platform Started ...");

} else {
System.err.println(" JXTA platform has failed to start:

myNetPeerGroup is null");
System.exit(1);

}
//Generate the parameters:
// login, passwd, peer group name and peer group id
// for creating the Peer Group
String login="SecurePeerGroups";
String passwd="RULE";
String groupName="SatellaGroup";
// and finally peer group id
// the peer group id is constant so that the same peer group is
//recreated each time.
try {

satellaPeerGroupID =
(PeerGroupID) net.jxta.id.IDFactory.fromURL(

new java.net.URL("urn","",GROUPID));
} catch (java.net.MalformedURLException e) {

System.err.println(" Can't create satellaPeerGroupID:
MalformedURLException") ;

System.exit(1);
} catch (java.net.UnknownServiceException e) {

System.err.println(" Can't create satellaPeerGroupID:
UnknownServiceException ") ;

System.exit(1);
}

// create The Passwd Authenticated Peer Group
satellaPeerGroup =this.createPeerGroup(

myNetPeerGroup,groupName,login,passwd);

// join the satellaPeerGroup
if (satellaPeerGroup!=null) {

System.out.println(" Peer Group Created ...");
discoveredSatellaPeerGroup=this.discoverPeerGroup(

myNetPeerGroup,satellaPeerGroupID);
if (discoveredSatellaPeerGroup!=null) {

System.out.println(" Peer Group Found ...");
this.joinPeerGroup(discoveredSatellaPeerGroup,

login, passwd);
}

}
System.out.println(" Peer Group Joined ...");
// Print the Peer Group Adverstisement on sdt out.
this.printXmlAdvertisement("XML Advertisement for

Peer Group Advertisement",

128 JXTA v2.3.x: Java Programmer’s Guide

satellaPeerGroup.getPeerGroupAdvertisement
());

}

private PeerGroup createPeerGroup(PeerGroup rootPeerGroup,
String groupName, String login, String passwd) {

// create the Peer Group by doing the following:
// - Create a Peer Group Module Implementation Advertisement and publish it
// - Create a Peer Group Adv and publish it
// - Create a Peer Group from the Peer Group Adv and return this object
PeerGroup satellaPeerGroup=null;
PeerGroupAdvertisement satellaPeerGroupAdvertisement;

// Create the PeerGroup Module Implementation Adv
ModuleImplAdvertisement passwdMembershipModuleImplAdv ;
passwdMembershipModuleImplAdv=this.createPasswdMembershipPeerGr

oupModuleImplAdv(rootPeerGroup);
// Publish it in the parent peer group
DiscoveryService rootPeerGroupDiscoveryService =

rootPeerGroup.getDiscoveryService();
try {

rootPeerGroupDiscoveryService.publish(
passwdMembershipModuleImplAdv,
PeerGroup.DEFAULT_LIFETIME,
PeerGroup.DEFAULT_EXPIRATION);

rootPeerGroupDiscoveryService.remotePublish(
passwdMembershipModuleImplAdv,
PeerGroup.DEFAULT_EXPIRATION);

} catch (java.io.IOException e) {
System.err.println("Can't Publish

passwdMembershipModuleImplAdv");
System.exit(1);

}
// Now, Create the Peer Group Advertisement
satellaPeerGroupAdvertisement=

this.createPeerGroupAdvertisement
(passwdMembershipModuleImplAdv,groupName,login,passwd);

// Publish it in the parent peer group
try {

rootPeerGroupDiscoveryService.publish(
satellaPeerGroupAdvertisement,
PeerGroup.DEFAULT_LIFETIME,
PeerGroup.DEFAULT_EXPIRATION);

rootPeerGroupDiscoveryService.remotePublish(
satellaPeerGroupAdvertisement,
PeerGroup.DEFAULT_EXPIRATION);

} catch (java.io.IOException e) {
System.err.println("Can't Publish

satellaPeerGroupAdvertisement");

129 JXTA v2.3.x: Java Programmer’s Guide

System.exit(1);
}
// Finally Create the Peer Group
if (satellaPeerGroupAdvertisement==null) {

System.err.println("satellaPeerGroupAdvertisement is
null");

}
try {

satellaPeerGroup=rootPeerGroup.newGroup(
satellaPeerGroupAdvertisement);

} catch (net.jxta.exception.PeerGroupException e) {
System.err.println("Can't create Satella Peer Group

from Advertisement");
e.printStackTrace();
return null;

}
return satellaPeerGroup;

}

private PeerGroupAdvertisement createPeerGroupAdvertisement(
ModuleImplAdvertisement passwdMembershipModuleImplAdv,
String groupName,
String login,
String passwd) {
// Create a PeerGroupAdvertisement for the peer group
PeerGroupAdvertisement satellaPeerGroupAdvertisement=

(PeerGroupAdvertisement)
AdvertisementFactory.newAdvertisement(

PeerGroupAdvertisement.getAdvertisementType());

// Instead of creating a new group ID each time, by using the
// line below
// satellaPeerGroupAdvertisement.setPeerGroupID
// (IDFactory.newPeerGroupID());
// I use a fixed ID so that each time I start SecurePeerGroup,
// it creates the same Group
satellaPeerGroupAdvertisement.setPeerGroupID(

satellaPeerGroupID);
satellaPeerGroupAdvertisement.setModuleSpecID(

passwdMembershipModuleImplAdv.getModuleSpecID());
satellaPeerGroupAdvertisement.setName(groupName);
satellaPeerGroupAdvertisement.setDescription("Peer Group using

Password Authentication");

// Now create the Structured Document Containing the login and
// passwd informations. Login and passwd are put into the Param
// section of the peer Group
if (login!=null) {

StructuredTextDocument loginAndPasswd=

130 JXTA v2.3.x: Java Programmer’s Guide

(StructuredTextDocument)
StructuredDocumentFactory.newStructuredDocument(
new MimeMediaType("text/xml"),"Parm");

String loginAndPasswdString= login+":"+
PasswdMembershipService.makePsswd(passwd)+":";

TextElement loginElement = loginAndPasswd.createElement(
"login",loginAndPasswdString);

loginAndPasswd.appendChild(loginElement);
// All Right, now that loginAndPasswdElement
// (The strucuted document
// that is the Param Element for The PeerGroup Adv
// is done, include it in the Peer Group Advertisement
satellaPeerGroupAdvertisement.putServiceParam(

PeerGroup.membershipClassID,loginAndPasswd);
}
return satellaPeerGroupAdvertisement;

}

private ModuleImplAdvertisement
createPasswdMembershipPeerGroupModuleImplAdv(PeerGroup rootPeerGroup) {

// Create a ModuleImpl Advertisement for the Passwd
// Membership Service Take a allPurposePeerGroupImplAdv
// ModuleImplAdvertisement parameter to
// Clone some of its fields. It is easier than to recreate
// everything from scratch

// Try to locate where the PasswdMembership is within this
// ModuleImplAdvertisement.
// For a PeerGroup Module Impl, the list of the services
// (including Membership) are located in the Param section
ModuleImplAdvertisement allPurposePeerGroupImplAdv=null;
try {

allPurposePeerGroupImplAdv=rootPeerGroup.getAllPurposePeerG
roupImplAdvertisement();

} catch (java.lang.Exception e) {
System.err.println("Can't Execute:

getAllPurposePeerGroupImplAdvertisement();");
System.exit(1);

}
ModuleImplAdvertisement

passwdMembershipPeerGroupModuleImplAdv=allPurposePeerGroupImplAdv;
ModuleImplAdvertisement

passwdMembershipServiceModuleImplAdv=null;
StdPeerGroupParamAdv passwdMembershipPeerGroupParamAdv=null;

try {
passwdMembershipPeerGroupParamAdv =

new StdPeerGroupParamAdv(
allPurposePeerGroupImplAdv.getParam());

131 JXTA v2.3.x: Java Programmer’s Guide

} catch (net.jxta.exception.PeerGroupException e) {
System.err.println("Can't execute: StdPeerGroupParamAdv

passwdMembershipPeerGroupParamAdv = new StdPeerGroupParamAdv
(allPurposePeerGroupImplAdv.getParam());");

System.exit(1);
}

Hashtable allPurposePeerGroupServicesHashtable =
passwdMembershipPeerGroupParamAdv.getServices();

Enumeration allPurposePeerGroupServicesEnumeration =
allPurposePeerGroupServicesHashtable.keys();

boolean membershipServiceFound=false;
while ((!membershipServiceFound) &&

(allPurposePeerGroupServicesEnumeration.hasMoreElements())) {
Object allPurposePeerGroupServiceID =

allPurposePeerGroupServicesEnumeration.nextElement();
if (allPurposePeerGroupServiceID.equals

(PeerGroup.membershipClassID)) {
// allPurposePeerGroupMemershipServiceModuleImplAdv is
// the all Purpose Mermbership Service for the all
// purpose Peer Group Module Impl adv
ModuleImplAdvertisement

allPurposePeerGroupMemershipServiceModuleImplAdv=
(ModuleImplAdvertisement) allPurposePeerGroupServicesHashtable.get
(allPurposePeerGroupServiceID);

//Create the passwdMembershipServiceModuleImplAdv
passwdMembershipServiceModuleImplAdv=this.createPasswdM

embershipServiceModuleImplAdv
(allPurposePeerGroupMemershipServiceModuleImplAdv);

//Remove the All purpose Membership Service
implementation

allPurposePeerGroupServicesHashtable.remove
(allPurposePeerGroupServiceID);

// And Replace it by the Passwd Membership Service
// Implementation
allPurposePeerGroupServicesHashtable.put(

PeerGroup.membershipClassID,
passwdMembershipServiceModuleImplAdv);

membershipServiceFound=true;
// Now the Service Advertisements are complete. Let's
// update the passwdMembershipPeerGroupModuleImplAdv by
// Updating its param
passwdMembershipPeerGroupModuleImplAdv.setParam

((Element) passwdMembershipPeerGroupParamAdv.getDocument(new
MimeMediaType("text/xml")));

// Update its Spec ID This comes from the
// Instant P2P PeerGroupManager Code (Thanks !!!!)
if

(!passwdMembershipPeerGroupModuleImplAdv.getModuleSpecID().equals

132 JXTA v2.3.x: Java Programmer’s Guide

(PeerGroup.allPurposePeerGroupSpecID)) {
passwdMembershipPeerGroupModuleImplAdv.setModuleSpe

cID(IDFactory.newModuleSpecID
(passwdMembershipPeerGroupModuleImplAdv.getModuleSpecID().getBaseClass
()));

} else {
ID passwdGrpModSpecID= ID.nullID;
try {

passwdGrpModSpecID = IDFactory.fromURL(new URL(
"urn",
"",
"jxta:uuid-"+

"DeadBeefDeafBabaFeedBabe00000001" +"04" +"06"));
} catch (java.net.MalformedURLException e) {}
catch (java.net.UnknownServiceException ee) {}
passwdMembershipPeerGroupModuleImplAdv.
setModuleSpecID((ModuleSpecID)

passwdGrpModSpecID);
} //End Else
membershipServiceFound=true;

} //end if (allPurposePeerGroupServiceID.
// equals(PeerGroup.membershipClassID))

}//end While

return passwdMembershipPeerGroupModuleImplAdv;
}

private ModuleImplAdvertisement
createPasswdMembershipServiceModuleImplAdv(ModuleImplAdvertisement
allPurposePeerGroupMemershipServiceModuleImplAdv) {

//Create a new ModuleImplAdvertisement for the
// Membership Service
ModuleImplAdvertisement passwdMembershipServiceModuleImplAdv =

(ModuleImplAdvertisement) AdvertisementFactory.newAdvertisement
(ModuleImplAdvertisement.getAdvertisementType());

passwdMembershipServiceModuleImplAdv.setModuleSpecID
(PasswdMembershipService.passwordMembershipSpecID);

passwdMembershipServiceModuleImplAdv.setCode
(PasswdMembershipService.class.getName());

passwdMembershipServiceModuleImplAdv.setDescription(" Module
Impl Advertisement for the PasswdMembership Service");

passwdMembershipServiceModuleImplAdv.setCompat
(allPurposePeerGroupMemershipServiceModuleImplAdv.getCompat());

passwdMembershipServiceModuleImplAdv.setUri
(allPurposePeerGroupMemershipServiceModuleImplAdv.getUri());

passwdMembershipServiceModuleImplAdv.setProvider
(allPurposePeerGroupMemershipServiceModuleImplAdv.getProvider());

return passwdMembershipServiceModuleImplAdv;
}

133 JXTA v2.3.x: Java Programmer’s Guide

private PeerGroup discoverPeerGroup(PeerGroup myNetPeerGroup,
PeerGroupID satellaPeerGroupID) {

// First discover the peer group
// In most cases we should use discovery listeners so that
// we can do the discovery assynchroneously.
// Here I won't, for increased simplicity and because
// The Peer Group Advertisement is in the local cache for sure
PeerGroup satellaPeerGroup;
DiscoveryService myNetPeerGroupDiscoveryService=null;
if (myNetPeerGroup!=null) {

myNetPeerGroupDiscoveryService =
myNetPeerGroup.getDiscoveryService();

} else {
System.err.println("Can't join Peer Group since

its parent is null");
System.exit(1);

}
boolean isGroupFound=false;
Enumeration localPeerGroupAdvertisementEnumeration=null;
PeerGroupAdvertisement satellaPeerGroupAdvertisement=null;
while(!isGroupFound) {

try {
localPeerGroupAdvertisementEnumeration =

myNetPeerGroupDiscoveryService.
getLocalAdvertisements(DiscoveryService.GROUP,

"GID",
satellaPeerGroupID.toString());

} catch (java.io.IOException e) {
System.out.println("Can't Discover Local Adv");

}
if (localPeerGroupAdvertisementEnumeration!=null) {

while (localPeerGroupAdvertisementEnumeration.
hasMoreElements()) {

PeerGroupAdvertisement pgAdv=null;
pgAdv= (PeerGroupAdvertisement)

localPeerGroupAdvertisementEnumeration.
nextElement();

if (pgAdv.getPeerGroupID().
equals(satellaPeerGroupID)) {

satellaPeerGroupAdvertisement=pgAdv;
isGroupFound=true ;
break ;

}
}

}
try {

Thread.sleep(5 * 1000);
} catch(Exception e) {}

134 JXTA v2.3.x: Java Programmer’s Guide

}
try {

satellaPeerGroup=myNetPeerGroup.newGroup(
satellaPeerGroupAdvertisement);

} catch (net.jxta.exception.PeerGroupException e) {
System.err.println("Can't create Peer Group from

Advertisement");
e.printStackTrace();
return null;

}
return satellaPeerGroup;

}

private void joinPeerGroup(PeerGroup satellaPeerGroup,
String login,String passwd) {

// Get the Heavy Weight Paper for the resume
// Alias define the type of credential to be provided
StructuredDocument creds = null;
try {

// Create the resume to apply for the Job
// Alias generate the credentials for the Peer Group
AuthenticationCredential authCred =new

AuthenticationCredential(satellaPeerGroup, null, creds);

// Create the resume to apply for the Job
// Alias generate the credentials for the Peer Group
MembershipService membershipService = satellaPeerGroup.

getMembershipService();

// Send the resume and get the Job application form
// Alias get the Authenticator from the Authentication creds
Authenticator auth = membershipService.apply(authCred);

// Fill in the Job Application Form
// Alias complete the authentication
completeAuth(auth, login, passwd);

// Check if I got the Job
// Alias Check if the authentication that was submitted was
//accepted.
if (!auth.isReadyForJoin()) {

System.out.println("Failure in authentication.");
System.out.println("Group was not joined. Does

not know how to complete authenticator");
}
// I got the Job, Join the company
// Alias I the authentication I completed was accepted,
// therefore join the Peer Group accepted.
membershipService.join(auth);

135 JXTA v2.3.x: Java Programmer’s Guide

} catch (Exception e) {
System.out.println("Failure in authentication.");
System.out.println("Group was not joined.

Login was incorrect.");
e.printStackTrace();

}
}

private void completeAuth(Authenticator auth, String login,
String passwd) throws Exception {

Method [] methods = auth.getClass().getMethods();
Vector authMethods = new Vector();

// Find out with fields of the application needs to be filled
// Alias Go through the methods of the Authenticator class and
// copy them sorted by name into a vector.
for(int eachMethod = 0;

eachMethod < methods.length; eachMethod++) {
if (methods[eachMethod].getName().startsWith("setAuth")) {

if (Modifier.isPublic(
methods[eachMethod].getModifiers())) {

// sorted insertion.
for(int doInsert = 0; doInsert<=authMethods.size();

doInsert++) {
int insertHere = -1;
if(doInsert == authMethods.size())

insertHere = doInsert;
else {

if(methods[eachMethod].getName().compareTo
(((Method)authMethods.elementAt(

doInsert)).getName()) <= 0)
insertHere = doInsert;

} // end else

if(-1!= insertHere) {
authMethods.insertElementAt(

methods[eachMethod],insertHere);
break;

} // end if (-1 != insertHere)
} // end for (int doInsert=0

} // end if (modifier.isPublic
} // end if (methods[eachMethod]

} // end for (int eachMethod)

Object [] AuthId = {login};
Object [] AuthPasswd = {passwd};

136 JXTA v2.3.x: Java Programmer’s Guide

for(int eachAuthMethod=0;eachAuthMethod<authMethods.size();
eachAuthMethod++) {
Method doingMethod = (Method) authMethods.elementAt(

eachAuthMethod);

String authStepName = doingMethod.getName().substring(7);
if (doingMethod.getName().equals("setAuth1Identity")) {

// Found identity Method, providing identity
doingMethod.invoke(auth, AuthId);

} else
if (doingMethod.getName().equals("setAuth2_Password"))

{
// Found Passwd Method, providing passwd
doingMethod.invoke(auth, AuthPasswd);

}
}

}

private void printXmlAdvertisement(String title, Advertisement adv){
// First, Let's print a "nice" Title
String separator = "";
for (int i=0 ; i<title.length()+4; i++) {

separator=separator+"-";
}
System.out.println(separator);
System.out.println("| " + title +" |");
System.out.println(separator);

// Now let's print the Advertisement
StringWriter outWriter = new StringWriter();
StructuredTextDocument docAdv =

(StructuredTextDocument)adv.getDocument(new
MimeMediaType("text/xml"));

try {
docAdv.sendToWriter(outWriter);

} catch (java.io.IOException e) {
System.err.println("Can't Execute:

docAdv.sendToWriter(outWriter);");
}
System.out.println(outWriter.toString());

// Let's end up with a line
System.out.println(separator);

}

/** Starts the jxta platform */
private PeerGroup startJxta() {

PeerGroup myNetPeerGroup = null;

137 JXTA v2.3.x: Java Programmer’s Guide

try {
myNetPeerGroup=PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {
// could not instantiate the group, print the stack and

exit
System.out.println("fatal error : group creation failure");
e.printStackTrace();
System.exit(1);

}
return myNetPeerGroup;

}

public static void main(String args[]) {
SecurePeerGroup satellaRoot = new SecurePeerGroup();
System.exit(0);

}
}

138 JXTA v2.3.x: Java Programmer’s Guide

Chapter 8: References
The following Web pages contain information on Project JXTA:
• http://www.jxta.org — home Web page for Project JXTA
• http://spec.jxta.org — Project JXTAspecification
• http://platform.jxta.org — Project JXTAplatform infrastructure and protocols for the J2SE platform
binding

• http://platform.jxta.org/java/api/overview-tree.html— public API (Javadoc software)
• http://www.jxta.org/Tutorials.html— numerous Java tutorials
There are numerous technical white papers posted on http://www.jxta.org/white_papers.html. Those of
particular interest to developers include:
• Project JXTA: An Open, Innovative Collaboration, Sun Microsystems white paper.
• Project JXTA: A Technology Overview, Li Gong, Sun Microsystems white paper.
• Project JXTA Technology: Creating Connected Communities, Sun Microsystems white paper.
• Project JXTA Virtual Network, Bernard Traversat et al., Sun Microsystems white paper.
• Project JXTA: A Loosely-Consistent DHT Rendezvous Walker, Bernard Traversat, Mohamed

Abdelaziz, and Eric Pouyoul, Sun Microsystems white paper.
• Introduction to the JXTAAbstraction Layer, Neelakanth Nadgir and Jerome Verbeke, Sun

Microsystems.
• PKI Security for JXTAOverlay Networks, Jeffrey Eric Altman, IAM Consulting.

139 JXTA v2.3.x: Java Programmer’s Guide

Glossary

140 JXTA v2.3.x: Java Programmer’s Guide

Advertisement

Project JXTA’s language-neutral meta-data structures that describe peer resources such as peers, peer
groups, pipes, and services. Advertisements are represented as XML documents.

ASN.1

Abstract Syntax Notation One; a formal language for abstractly describing messages sent over a network.
(See http://www.asn1.org/ for more information.)

Binding

An implementation of the Project JXTAprotocols for a particular environment (e.g., the J2SE platform
binding).

Credential

A token used to uniquely identify the sender of a message; can be used to provide message authorization.

Endpoint

See Peer Endpoint and Pipe Endpoint.

ERP

Endpoint Routing Protocol; used by peers to find routes to other peers.

Gateway

See Relay Peer.

Input Pipe

A pipe endpoint; the receiving end of a pipe. Pipe endpoints are dynamically bound to peer endpoints at
runtime.

J2SE

Java 2 Platform, Standard Edition software.

Message

The basic unit of data exchange between peers; each message contains an ordered sequence of named
sub-sections, called message elements, which can hold any form of data. Messages are exchanged by the
Pipe Service and the Endpoint Service.

Message Element

A named and typed component of a message (i.e., a name/value pair).

Module

An abstraction used to represent any piece of "code" used to implement a behavior in the JXTAworld.
Network services are the mode common example of behavior that can be instantiated on a peer.

Module Class

141 JXTA v2.3.x: Java Programmer’s Guide

Represents an expected behavior and an expected binding to support the module; is used primarily to
advertise the existence of a behavior.

142 JXTA v2.3.x: Java Programmer’s Guide

Module Implementation

The implementation of a given module specification; there may be multiple module implementations for
a given module specification.

Module Specification

Describes a specification of a given module class; it is one approach to providing the functionality that a
module class implies. There can be multiple module specifications for a given module class. The module
specification is primarily used to access a module.

NAT

Network Address Translation. Network Address Translation allows a single device, such as a router, to
act as an agent between the Internet (or “public network”) and a local (or “private”) network.

Output Pipe

A pipe endpoint; the sending end of a pipe. Pipe endpoints are dynamically bound to peer endpoints at
runtime.

P2P

Peer-to-peer; a decentralized networking paradigm in which distributed nodes, or peers, communicate
and work collaboratively to provide services.

PBP

Peer Binding Protocol; used by peers to establish a virtual communication channel, or pipe, between one
or more peers.

PDP

Peer Discovery Protocol; used by peers to discover resources from other peers.

Peer

Any networked device that implements one or more of the JXTA protocols.

Peer Endpoint

AURI that uniquely identifies a peer network interface (e.g., a TCP port and associated IP address).

Peer Group

A collection of peers that have a common set of interests and have agreed upon a common set of services.

Peer Group ID

ID that uniquely identifies a peer group.

Peer ID

ID that uniquely identifies a peer.

PIP

143 JXTA v2.3.x: Java Programmer’s Guide

Peer Information Protocol; used by peers to obtain status information (uptime, state, recent traffic, etc.)
from other peers.

Pipe

An asynchronous and unidirectional message transfer mechanism used by peers to send and receive
messages; pipes are bound to specific peer endpoints, such as a TCP port and associated IP address.

Pipe Endpoint

Pipe endpoints are referred to as input pipes and output pipes; they are bound to peer endpoints at
runtime.

PKI

Public Key Infrastructure. Supports digital signatures and other public key-enabled security services.

PRP

Peer Resolver Protocol; used by peers to send generic queries to other peer services and receive replies.

Relay Peer

Maintains information on routes to other peers, and helps relay messages to peers. (Previously referred to
as router peer.)

Rendezvous Peer

Maintains a cache of advertisements and forwards discovery requests to other rendezvous peers to help
peers discover resources.

RVP

Rendezvous Protocol; responsible for propagating messages within a peer group.

TLS

Transport Layer Security. (See http://www.ietf.org/html.charters/tls-charter.html for more details.)

URI

Uniform Resource Identifier.A compact string of characters for identifying an abstract or physical
resource. (See http://www.w3.org/Addressing/URL/ URI_Overview.html for more details.)

URN

Uniform Resource Name. A kind of URI that provides persistent identifiers for information resources.
(See IETF RFC 2141, http://www.ietf.org/rfc/rfc2141.txt, for more details.)

144 JXTA v2.3.x: Java Programmer’s Guide

Troubleshooting
This appendix discusses commonly encountered problems compiling and running JXTAapplications.

Errors compiling JXTA applications
Check that your are including the correct jxta.jar file in your compilation statement
(-classpath option). If you have downloaded multiple versions, verify that you are including the
most recent version in your compilation statement.

Note – The required .jar files can be downloaded from the JXTAWeb site:
http://download.jxta.org.

Errors running JXTAapplications
Setting the classpath variable
When you run your JXTAapplication, you need to set the -classpath variable to indicate the
location of the required .jar files. Be sure to include the same version that you used when compiling
your JXTAapplication. Although you need only the jxta.jar file for compilation, you need
multiple .jar files when running a JXTAapplication.

Note – See on page for a list of the required Java .jar files.

Unable to discover JXTA peers
If you are unable to discover other JXTA resources (peers, peer groups, or other advertisements), you
may have configured your JXTA environment incorrectly. Common configuration issues include the
following:
• If you are located behind a firewall or NAT, you must use HTTP and specify a relay node.
• If you are using TCP with NAT, you may need to specify your NAT public address.
• You may need to specify at least one rendezvous node.
Remove the JXTA configuration file (PlatformConfig) and then re-run your application. When
the JXTAConfigurator window appears, enter your configuration information. See Appendix , for more
details on running the JXTA Configurator.

Using the JXTA Shell
You can use the JXTAShell to help troubleshoot configuration issues and test JXTAservices. Commands
are available to discover JXTA advertisements, create JXTA resources (e.g., groups, pipes, messages, and
advertisements), join and leave peer groups, send and receive messages on a pipe, and much more.
For example, to verify correct network configuration you can use the JXTAShell command "rdvstatus"
to display information about your current rendezvous status (i.e., if you are configured as a rendezvous
peer, and who your current rendezvous peers are). You can also use "search -r" to send out discovery
requests, and then use "peers" to display any peers that have been discovered — to confirm that network
connectivity is working as expected.
For more information on downloading and using the JXTAShell, please see:

http://shell.jxta.org/

145 JXTA v2.3.x: Java Programmer’s Guide

Starting from a clean state
Some problems can be caused by stale configuration or cache information. Try removing the JXTA
configuration files and cache directory:
n ./.jxta/PlatformConfig
n ./.jxta/cm (directory)
Re-launch the application. When the Configuration window appears, enter the appropriate information
for your network configuration. See http://platform.jxta.org/java/confighelp.html for more details on
running the JXTAConfigurator.

Displaying additional log information
If your JXTA application isn’t behaving as you expect, you can turn on additional logging so that more
information is displayed when your application runs.
To select a new logging, or trace, level, re-run the JXTAConfigurator and from the Advanced Settings
tab select the desired Trace Level from the pull-down menu. The default trace level is error; warn, info,
and debug levels provide more information. For more information on running the JXTAConfigurator,
please see Appendix , Emphasisparatextefault .
You can also choose to edit the PlatformConfig file in the current directory rather than re-
running the JXTAConfigurator. For example, the following entry in PlatformConfig sets the
trace level to "warning":
<Dbg>

warn
<\Dbg>

146 JXTA v2.3.x: Java Programmer’s Guide

Removing User name or Password
The first time you run a JXTA application, you will be prompted to enter a user name and password.
Each subsequent time you run the application, you will be prompted to enter the same user name and
password pair. If you forget either the user name or the password, you can remove the cm directory
(located in the under $JXTAHOME directory, by default .jxta) and then re-run the application. The JXTA
Configurator will be displayed, and you can enter a new user name and password. See
http://wiki.java.net/bin/view/Jxta/WebHome for more details on running the JXTAConfigurator.

147 JXTA v2.3.x: Java Programmer’s Guide

