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Introduction

Petri nets have been proposed to model concurrent systems, with
applications mainly in manufactury and concurrent programming

Recent applications are in the context of business processes
I Have a look at Roberto Bruni’s course:

http://didawiki.di.unipi.it/doku.php/

magistraleinformaticaeconomia/mpb/start

Many books have been written on Petri nets. One of the most
famous is

I Wolfgang Reisig, ”Petri Nets. An Introduction”. Springer-Verlag.

This lesson is based on the tutorial by G. Geeraerts available here:
http://di.ulb.ac.be/verif/ggeeraer/

Tutorial-Perti-Nets-Geeraerts.pdf
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Introduction

Introduction
Concurrency

Work in parallel

Must wait for the
two other machines

4
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Introduction

Can write or
read on the DB

Can write or
read on the DB

Introduction
Concurrency
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Petri nets

Ingredients
A Petri net is made up of...

Places

Transitions

Tokens

= some type of resource

consume and produce
resources

= one unity of a 
certain resource

Tokens ‘live’ in the places
12

c©G. Geeraerts

Places and Transitions
are edges of a bipartite
graph (the Petri net)

Tokens are inside places
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Petri nets

Transitions
Input places

Output places

2

3

13

c©G. Geeraerts

A Petri net trasition
corresponds exactly to a
MultiSet Rewriting rule
(or a chemical reaction)

MSR:

a2b 7→ cd3e

Chem:

2A + B → C + 3D + E
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Petri nets

Firing a transition

2

3

Transitions consume tokens from the input places 
and produce tokens in the output places

14
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Petri nets

Firing a transition

2

3

Transitions consume tokens from the input places 
and produce tokens in the output places

Now, the transition 
cannot be fired anymore

15

c©G. Geeraerts
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Petri nets
Example: producer/consumer with bounded buffer
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Petri nets

Example 1

Can write or
read on the DB

Can write or
read on the DB

The two machines cannot write at the 
same time

16
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Petri nets

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

17

c©G. Geeraerts

With MSR rules:

idle1 7→ read1

idle1 7→ write1

read1 7→ idle1

write1 7→ idle1

idle2 7→ read2

idle2 7→ write2

read2 7→ idle2

write2 7→ idle2

state (multiset):

idle1 idle2
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Petri nets

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

18
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With MSR rules:

idle1 7→ read1

idle1 7→ write1

read1 7→ idle1

write1 7→ idle1

idle2 7→ read2

idle2 7→ write2

read2 7→ idle2

write2 7→ idle2

state (multiset):

write1 idle2
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Petri nets

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

19
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With MSR rules:

idle1 7→ read1

idle1 7→ write1

read1 7→ idle1

write1 7→ idle1

idle2 7→ read2

idle2 7→ write2

read2 7→ idle2

write2 7→ idle2

state (multiset):

write1 read2
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Petri nets

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

20
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With MSR rules:

idle1 7→ read1

idle1 7→ write1

read1 7→ idle1

write1 7→ idle1

idle2 7→ read2

idle2 7→ write2

read2 7→ idle2

write2 7→ idle2

state (multiset):

write1 idle2
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Petri nets

Example 1
read

write

idle

write

read

idle

The token tells us the state of the process

21
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With MSR rules:

idle1 7→ read1

idle1 7→ write1

read1 7→ idle1

write1 7→ idle1

idle2 7→ read2

idle2 7→ write2

read2 7→ idle2

write2 7→ idle2

state (multiset):

write1 write2 !!!
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Petri nets

Example 1
read

write

idle

write

read

idle

Add a lock to ensure mutual exclusion
22

c©G. Geeraerts

With MSR rules:

idle1 7→ read1

idle1 M 7→ write1

read1 7→ idle1

write1 7→ idle1 M

idle2 7→ read2

idle2 M 7→ write2

read2 7→ idle2

write2 7→ idle2 M

state (multiset):

idle1 idle2 M
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Petri nets

Example 1
read

write

idle

write

idle

23
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With MSR rules:

idle1 7→ read1

idle1 M 7→ write1

read1 7→ idle1

write1 7→ idle1 M

idle2 7→ read2

idle2 M 7→ write2

read2 7→ idle2

write2 7→ idle2 M

state (multiset):

write1 idle2
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Petri nets

Example 216 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

mutex M ;

Process P {
   repeat {
      take M ;
      critical ;
      release M ;
   }
}

24

c©G. Geeraerts

t1 represents the start of
a new (concurrent)
instance of process P

p1: processes
p2: free mutex
p3: critical session
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Petri nets

Formal definition

• A Petri net is a tuple 〈P, T〉where:

• P is the (finite) set of places

• T is the (finite) set of transitions. Each 
transition t is a tuple 〈I, O〉where:

• I: is a function s.t. t consumes I(p) tokens 
in each place p

• O is a function s.t. t produces O(p) 
tokens in each place p

27

c©G. Geeraerts
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Petri nets

Example

2

3

t
p1

p2

p5

p4

p3

I(p1)=2   I(p2)=1   I(p3)=0   I(p4)=0   I(p5)=0
O(p1)=0   O(p2)=0   O(p3)=1   O(p4)=3   O(p5)=1

28
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Dynamics of Petri nets (semantics)

Markings

• The distribution of the tokens in the places 
is formalised by the notion of marking, which 
can be seen:

• either as a function m, s.t. m(p) is the 
number of tokens in place p

• or as a vector m=〈m1, m2,... mn〉where 
mi is the number of tokens in place pi

29
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Dynamics of Petri nets (semantics)

Example

2

3

t
p1

p2

p5

p4

p3

m =〈1,1,1,2,0〉
m = 〈 p1, p2, p3, 2p4〉

m(p1)=1, m(p2)=1, m(p3)=1, m(p4)=2, m(p5)=0

30
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Markings are multisets!

Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 23 / 147



Dynamics of Petri nets (semantics)

Firing a transition

• A transition t = 〈I,O〉can be fired from m 
iff for any place p:

                      m(p) ≥ I(p) 

• The firing transforms the marking m into a 
marking m’ s.t. for any place p:

             m’(p) = m(p) - I(p) + O(p)

• Notation: m→m’

• Notation: Post(m) = {m’ | m→m’}

31

c©G. Geeraerts

Post(m) is the set of
markings that can be
obtained by firing
transitions from m

Post corresponds to
the transition
relation in
Transition Systems
terminology
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Dynamics of Petri nets (semantics)

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Post(〈1, 1, 0〉)=
{〈2, 1, 0〉,〈0, 0, 1〉}

32

c©G. Geeraerts
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Dynamics of Petri nets (semantics)

Example16 CHAPTER 2. PRELIMINARIES
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• D+
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21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Post(〈1, 1, 0〉)=
{〈2, 1, 0〉,〈0, 0, 1〉}
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Dynamics of Petri nets (semantics)

Example16 CHAPTER 2. PRELIMINARIES
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ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
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Dynamics of Petri nets (semantics)

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.
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2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Post(〈1, 1, 0〉)=
{〈2, 1, 0〉,〈0, 0, 1〉}

32
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Dynamics of Petri nets (semantics)

Initial marking
Reachable markings

• All PN are equipped with an initial marking m0

• If two markings m and m’ are s.t.:

              m→m1→m2→…→m’

Then m’ is reachable from m

• Let N be a PN with initial marking m0: 

       Reach(N) = {m reachable from m0}

is the set of reachable markings of N.

33

c©G. Geeraerts

Analogous to initial
state and reachable
states in Transition
Systems terminology
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Dynamics of Petri nets (semantics)

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Reach(N ) =
{〈i,1,0〉 | i ∈ N}

∪
{〈i,0,1〉 | i ∈ N}

This set allows us to 
prove that the mutual 

exclusion is indeed 
enforced

34
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Dynamics of Petri nets (semantics)

Ordering on markings

• Markings can be compared thanks to 4:

   m4m’ iff for any place p: m(p)6      m’(p)

   mpm’ iff m4m’ and m≠m’

• Examples:

• 〈1, 0, 0〉p〈1, 1, 0〉4〈1, 1, 0〉 4〈5, 7, 2〉

• 〈1, 0, 0〉 is not comparable to 〈0, 1, 0〉

35
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Structural/Dynamical properties

Questions on PN
• Meaningful questions about PN include:

• Boundedness: is the number of reachable 
markings bounded ?

• Place boundedness: is there a bound on 
the maximal number of tokens that can be 
created in a given  place ?

• Semi-liveness: is there a reachable marking 
from which a given transition can fire ?

• Coverability

36
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Structural/Dynamical properties

Example
read

write

idle

write

read

idle

Bounded PN All the places are bounded

All the transitions are semi-live

37
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Structural/Dynamical properties

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

• Unbounded PN

• p2 and p3 are bounded

• p1 is unbounded

• All the transitions are 
semi-live

38
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Reachability graph

Reachability graph

• Idea: build a node for each reachable 
marking and add an edge from m to m’ if 
some transition transforms m into m’

• remark: now, if we meet the same marking 
twice, we do not create a new node, but 
re-use the previously created node.

43

c©G. Geeraerts

It is a Transition System

Exactly the same
Transition System
that would be
obtained from the
MultiSet Rewriting
representation of
the Petri net
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Reachability graph

Reachability graph
I1

R1

W1

W2
R2

I2

M 〈M, I1, I2〉

44
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Reachability graph

Reachability graph
I1

R1

W1

W2
R2

I2

M 〈M, I1, I2〉

〈M, R1, I2〉 〈M, I1, R2〉
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Reachability graph

Reachability graph
I1

R1

W1

W2
R2

I2

M 〈M, I1, I2〉

〈M, R1, I2〉 〈M, I1, R2〉

〈M, R1, R2〉
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Reachability graph

Reachability graph
I1

R1

W1

W2
R2

I2

M 〈M, I1, I2〉

〈W1, I2〉〈I1, W2〉

〈W1, R2〉〈R1, W2〉

〈M, R1, I2〉 〈M, I1, R2〉

〈M, R1, R2〉

44
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Reachability graph

Reachability graph
I1

R1

W1

W2
R2

I2

M 〈M, I1, I2〉

〈W1, I2〉〈I1, W2〉

〈W1, R2〉〈R1, W2〉

〈M, R1, I2〉 〈M, I1, R2〉

〈M, R1, R2〉

The reachability graph 
allows us to prove that 
the mutual exclusion is 

indeed enforced

44
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 40 / 147



Reachability graph

Reachability graph

• The reachability graph of a PN contains all 
the necessary information to decide:

• boundedness

• place boundedness

• semi-liveness

• ...

45
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Reachability graph

Reachability graph

• Unfortunately...

16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

46
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Reachability graph

Reachability graph

• Unfortunately...

16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

46
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Reachability graph

Reachability graph

• Unfortunately...

16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉
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Reachability graph

Reachability graph

• Unfortunately...

16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉
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Reachability graph

Reachability graph

• Unfortunately...

16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉

46
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Reachability graph

Reachability graph

• Unfortunately...

16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈p2〉

〈p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉

Reachability graphs can 
be infinite

46
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Infinite, but decidable!

The reachability graph of a Petri net (aka the Transition System of a
MultiSet Rewriting system) can be infinite

But, the reachability property (i.e. is a given state/marking reachable?) is
DECIDABLE

Its computation has been proven to require EXPONENTIAL time

The reason for decidability is that the reachability graph has a regular
structure!
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Infinite, but decidable!

For example:

Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 49 / 147



Infinite, but decidable!

The reachability graph, plotted on the cartesian plane:

Infinite, but very regular!
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Decidable, but exponential!

Reachability of a marking M is decidable, but exponential...

SOLUTION 1: consider overapproximations of the set of reachable states

1 based on Place Invariants

2 based on Karp and Miller tree

If M does not belong to the overapproximation it is not reachable (this is a
sufficient condition: if M belongs, nothing can be said...)

SOLUTION 2: consider coverability instead of reachability (weaker than
reachability, but meaningful in the context of Petri Nets and easy to
compute)
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Place Invariants

Place Invariants
read

write

idle

write

read

idle

R1

I1

m(R1) + m(W1) + m(I1) = 1

W1

54

c©G. Geeraerts

The idea is to identify
groups of places whose
overall number tokens is
(more or less) constant
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Place Invariants

Place Invariants
read

write

idle

write

read

idle

R1

I1

m(R1) + m(W1) + m(I1) = 1

W1

55
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Place Invariants

Place Invariants
read

write

idle

write

read

idle

R1

I1

m(R1) + m(W1) + m(I1) = 1

W1

56
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Place Invariants

Place Invariants
read

write

idle

write

read

idle

R1

I1

m(R1) + m(W1) + m(I1) = 1

W1

The total number of 
tokens in these places 

is constant

56
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Place Invariants

Place Invariants
read

write

idle

write

read

idle

R1

I1

m(R1) + m(W1) + m(I1) = 1

W1

The total number of 
tokens in these places 

is constant

This provides 
meaningful information 

about the system: a 
process is either idle, 
or reading or writing

56
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 56 / 147



Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

57
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 3
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 2

59
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

60
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

The total number of 
tokens in these places 

is not constant
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

The total number of 
tokens in these places 

is not constant

In some sense, tokens 
in p1 are heavier than 

those in p2
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

m(p1) + m(p2) + m(p3) + m(p4) = 1

The total number of 
tokens in these places 

is not constant

In some sense, tokens 
in p1 are heavier than 

those in p2

Let’s add weights to 
the places !

60
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

3 m(p1) + m(p2) + m(p3) + 2 m(p4) = 3

61
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

3 m(p1) + m(p2) + m(p3) + 2 m(p4) = 3

62
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Place Invariants

p1

p2

p3

p4
2

2

Place Invariants

3 m(p1) + m(p2) + m(p3) + 2 m(p4) = 3
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Place Invariants

Place invariant:
Definition

• Definition: a place-invariant (or p-semiflow) 
is a vector i of natural numbers s.t. for any 
reachable marking m:

               ∑
p∈P

i(p)×m(p) = ∑
p∈P

i(p)×m0(p)

remark: there exists a trivial invariant i  = 〈0, 0, .., 0〉

64

c©G. Geeraerts

Corresponds to the
notion of mass
conservation in
(bio)chemistry

“Matter can never be
created, nor
destroyed...”
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Place Invariants

p1

p2

p3

p4
2

2

Example: other 
invariants

m(p1) + m(p3)  = 1

2 m(p1) + m(p2) + 2 m(p4) = 2

65
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Place Invariants

Invariants as over-
approximations

• A place-invariant expresses a constraint on 
the reachable markings.

• If m is reachable and i is an invariant, then:

• The reverse is not true !

∑
p∈P

i(p)×m(p) = ∑
p∈P

i(p)×m0(p)

66
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Place Invariants

p1

p2

p3

p4
2

2

Example

m(p1) + m(p3)  = 1
is an invariant

but〈1, 25, 0, 234〉 is not reachable

67
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Place Invariants

• Theorem: For any Petri net N:

                         Reach(N) 

                           ⊆ 

        {m | m respects some invariant of N}

Invariants as over-
approximations

68
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So, every marking that
does not respect the
invariant is not
reachable!

We do not need to
explore the reachability
graph!
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Place Invariants

Place invariant and 
boundedness

• Theorem: If there exists a place invariant i 
and a place p s.t. i(p)>0 then p is bounded.

• Remark: the reverse is not true. 

• One can find a bounded net that doesn’t 
have a place invariant i with i(p)>0 for 
each place.

69
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Place Invariants

Place invariant

• Question: how do we compute them ?

70
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Matrix representation of Petri nets

Matrix characterisation

• The negative effect (consumption) of all 
the transitions on all the places can be 
summarised in one matrix:

where, for any i: ti  =〈Ii,Oi〉

W− =





I1(p1) I2(p1) · · · Ik(p1)
I1(p2) I2(p2) · · · Ik(p2)

... ... . . . ...
I1(pn) I2(pn) · · · Ik(pn)





neg. eff. on p1

neg. eff. on p2
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Matrix representation of Petri nets

• The same can be done with the positive 
effects:

where, for any i: ti  =〈Ii,Oi〉

W + =





O1(p1) O2(p1) · · · Ok(p1)
O1(p2) O2(p2) · · · Ok(p2)

... ... . . . ...
O1(pn) O2(pn) · · · Ok(pn)





pos. eff. on p1

pos. eff. on p2

Matrix characterisation
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Matrix representation of Petri nets

Incidence Matrix

• The global effect of every transition can be  
summarised as a single matrix:

W = W +−W−

W is called the incidence matrix of the net
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Matrix representation of Petri nets

Example

W + =




1 0 1
0 0 1
0 1 0



 W− =




0 1 0
0 1 0
0 0 1





W =




1 −1 1
0 −1 1
0 1 −1





16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such
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Matrix representation of Petri nets

Example

W + =




1 0 1
0 0 1
0 1 0



 W− =




0 1 0
0 1 0
0 0 1





W =




1 −1 1
0 −1 1
0 1 −1





16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 78 / 147



Place invariants

Computing place 
invariants

• Intuitively, if i is a place invariant it should 
assign weights to the places such that the 
positive and negative effects of every 
transition are balanced

• Thus, for any transition t =〈I, O〉we 
should have:

        ∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)
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Place invariants

Computing place 
invariants

• Intuitively, if i is a place invariant it should 
assign weights to the places such that the 
positive and negative effects of every 
transition are balanced

• Thus, for any transition t =〈I, O〉we 
should have:

        ∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

2

1 2

75

c©G. Geeraerts
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Place invariants

Computing place 
invariants

• Intuitively, if i is a place invariant it should 
assign weights to the places such that the 
positive and negative effects of every 
transition are balanced

• Thus, for any transition t =〈I, O〉we 
should have:

        ∑
p∈P
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Place invariants

Computing place 
invariants

• Intuitively, if i is a place invariant it should 
assign weights to the places such that the 
positive and negative effects of every 
transition are balanced

• Thus, for any transition t =〈I, O〉we 
should have:

        ∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

2

1 2
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Place invariants

Computing place 
invariants

∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

means
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Place invariants

Computing place 
invariants

∑
p∈P

I(p)× i(p) = ∑
p∈P

O(p)× i(p)

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

means

t =〈I, O〉 W =





· · · O(p1)− I(p1) · · ·
· · · O(p2)− I(p2) · · ·
... ... ...

· · · O(pn)− I(pn) · · ·




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Place invariants

Computing place 
invariants

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

is thus the scalar product of i and the column 
of W that corresponds to transition t
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Place invariants

Computing place 
invariants

∑
p∈P

(
O(p)− I(p)

)
× i(p) = 0

is thus the scalar product of i and the column 
of W that corresponds to transition t

Since this must hold for any t, we obtain:

i×W = 0

Theorem: any solution i to the following system of 
equations is a place-invariant:
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Place invariants

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

W =




1 −1 1
0 −1 1
0 1 −1




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Place invariants

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈i1, i2, i3〉×W = 0

W =




1 −1 1
0 −1 1
0 1 −1




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Place invariants

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such






i1 = 0
−i1−i2+i3 = 0

i1+i2−i3 = 0

〈i1, i2, i3〉×W = 0

W =




1 −1 1
0 −1 1
0 1 −1




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Place invariants

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such






i1 = 0
−i1−i2+i3 = 0

i1+i2−i3 = 0

〈i1, i2, i3〉×W = 0

W =




1 −1 1
0 −1 1
0 1 −1










i1 = 0
−i2+i3 = 0
+i2−i3 = 0
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Place invariants

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such






i1 = 0
−i1−i2+i3 = 0

i1+i2−i3 = 0

〈i1, i2, i3〉×W = 0

W =




1 −1 1
0 −1 1
0 1 −1










i1 = 0
−i2+i3 = 0
+i2−i3 = 0

Any vector of the form 
〈0, i, i〉

is a place invariant
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Place invariants

Proving properties16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

For any reachable marking m: 
 

0 m(p1) +1 m(p2) + 1 m(p3) = 0 m0(p1) + 1 m0(p2) + 1 m0(p3)

m(p2) + m(p3) = 1

Let us choose 〈0, 1, 1〉
as place-invariant

This means that p2 and p3 are 
bounded !
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Place invariants

Proving properties16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

For any reachable marking m: 
 

0 m(p1) +1 m(p2) + 1 m(p3) = 0 m0(p1) + 1 m0(p2) + 1 m0(p3)

m(p2) + m(p3) = 1

Let us choose 〈0, 1, 1〉
as place-invariant

Hence, mutual exclusion is enforced !

This means that p2 and p3 are 
bounded !
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Place invariants

Proving properties
read

write

idle

write

read

idle

M

W1 W2

i(M) = i(W1) = i(W2) = 1 and i(p) = 0 otherwise
is a place invariant
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Place invariants

Proving properties
read

write

idle

write

read

idle

M

W1 W2

i(M) = i(W1) = i(W2) = 1 and i(p) = 0 otherwise
is a place invariant

Hence, mutual exclusion is enforced !
80
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Karp and Miller tree

The reachability tree 
revisited

• Reminder: reachability trees can be infinite
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈0p1,p2〉

〈1p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉

82
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Karp and Miller tree

The reachability tree 
revisited

• Reminder: reachability trees can be infinite
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈0p1,p2〉

〈1p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉
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Karp and Miller tree

The reachability tree 
revisited

• Reminder: reachability trees can be infinite
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈0p1,p2〉

〈1p1,p2〉

〈2p1,p2〉 〈p3〉

〈3p1,p2〉 〈p1,p3〉

Increasing sequences 
of markings appear

on unbounded 
places
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 98 / 147



Karp and Miller tree

The reachability tree 
revisited

• Let us summarise this infinite sequence

〈0p1,p2〉

〈1p1,p2〉

〈2p1,p2〉

〈3p1,p2〉

〈 ωp1,p2〉limit

ω must be regarded as:
“any number of tokens”

Main idea of the Karp and 
Miller algorithm

83
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Karp and Miller tree

Karp & Miller

• Propose in 1969 a solution to detect 
unbounded places of a Petri net

84
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Karp and Miller tree

Monotonicity

• Petri nets induce (strongly) monotonic 
transition systems:

• In particular:

m4

m1 m2

m3

t! !

t

≺
<

if then p2  is 
unbounded

≺ ≺
〈i1, i2, i3〉 〈i′1, i′2, i′3〉

85
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This is clearer on the
cartesian plane
representation:
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉

86

c©G. Geeraerts
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉
p1, p3 and p4 are 

unbounded !
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉

〈 ω, 0, ω, ω〉

p1, p3 and p4 are 
unbounded !
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Karp and Miller tree

〈1, 0, 0, 0〉

Example

〈0, 0, 0, 1〉 〈1, 0, 1, 1〉

〈0, 0, 1, 0〉

〈0, 0, 0, 1〉

〈 ω, 0, ω, ω〉

ω must be regarded as:
“any number of tokens”

p1, p3 and p4 are 
unbounded !
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Karp and Miller tree

Karp & Miller
Acceleration

This is how we compute the
successors of a node n:

m

m2

m1

n

mω

Logical Methods in Computer Science
Volume 00, Number 0, Pages 000–000
S 0000-0000(XX)0000-0

FIXING THE CONSTRUCTION OF THE MINIMAL COVERABILITY
SET FOR PETRI NETS

G. GEERAERTS, J.-F. RASKIN, AND L. VAN BEGIN

Départment d’Informatique – Université Libre de Bruxelles – Belgium
E-mail address: gigeerae@ulb.ac.be

E-mail address: jraskin@ulb.ac.be

E-mail address: lvbegin@ulb.ac.be

Abstract. blahblah

foreach Successor m′ of m do
mω ← m′;
foreach ancestor ni s.t. mi ≺ m′ do

foreach place p s.t. mi(p) < m′(p) do
mω(p)← ω;

Add mω as child of n;

Départment d’Informatique – Université Libre de Bruxelles – Belgium
E-mail address: gigeerae@ulb.ac.be

E-mail address: jraskin@ulb.ac.be

E-mail address: lvbegin@ulb.ac.be

This work is licensed under the Creative Commons Attribution-NoDerivs License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

1

n1

n2
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Karp and Miller tree

Karp & Miller
Stopping a branch

m1

m2

!

This node doesn’t have to be developed

88
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Karp and Miller tree

Example of K&M tree
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈0, 1, 0〉

(0,1,0) (1,1,0)
t1

(0,1,0)≺

〈ω,1,0〉
t1

t1

〈ω,1,0〉

t2

〈ω,0,1〉

t1

〈ω,0,1〉 〈ω,1,0〉

t3
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Karp and Miller tree

Properties

• Theorem: the K&M tree is always finite.

• Idea of the proof: 

• if the net is not bounded, it is because of 
some infinite increasing sequence of 
markings.

• such sequences are detected in a finite 
amount of time by adding ω in the 
unbounded places.
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 112 / 147



Karp and Miller tree

Properties

• Theorem: a net is bounded iff there is no 
node containing an ω in its K&M tree. 

• Theorem: place p is unbounded iff there 
exists a node labeled by m in the K&M tree 
s.t. m(p) =  ω.

• Theorem: transition t is semi-live iff there 
exists a node labeled by m in the K&M tree 
s.t. t can fire in m.

91
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Karp and Miller tree

Example16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

〈0, 1, 0〉

〈ω,1,0〉
t1

t1

〈ω,1,0〉

t2

〈ω,0,1〉

t1

〈ω,0,1〉 〈ω,1,0〉

t3

t2 is semi-live

p2 and p3 are bounded

p1 is unbounded

The net is unbounded
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Coverability set

• Question: what is the relationship between:

• the set of reachable markings and

• the set of labels of the nodes of the K&M 
tree ?

Coverability set

93
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Coverability set

• Question: what is the relationship between:

• the set of reachable markings and

• the set of labels of the nodes of the K&M 
tree ?

Coverability set
might be 
infinite

always finite
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 116 / 147



Coverability set

Example

3
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Coverability set

Example

3
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Coverability set

Example

3
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Coverability set

Example

3
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Coverability set

Example

3

Clearly: ≠

• Set of reachable markings:

{〈1, 0, 3.i〉,〈0, 1, 3.i〉| i>0 }

• Set of nodes of the K&M tree:

{〈1, 0, 0〉〈1, 0, ω〉,〈0, 1, ω〉}

• This set “represents”:

{〈1, 0, i〉,〈0, 1, i〉| i>0 }
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Coverability set

Example

• Clearly, the K&M set contains more markings 
than the set of reachable markings:

• However, for every marking m in the K&M 
set, there exists a reachable marking m’ s.t.:

                             m’ < m

{〈1, 0, i〉,〈0, 1, i〉| i>0 }{〈1, 0, 3.i〉,〈0, 1, 3.i〉| i>0 } vs

Reach K&M

⊆

= + {m| there is m’ in       with m’ < m} 
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Coverability set

Downward-closure

• Let us assume that any natural number i is s.t.

                          i < ω

• Let m be a marking (possibly with ω), then its 
downward-closure is the set:

                ↓m = {m’ | m’4m}

• Let S={m1, m2,... mk} be a set of markings, then:

           ↓S = ↓m1  ∪ ↓m2  ∪...∪↓mk
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Coverability set

Examples in 2 dim.

ω1 2 3

1
2

3

4

1
2

3

4

1 2 3p1

p2 p2

p1

{〈1, 2〉,〈2, 4〉,〈3, 1〉} {〈1, 2〉,〈2, 4〉,〈 ω, 1〉}
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Coverability set

Properties of the K&M 
tree

• The set of all the markings that appear in a 
K&M tree is called a coverability set of the 
net. 

• Notation: Cover(N)

• Theorem: ↓Cover(N) = ↓Reach(N)

• Theorem:  Reach(N) ⊆ ↓Cover(N)

• Hence, ↓Cover(N) is a finite over-
approximation of Reach(N)

102
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↓ Cover(N) is another
overapproximation of
the set of reachable
markings

If a marking is not in
↓ Cover(N), it is not
reachable!

again: sufficient
condition!
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Coverability set

Example
16 CHAPTER 2. PRELIMINARIES

p1

•
p2

p3

t1

t3 t2

Figure 2.1: The SMPN Nµ.

p1

t1

t2
2 · m(p1)

Figure 2.2: The SMPN Nns.

• D+
11(m) = D+

21(m) = 0 ;

• m0 = 〈0〉.

It is graphically represented at Fig. 2.2. ♦

Dynamics of SMPN We have already sketched the way a SMPN can
evolve, by letting its transitions move tokens from one place to another. Let
us define this more precisely.

Definition 12 (Enabled transition, effect of a transition) Given
a SMPN N = 〈P, T,D−,D+,m0〉, and a marking m of the places of N , a
transition ti is firable or enabled from a marking m if m(pj) ≥ D−

ij(m) for

all pj ∈ P . This is denoted by m
ti−→. Firing ti from m leads to a marking

m′ ∈ NkP . This is noted m
ti−→ m′, and m′ is computed as follows. First,

we compute m′′, s.t. for any pj ∈ P : m′′(pj) = m(pj)−D−
ij(m). Then, we

let m′ be s.t. for any pj ∈ P : m′(pj) = m′′(pj) + D+
ij(m). "

Remark that the two steps in the computation of m′ can be swapped when
we manipulate (plain) markings of SMPN. However, the order of these steps
will become relevant when we will manipulate extended markings (see...)

From Definition 12, it is easy to see that an SMPN N = 〈P, T,D−,D+,m0〉
naturally defines a transition system SN =

〈
NkP ,m0,⇒

〉
, where ⇒ is such

Cover(N) 
=

 ↓{ 〈ω, 1, 0〉,〈ω, 0, 1〉 }
=

Reach(N) ∪  { 〈0, 0, 0〉 }

Reach(N) 
=

 { 〈i, 1, 0〉,〈i, 0, 1〉| i ≥ 0 }
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An alternative to reachability

Reachability: a natural 
question

• The reachability problem: given a marking m 
is it reachable from m0 ?

m

m0
106
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 127 / 147



An alternative to reachability

Reachability: a natural 
question ??

• In the case  of Petri nets, asking whether a 
given marking is reachable does not always 
make sense...

• ... because Petri nets are monotonic
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An alternative to reachability

Example

nasty

2

p1

p2

p3

Question
is 〈0, 0, 2, 0〉 

reachable ?
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is 〈0, 0, 2, 0〉 

reachable ?

Better question
is a marking  with at 
least 2 tokens in p3 

reachable ?
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An alternative to reachability

Example

nasty

2

p1

p2

p3

Question
is 〈0, 0, 2, 0〉 

reachable ?

Better question
is a marking  with at 
least 2 tokens in p3 

reachable ?

Better question
is a marking  

m   <〈0, 0, 2, 0〉
reachable ?
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The coverability problem

The coverability 
problem

!
b

m’

m0

Does there exist a reachable marking which 
is larger than some marking b ?
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 132 / 147



The coverability problem

The coverability 
problem

b

m0
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Paolo Milazzo (Università di Pisa) CMCS - Petri Nets A.Y. 2019/2020 134 / 147



The coverability problem

The coverability 
problem

b

m0

110

c©G. Geeraerts
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The coverability problem

The coverability 
problem

bReach(N)

m0
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The coverability problem

The coverability 
problem

bReach(N)

{m | m < b}

m0
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The coverability problem

The coverability 
problem

• Two alternative definitions:

• Is there a reachable marking m s.t. m<b ?

• Does Reach(N) ∩ {m | m<b} ≠ ⏀ ?
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The coverability problem

Coverability: a natural 
question (indeed)

• Coverability might be regarded as the most 
natural reachability question in the 
framework of  Petri nets

• Besides, coverability is much more easily 
solved than reachability

112

c©G. Geeraerts
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The coverability problem

↓Cover(N)

First idea

• Use the coverability set !

• Remember: the coverability set over-
approximates the reachable states:

        Reach(N) ⊆ ↓Cover(N)

Reach(N)
U

114
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The coverability set can
be computed (easily) by
using the Karp and
Miller algorithm
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The coverability problem

First idea

↓Cover(N)Reach(N)
U

↓Cover(N) ∩ U = ⏀
 implies

Reach(N) ∩ U = ⏀
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The coverability problem

What if ?

↓Cover(N) U

• There is m in ↓Cover(N) ∩ U

• Hence, there is m’ < m which is in Reach(N)

• However, any m’ < m is also in U

• Thus, there is m’ both in Reach(N) and U
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The coverability problem

What if ?

↓Cover(N) U

• There is m in ↓Cover(N) ∩ U

• Hence, there is m’ < m which is in Reach(N)

• However, any m’ < m is also in U

• Thus, there is m’ both in Reach(N) and U

Reach(N)

116
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NOTE: m′ > m since
↓ Cover =↓ Reach
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The coverability problem

Reach(N)

What if ?

↓Cover(N) U

Reach(N) ∩ U = ⏀
implies

↓Cover(N) ∩ U = ⏀
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The coverability problem

Coverability set and 
coverability problem

• Theorem: 

Reach(N) ∩ U = ⏀ iff↓Cover(N) ∩ U = ⏀

118
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Summing up:
In order to check
whether a marking in U
is reachable, we can use
the Karp and Miller
approach to compute
the ↓ Cover(N) set, and
check whether it has a
non-empty interesection
with U!
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