Prediction of dynamical properties of biochemical pathways with Graph Neural Networks

Pasquale BoveAlessio MicheliPaolo MilazzoMarco Podda

Department of Computer Science – University of Pisa <u>milazzo@di.unipi.it</u>

Full text paper

• This presentation is based on the paper

Bove, P.; Micheli, A.; Milazzo, P. and Podda, M. (2020). **Prediction of Dynamical Properties of Biochemical Pathways with Graph Neural Networks**. In *Proc. 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 3 BIOINFORMATICS*. pages 32-43. DOI: 10.5220/0008964700320043

• You can download it from

https://www.scitepress.org/PublicationsDetail.aspx?ID=x5i8GvSYgwE=&t=1

The BioSystems Modelling Group @UNIPI

- Web page: http://www.di.unipi.it/msvbio/
- People: R. Barbuti, P. Bove, R. Gori, F. Levi, P. Milazzo, L. Nasti

Activity started in 2004, with the aim of developing formal modeling and analysis techniques for biological systems

Main areas of expertise:

- Modeling of biochemical processes, evolution problems and ecosystems
- Differential equations and stochastic simulation
- Formal methods: process algebras, rewriting systems, model checking

CIML group @UNIPI

- Web page: http://www.di.unipi.it/groups/ciml
- **People:** A. Micheli (coordinator), D. Bacciu, C. Gallicchio, 7 Phd students + 6 post-doc/research associates

Development of basic and applied research on Machine Learning

- Learning in Structured Domains (SD): sequence, trees and graphs
- Neural Networks & Deep learning for SD

The functioning of living cells

- Cells are complex systems
- Main actors:
 - DNA
 - RNA
 - Proteins
 - Metabolites
 -
- Interaction networks:
 - Metabolic pathways
 - Signalling pathways
 - Gene regulatory networks

Biochemical pathways

- A biochemical pathway (metabolic/signaling) is a set of chemical reactions involving biomolecules
- Often denoted as a graph
 - Several notations exist
- Pathways implement cell functionalities

Biochemical pathways in SBML

- A standard language for the description of biochemical pathways is SBML
- A pathway is modeled as a list of reactions
- Each reaction has a list of reactants, products and modifiers
- Rate formulas can be specified

```
<reaction id=`r1'>
<listOfReactants>
```

```
</listOfReactants>
<listOfProducts>
```

```
</listOfProducts>
<listOfModifiers>
```

```
/listOfModifiers>
</reaction>
```


Simulation of pathway dynamics

- Pathway dynamics is how the concentrations of the involved molecules vary over time
- Typical analysis techniques:

- numerical (ODE-based) and stochastic simulation

Reaction	Mod	Kinetics	$\frac{dA}{dt} = -k_1 A B + k_2 B$	100
$A + B \rightarrow 2B$		k_1AB	$\frac{dB}{dt} = k_1 A B - k_2 B$	80
$B \rightarrow A$		k_2B	$\frac{dC}{dt} = -k_3 CDA$	
$C + D \rightarrow E$	A	k ₃ CDA	$\frac{dD}{dt} = -k_3 CDA$	alue
$E \rightarrow F$		k_4E	$\frac{dE}{dt} = k_3 CDA - k_4 E + k_5 F$	40
$F \rightarrow E$		k_5F	$\frac{dF}{dt} = k_4 E - k_5 F$	
$G \rightarrow H$	F	$\frac{k_6G}{1+2F}$	$\frac{dG}{dt} = -\frac{k_6G}{1+2F} + k_7G$	20
H ightarrow G		k_7G	$\frac{dH}{dt} = \frac{\kappa_6 G}{1+2F} - k_7 G$	

Dynamical Properties

- Simulations aim at assessing dynamical properties:
 - Steady states
 - Oscillatory behaviours
 - Sensitivity
 - Robustness
- Property assessment through simulation is often expensive:
 - Stiffness/scalability problems
 - Huge number of simulations to vary parameters/initial values

The Idea...

- Biochemical pathway can be represented as graphs (e.g. Petri nets)
- Assumption: Dynamical properties of pathways could be correlated with topological properties of their graphs
- Let's infer such topological properties through Machine Learning (ML) on graphs
- The ML model could then predict the dynamical property by avoiding the burden of expensive numerical simulations

The approach

Essay: prediction of concentration robustness

- Concentration robustness:
 - Preservation of steady state concentrations despite perturbations on initial conditions
- More precisely:
 - Relative α-robustness
 - Given an input species I and an output species O it is as follows:
 - 1 <u>size of the steady state concentration interval of O</u>

size of the initial concentration interval of I

• **BioModels** database of pathways in **SBML** format:

https://www.ebi.ac.uk/biomodels-main/

```
<reaction id=`r1'>
      <listOfReactants>
                                                     Mod
                                                             Kinetics
                                       Reaction
                                                                               k2
                                                               k_1AB
                                    A + B \rightarrow 2B
      </listOfReactants>
      <listOfProducts>
                                        B \rightarrow A
                                                                k_2B
                                     C + D \rightarrow E
                                                              k_3CDA
                                                       A
     </listOfProducts>
                                       E \rightarrow F
                                                                k_4E
      <listOfModifiers>
                                                                                                  k5
                                        F \rightarrow E
                                                                k_5F
          . . .
                                                                                                         k6
      </listOfModifiers>
                                                                \frac{k_6G}{1+2F}
                                        G \rightarrow H
                                                       F
</reaction>
                                       H \rightarrow G
                                                                k_7G
                                                                                                         k7
```


- Graph preprocessing
 - 1. Removal of quantitave information (focus on topology)

- Graph preprocessing
 - 1. Removal of quantitave information (focus on topology)
 - 2. Extraction of input/output induced subtasks

- The dataset consists of >7000 induced subgraphs
 - Obtained from the 706 complete graphs
 - Up to 40 nodes
- Each subgraph is associated to a robustness classification label (1 if robustness > 0.5 -- 0 otherwise)
 - Obtained by performing extensive simulations of the 706 graphs
 - Initial concentration of each (input) molecule
 perturbed in the interval [-20%,+20%]
 - Simulations gave the interval of (output) steady state

concentrations for the computation of robustness

Machine Learning: more details

- Machine Learning on graphs:
 - Traditional ML modelling assumes continuous fixed-size vectors as input data
 - Graphs are discrete variable-size objects
- There is no a universally effective way of mapping graphs into fixed-size vectors
- Graph Neural Networks (GNNs) are able to learn meaningful graph-to-vector mappings adaptively from data

Machine Learning: more details

- GNNs are based on node embedding and neighborhood aggregation
- Iterative process: at the k-th step each node receive information from nodes at distance k (layering)

Machine Learning: more details

- Node embeddings are then aggregated to get graph embeddings (one for each layer)
- Graph embeddings are
 concatenated into a
 single fixed-size vector
 suitable for multilayer
 perceptron classification

Results: accuracy

(a) Overall and stratified accuracies.

(b) Confusion Matrix.

(c) Accuracy improvement plot.

- Dataset slightly imbalanced in favor of robustness
- Better accuracy compared to Null model (always says "Robust")
- Accuracy increases with number of nodes

Conclusions

- Our experiments suggest that it is possibile to learn something about dynamical properties of pathways by looking only at their structure/topology
- The approach works better for bigger (sub)graphs
 - In small graphs quantitative parameters are more relevant
 - In big graphs it is the structure that matters
- Next steps:
 - Try to recover quantitative parameters, properly normalized/generalized
 - Apply to other dynamical properties
 - Explainability: evaluate the contribution of each edge by performing selective «knock-outs» of edges

