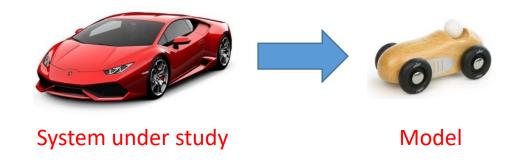
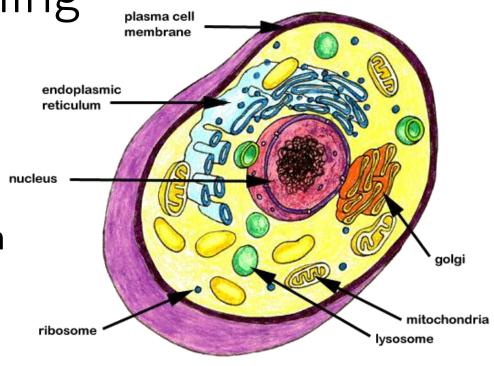
Master thesis topics on computational analysis of biological networks


Paolo Milazzo


milazzo@di.unipi.it

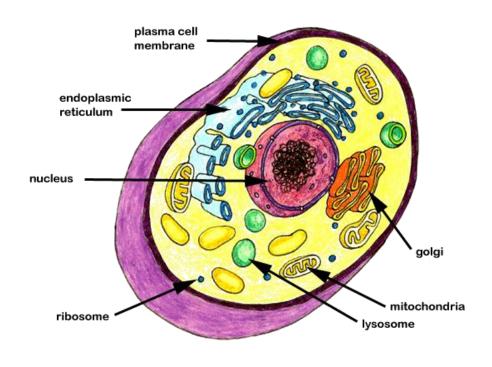
http://pages.di.unipi.it/milazzo

Understanding cell functioning

- Many diseases (e.g. cancer) are the result of malfunctioning of cells
- Understanding the mechanisms of cell functioning is essential in order to design new therapies
- Understanding requires modeling

A model is a "manageable" representation of the system that focuses on the aspects that are relevant for the functionality of interest

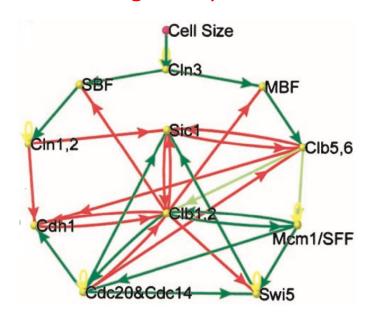
"in silico" models of biological systems


Modeling approaches in the context of the life sciences are:

"in silico" models:

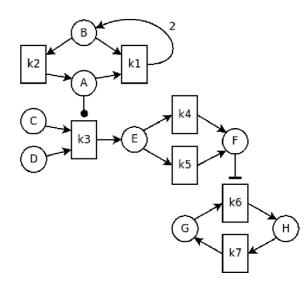
- aim at replicating biological processes in a virtual environment
- enable analysis by means of simulation, machine learning and formal methods
- can be used to make predictions

Cell functioning in few (very rough) words



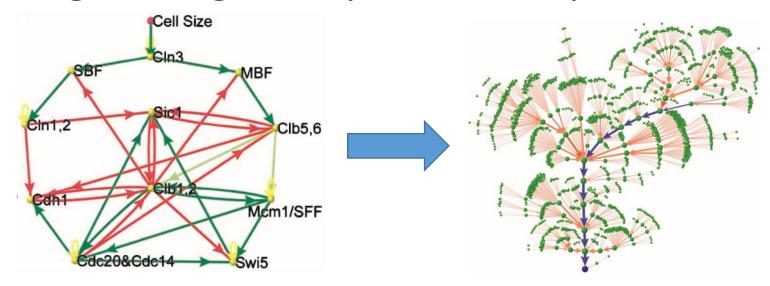
- DNA is the source code of the cell
 - Many genes are translated into proteins, that are the are the real «workers» inside the cell
 - Genes can activate/inhibit each other in order to turn on/off cell functionalities
- Proteins do the job!
 - Many types: enzymes, membrane channels, transporters, structural ones, ...
 - They cooperate by participating together in chemical reactions
 - A network of chemical reactions related to a specific functionality is called «pathway»

Biological networks


• Cellular processes can be described in terms of networks, such as:

Gene regulatory networks

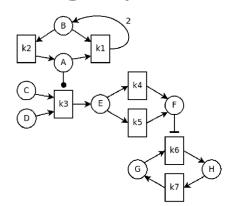
Describe influence relationships (activation/inhibition) between genes

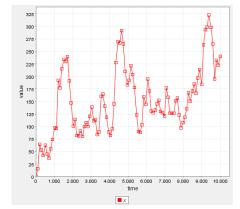

Biochemical pathways

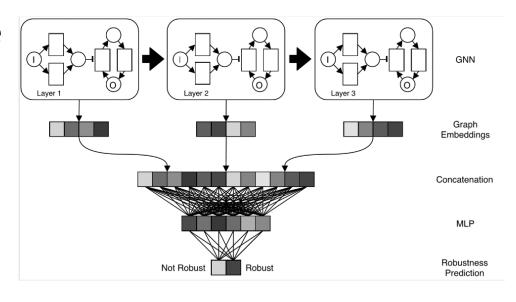
Describe chemical reactions in cells involving proteins, and other molecules

Thesis topic 1: (In collaboration with R. Barbuti, R. Gori and F. Levi)

Formal analysis of gene regulatory network dynamics

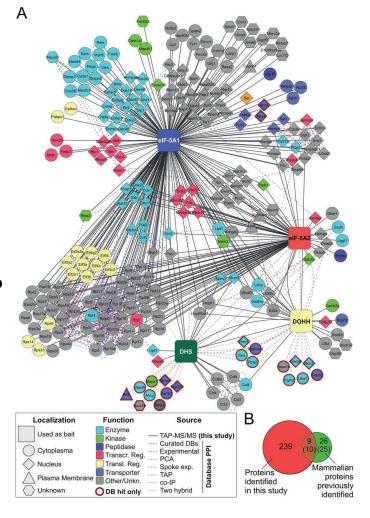



- The dynamics of a gene regulatory network can be described as a transition system in which states are gene activation configurations
- Formal methods can be developed and applied to study dynamical properties on the transition system
 - e.g. to study causes leading to configurations associated with diseases


Thesis topic 2: (In collaboration with A. Micheli and M. Podda -- CIML group)

Prediction of dynamical properties of biochemical pathways through machine learning on graphs

- The dynamics of a biochemical pathway is the variation of the concentrations of the involved proteins/molecules over time
 - It is usually studied through simulation techniques
- Dynamical properties (e.g. robustness to perturbations in initial concentrations) are often related with structural properties of the pathway
- The idea: let's construct a dataset of pathways and simulation results to be learnt by a Graph Neural Network
 - It could then be able to predict dynamical properties of new pathways without performing traditional simulations



Thesis topic 3: (In collaboration with C.Priami)

Analysis of protein interaction networks for biomedical applications

- Several analysis techniques exist for protein-protein interaction networks aimed at investigating relationships between proteins
- In the biomedical context it is often interesting to understand:
 - which proteins could be influenced by a disfunction of some other proteins (a disease)?
 - which proteins should be addressed by a new drug to be developed (target identification)?
 - which proteins could be influenced by a new drug (toxicity prediction)?
 - which existing drug could be used to treat a new disease (drug repurposing)?
- We would like to develop new methodologies based on proteinprotein interaction networks and investigate new application cases, for instance in the context of drug repurposing

References

Thesis topic 1: Formal analysis of gene regulatory network dynamics

- R. Barbuti, R. Gori, F. Levi and P. Milazzo, **Investigating dynamic causalities in Reaction Systems**, Theoretical Computer Science 623, pages 114-145, 2016
- R. Barbuti, P. Bove, R. Gori, F. Levi and P. Milazzo, Simulating gene regulatory networks using Reaction Systems, Proc. of CS&P 2018, CEUR Workshop Proceedings 2240-11, 2018

Thesis topic 2: Prediction of dynamical properties of biochemical pathways through machine learning on graphs

- P. Bove, A. Micheli, P. Milazzo and M. Podda, **Prediction of dynamical properties of biochemical pathways with Graph**Neural Networks
- P. Bove, A. Micheli, P. Milazzo and M. Podda, Preliminary Results on Predicting Robustness of Biochemical Pathways
 through Machine Learning on Graphs, DataMod 2019, abstract available at http://pages.di.unipi.it/datamod/program-and-pre-proceedings/

Thesis topic 3: Analysis of protein interaction networks for biomedical applications

On request...