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Introduction: Systems Biology

“Systems Biology is a comprehensive quantitative analysis of the manner in which

all the components of a biological system interact functionally over time.”

Alan Aderem, Systems Biology: Its Practice and Challenges. Cell 121, 511-513 (2005)

The aim of current research in Systems Biology is to integrate the
knowledge about single constituents of living organisms into system view.

The two main approaches to biological systems modelling:

Biomath Models are given as differential equations (or recurrence
equations), and are studied by applying analytical and
numerical techniques.

Bioinfo Biological systems are modelled as stochastic concurrent

systems and analyzed by simulation and model checking .

The application of such tools is limited to small, well known pathways
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Introduction: The need of approximations

“Biological processes are profoundly complex, containing hundreds or thousands

of component interactions. This leads to uncertainty i.e., precise information

about probabilities, pathway structure, rate constants and similar parameters, is

often unknown. Further, it is often impossible to assign precise point probabilities

to each of the myriad constituents of an intricate biological pathway.”

Iyengar M.S., McGuire M.F., Imprecise and Qualitative Probability in Systems Biology,
ICSB, October 1-6, 2007

The two main problems in biological systems modelling are:

complexity of the systems

unavailability of (precise) kinetic parameters

Hence, the need of constructing approximated models

by means (if possible) of conservative abstractions
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Introduction: two examples of approaches

We propose two approaches for the construction and analysis of models
with approximations:

Modular verification
◮ PhD thesis (in progress) by Peter Drábik

Dipartimento di Informatica, Università di Pisa

Probabilistic model checking with uncertainty on kinetic rates
◮ PhD thesis (in progress) by Guido Scatena

IMT Lucca Institute for Advanced Studies
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Abstract Interpretation (1)

Abstract Interpretation is:

a static analysis technique

aimed at allowing a property of the possible behaviours of a complex
system to be verified

on an abstraction of these behaviours dealing only with aspects
related with the considered property
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Abstract Interpretation (2)

Verification of a safety property (nothing bad happens) of a computer
program by Abstract Interpretation consists in:

considering an abstract semantics, that is a superset of the (concrete)
semantics of the program

the abstract semantics has to be sound: it must cover all possible
concrete executions

on the other hand it has to allow for a more efficient verification of
the property

if the property holds in the abstract semantics it holds also in the
concrete one

Paolo Milazzo (Università di Pisa) Complexity and uncertainty SEFM School 2010 7 / 59



Abstract Domains

A typical way of defining an abstract semantics is by means of abstract
domains for program variables:

Example of concrete domain:
◮ integers . . . ,−2,−1, 0, 1, 2, . . .

Examples of abstract domains:
◮ signs Neg , Pos, 0, Unknown
◮ intervals [−5,−1], [1, 5], . . .
◮ polyedra {x ≥ 0, y ≥ x + 1}, . . .

An element of an abstract domain represent a set of elements of the
concrete domain
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Abstract Domains

New semantic rules have to be defined for the considered abstract domain:

Semantic rule for multiplication of integers: 3 ×−2 → −6

Semantic rule for multiplication of {Neg , 0,Pos,Unknown}:
Pos × Neg → Neg

Semantic rule for multiplication of intervals:
[1, 5] × [−5,−1] → [−25,−1]

The use of abstract domains allows the state space of program semantics
to be reduced

In many cases this makes it feasible to verify properties
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Abstractions and LTS
In context of LTS semantics, an abstraction is a function mapping states
and transition of the (concrete) semantics into state and transitions of an
abstract LTS semantics

In the case of programs the function can be inferred from the
definition of abstract domains and the corresponding operations
In the case of models of biological systems it is often necessary to
define “ad-hoc” abstractions

Required properties of an abstract LTS semantics:

soundness: every trace in the concrete semantics must have a
corresponding abstract trace
precision: the abstract semantics should be precise enough to avoid
“false alarms”
simplicity: the abstract semantics should be as abstract as possible to
make analysis feasible

Again: this may allow verification of safety properties (properties of all
traces).
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Motivation

Goal – verify properties of subsystems, and infer that these hold in
the complete system

Class of properties identified by Grumberg et al. as ACTL – the
universal fragment of CTL

Addressed by Attie for verification and synthesis of concurrent
programs

◮ Synchronisation skeletons – move of a component may depend on the
states of other components

◮ Not suitable for describing biological systems

Synchronised moves of more components are crucial to model
biological phenomena

Extension – sync-programs – enable synchronised move of an arbitrary
number of automata
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Modular verification – principle

P I Sem(P I )

Sem(P I ↾J)P I ↾J

Sem(P I )⌈J

Sem
⌈J

↾J

Sem

?

Define: prog. language, semantics, projections

Show: Sem(P I ↾J) ⊒ Sem(P I )⌈J

Computation is preserved (infinite path)

Properties talking about all computations (ACTL)

Positive answer carried over to the whole system
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Interaction graph

β-galactosidase

Allolactose Repressor

Operon

CRP-cAMPGlucose

Lactose

A system is made of components.

Definition

Interaction graph I

nodes are components of the system

edges represent possible (direct) interactions

Each component i ∈ I is associated with a set of atomic propositions APi .

These sets are pairwise disjoint
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Sync-automaton

¬Act,¬Rep ¬Act,Rep

Act,RepAct,¬Rep

¬B1:true

true:¬B1

¬CRP−cAMP :CRP−cAMP

CRP−cAMP :¬CRP−cAMP

true:¬B1 ∧ Beta low :Beta high

¬B1:true ∧ Beta high:Beta low

Beta high:Beta low ∧
CRP−cAMP :¬CRP−cAMP

Beta low :Beta high ∧
¬CRP−cAMP :CRP−cAMP

Each component of the system is described by a sort of finite state
automaton.

Definition

Sync-automaton P I
i

states – mappings of APi to {true, false}

transitions (called moves) with conditions – si
ci−→ ti

Synchronisation condition ci is of the form ∧j∈LAj :Bj with Aj ,Bj ∈ APj .
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Synchronisation conditions

Conjunction of pairs of atomic propositions ∧j∈LAj :Bj

Definition allows

loops: ∧j∈LAj :Aj (written ∧j∈LAj 	)

n-ary synchronizations

autonomous (NOSYNC ) moves: ∧j∈∅Aj :Bj

Lac out Lac in
NOSYNC

Beta low 	 ∧true:Allo low

Beta high 	 ∧
Glu low 	

Beta high 	 ∧true:Glu high
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Sync-programs: An example
Consider a system made of three components C1,C2 and C3 whose
interactions are described by the following interaction graph:

Assume the three components to be associated with the following sets of
atomic propositions:

APC1 = {A,B ,C} APC2 = {a, b} APC3 = {1, 2}

and that the states of interest are the following:

A ∧ ¬B ∧ ¬C ¬A ∧ B ∧ ¬C ¬A ∧ ¬B ∧ C

a ∧ ¬b ¬a ∧ b

1 ∧ ¬2 ¬1 ∧ 2
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Sync-programs: An example
Consider a system made of three components C1,C2 and C3 whose
interactions are described by the following interaction graph:

Assume the three components to be associated with the following sets of
atomic propositions:

APC1 = {A,B ,C} APC2 = {a, b} APC3 = {1, 2}

and that the states of interest are the following:

A ∧ ¬B ∧ ¬C ≡ A ¬A ∧ B ∧ ¬C ≡ B ¬A ∧ ¬B ∧ C ≡ C

a ∧ ¬b ≡ a ¬a ∧ b ≡ b

1 ∧ ¬2 ≡ 1 ¬1 ∧ 2 ≡ 2
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Sync-programs: An example
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Sync-programs: An example

Paolo Milazzo (Università di Pisa) Complexity and uncertainty SEFM School 2010 18 / 59



Syntax of Sync-programs

Let I be an interaction graph consisting of n nodes.

Parallel composition of sync-automata related by I .

Definition

A sync-program is a tuple

P I = (S I
0,P

I
1|| . . . ||P

I
n),

where each P I
i is a sync-automaton. Set S I

0 = S0
1 × . . . × S0

n is the set of
initial states of the sync-program.
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Semantics of Sync-programs

Definition

The semantics of P I = (S0
I ,P I

1|| . . . ||P
I
n) is a labelled transition system on

I -states.

A I -state is a union of states of sync-automata P I
1, . . . ,P

I
n.

There is a transition (s, ℓ, t) iff

label ℓ contains indices of all automata that perform a move, with
mutually satisfied synchronisation conditions

ℓ is minimal
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Semantics – Example
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Paolo Milazzo (Università di Pisa) Complexity and uncertainty SEFM School 2010 22 / 59



Lac operon regulation
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The model (1)

Lac out Lac in
NOSYNC

Beta low 	 ∧true:Allo low

Beta high 	 ∧
Glu low 	

Beta high 	 ∧true:Glu high

Beta low Beta high

true:Act ∧ ¬Rep

Act ∧ ¬Rep:true

Lac in 	 ∧true:Allo low Lac in 	 ∧Glu low 	

Lac in 	 ∧true:Glu high

Allo none Allo low

Lac in 	 ∧Beta low 	

¬BAllo:BAllo

Lac in 	 ∧Beta low 	

Glu high Glu low

NOSYNC

Lac in 	 ∧Beta high 	

Lac in 	 ∧Beta high 	

truepos :truepos

Lac in 	 ∧Beta high 	

truepos :truepos
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The model (2)
¬Act,¬Rep ¬Act,Rep

Act,RepAct,¬Rep

¬B1:true

true:¬B1

¬CRP−cAMP :CRP−cAMP

CRP−cAMP :¬CRP−cAMP

true:¬B1 ∧ Beta low :Beta high

¬B1:true ∧ Beta high:Beta low

Beta high:Beta low ∧
CRP−cAMP :¬CRP−cAMP

Beta low :Beta high ∧
¬CRP−cAMP :CRP−cAMP

∅

B1,B2 B1,B3

B1,B2,Ballo B1,B3,Ballo

¬Rep:Rep

¬Rep:Rep
Allo low :Allo none Allo low :Allo none

Rep:¬Rep Rep:¬Rep

∅

cAMP high

cAMP high,CRP−cAMP

Glu high 	

Glu low 	 ¬Act:Act

Glu low 	

Glu high 	 ∧Act:¬Act
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Modular verification – principle

P I Sem(P I )

Sem(P I ↾J)P I ↾J

Sem(P I )⌈J

Sem
⌈J

↾J

Sem

?

Define: prog. language, semantics, projections

Show: Sem(P I ↾J) ⊒ Sem(P I )⌈J
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Syntactical projection

Syntactical projection – subprogram P I ↾J

only sync-automata from J

sync-automata from J remain, synchronisation conditions change

¬Act,¬Rep ¬Act,Rep

Act,RepAct,¬Rep

¬B1:true

true:¬B1

¬CRP−cAMP :CRP−cAMP

CRP−cAMP :¬CRP−cAMP

true:¬B1 ∧ Beta low :Beta high

¬B1:true ∧ Beta high:Beta low

Beta high:Beta low ∧
CRP−cAMP :¬CRP−cAMP

Beta low :Beta high ∧
¬CRP−cAMP :CRP−cAMP
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Syntactical projection

Syntactical projection – subprogram P I ↾J

only sync-automata from J

sync-automata from J remain, synchronisation conditions change

¬Act,¬Rep ¬Act,Rep

Act,RepAct,¬Rep

¬B1:true

true:¬B1

NOSYNC

NOSYNC

true:¬B1 ∧ Beta low :Beta high

¬B1:true ∧ Beta high:Beta low

Beta high:Beta low
Beta low :Beta high
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Semantical projection

Semantical projection – MI ⌈J

I -states projected

transitions projected

. . . ,Act,Beta low , ∅rep , . . .

. . . ,Act,Rep,Beta high,B1,B2, . . .

. . . ,Act,Rep,Beta high,Ballo, . . .

op, β, rep

rep
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Semantical projection

Semantical projection – MI ⌈J

I -states projected

transitions projected

Act,Beta low

Act,Rep,Beta high

op, β
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Modular verification – principle

P I Sem(P I )

Sem(P I ↾J)P I ↾J

Sem(P I )⌈J

Sem
⌈J

↾J

Sem

?

Define: prog. language, semantics, projections

Show: Sem(P I ↾J) ⊒ Sem(P I )⌈J
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Principle (1)

Verification of the properties of the computation

Computation = maximal path (fullpath)

Lemma (Path projection)

Let MI be semantics of sync-program P I . For every J ⊆ I

if π is a path in MI then π⌈J is a path in MJ ,

where MJ is the semantics of sync-program PJ = P I ↾J.
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Principle (2)

Possible problem – by projecting we may loose path maximality

Definition

A path π = (s1, l1, s2, l2, . . .) in MI is fair iff for all i ∈ |I | we have that
{m | i ∈ lm} is infinite.

Lemma (Fullpath projection)

Let J ⊆ I be an interaction graph. If π is a fair fullpath in MI , then π⌈J
is a fair fullpath in MJ .
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ACTL logic

Definition (ACTL logic)

true, false

p,¬p for p ∈ AP

f ∧ g , f ∨ g

AXf and A[fUg ]

Features

Includes: AFf , AGf and AG [p → AFq].

ACTLJ – atomic propositions are from {APi | i ∈ J}

Can express: exclusion, necessary consequence, necessary persistence,
oscillatory behaviour

Semantics – on LTSs, needs fullpaths
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Property preservation theorem

Theorem (Property preservation)

Let J ⊆ I be an interaction graph, s an I -state and f an ACTLJ property.

If MJ , s⌈J �Φ f then MI , s �Φ f .

proved by induction on the formula
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Experiments (1)

“The increase of allolactose concentration can only be mediated by

β-galactosidase in low concentration”.

formula AG (Allo none ∧ Beta high → A(¬Allo lowUBeta low))

true in the semantics of Pallo,β.

Allo none Allo low

Lac in 	 ∧Beta low 	

¬BAllo:BAllo

Lac in 	 ∧Beta low 	

Beta low Beta high

true:Act ∧ ¬Rep

Act ∧ ¬Rep:true

Lac in 	 ∧true:Allo low Lac in 	 ∧Glu low 	

Lac in 	 ∧true:Glu high
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Experiments (2)
“The operon will oscillate between repressed and unrepressed state”.

formula AG ((rep → AF¬rep) ∧ (¬rep → AFrep))

true in MI , but the verification in semantics of Pop fails

by inspecting the model, we enlarge the fragment needed

true in the semantics of Pop,rep

¬Act,¬Rep ¬Act,Rep

Act,RepAct,¬Rep

¬B1:true

true:¬B1

¬CRP−cAMP :CRP−cAMP

CRP−cAMP :¬CRP−cAMP

true:¬B1 ∧ Beta low :Beta high

¬B1:true ∧ Beta high:Beta low

Beta high:Beta low ∧
CRP−cAMP :¬CRP−cAMP

Beta low :Beta high ∧
¬CRP−cAMP :CRP−cAMP

∅

B1,B2 B1,B3

B1,B2,Ballo B1,B3,Ballo

¬Rep:Rep

¬Rep:Rep
Allo low :Allo none Allo low :Allo none

Rep:¬Rep Rep:¬Rep



Further developments

Further work

Dynamic systems

Abstract interpretation – towards full logic preservation

Relations with other formalisms (e.g. process calculi)

Schocastic extension
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Uncertain kinetic rates

Kinetic parameters of (bio)chemical reactions are often very difficult to
estimate precisely

the rate of a reaction depends many physical parameters:
temperature, pH, volumes, etc. . .

Moreover, some parameters cannot be measured at all in laboratory

inferred (with rough approximations) from similar reactions

The approach we propose consists in:

replacing kinetic constants with intervals of possible values

applying probabilistic model checking to obtain conservative upper
and lower bounds for probabilistic reachability properties

We expolit abstract interpretation techniques to prove the correctness of
our approach
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Probabilistic Reachability without Uncertainty

Let us consider the following simple example:

Mex = { R1 : X Y
3
−→ Z R2 : X W

1
−→ W }

with initial state s0 = 2X 2Y 10W .

We can easily construct the following Labelled Transition System (LTS):

where the transition rate is computed as in Gillespie’s algorithm.
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Probabilistic Reachability without Uncertainty

Let us consider the following simple example:

Mex = { R1 : X Y
3
−→ Z R2 : X W

1
−→ W }

with initial state s0 = 2X 2Y 10W .

We can translate the LTS into a Discrete Time Markov Chain (DTMC):

We consider only sequentiality of events and we loose information on the
elapsing of time.
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Probabilistic Reachability without Uncertainty

Let us consider the following simple example:

Mex = { R1 : X Y
3
−→ Z R2 : X W

1
−→ W }

with initial state s0 = 2X 2Y 10W .

The DTMC can be used for probabilistic reachability analysis:

Example: P(obtaining two Z ) = Reach(s3) = 3/8 × 3/13 = 9/104
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Probabilistic Reachability with Uncertainty

Our approach:

we allow intervals of possible values to be used in place of kinetic
constants

a model of chemical reactions with intervals (abstract model)
represents an infinite set of models of reactions with kinetic constants
(concrete models)

For example, the following abstract model

M◦
ex = { R◦

1 : X Y
[1,5]
−−→ Z R◦

2 : X W
[1,5]
−−→ W }

includes the previously considered concrete model

Mex = { R1 : X Y
3
−→ Z R2 : X W

1
−→ W }
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Probabilistic Reachability with Uncertainty
Let us consider the following simple example:

M◦
ex = { R◦

1 : X Y
[1,5]
−−→ Z R◦

2 : X W
[1,5]
−−→ W }

with initial state s0 = 2X 2Y 10W .

We can easily construct the following Labelled Transition System (LTS):

where the abstract transition rate is computed as in Gillespie’s algorithm
on the interval endpoints.
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Probabilistic Reachability with Uncertainty
Let us consider the following simple example:

M◦
ex = { R◦

1 : X Y
[1,5]
−−→ Z R◦

2 : X W
[1,5]
−−→ W }

with initial state s0 = 2X 2Y 10W .

We can translate the LTS into a Interval Markov Chain (IMC):
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Probabilistic Reachability with Uncertainty
Let us consider the following simple example:

M◦
ex = { R◦

1 : X Y
[1,5]
−−→ Z R◦

2 : X W
[1,5]
−−→ W }

with initial state s0 = 2X 2Y 10W .

The IMC can be used for probabilistic reachability analysis:

Example: P(obtaining two Z ) = Reach(s3) =

= [4/104, 1/2] ×Int [1/51, 1/3] = [1/1326, 1/6]
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Probabilistic Reachability with Uncertainty

In a DTMC the outgoing
transitions of each state are
associated with a probability
distribution

In a IMC the outgoing
transitions of each state may
be associated with a infinite
number of probability
distributions
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Probabilistic Reachability with Uncertainty

We have proved that the probability distributions of states of a concrete
model M are included in those of the corresponding abstract model M◦

abstract probabilistic reachability gives correct upper- and
lower-bounds

We have applied standard abstract interpretation techniques:

M◦ LTS◦

−−−−→ LT S◦ H◦

−−−−→ IMC
x





α

x





αLT S

x





αMC

M
LTS

−−−−→ LT S
H

−−−−→ DTMC
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Probabilistic Reachability with Uncertainty
Probabilistic reachability analysis becomes more complex when the model
consists of more than two chemical reactions

We have followed a standard extreme distributions approach (Fecher
et Al.) that requires translation of the IMC into a Markov Decision
Process (MDP)

We have developed a translator from chemical reactions with uncertain
rates into PRISM input language

◮ AMSR2PRISM translator,
http://www.di.unipi.it/msvbio/

◮ PRISM model checker,
http://www.prismmodelchecker.org
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An example: Tumor growth (cell cycle)

Tumor growth is based on cell divisions (or mitosis).

The cell cycle, the process between two mitosis, consists of 4 phases :

I : interphase

G1: pre-synthetic phase
S : replication of DNA
G2: post-synthetic phase

M : mitosis phase
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An example: Tumor growth (cell cycle)

We consider a ODE model of tumor growth proposed by Villasana and

Radunskaya.

Tumor cells are classified in two populations:

TI : cells in the interphase (phases G1, S and G2);

TM : cells in the mitotic phase (M).

The model includes the following events:

1 cell death in any phase (apotosis)

2 interphase → mitosis (one cell in TI moves to TM)

3 mitosis → interphase (one cell in TM becomes two in TM)

The passage from interphase to mitosis takes much more time than the
other events.
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An example: Tumor growth (cell cycle)

The ODE model by Villasana and Radunskaya is:

dTI

dt
= 2a4TM − d2TI − a1TI

dTM

dt
= a1TI − d3TM − a4TM

Let d = d3 + a4, namely d is the rate at which mitotic cells disappear.
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An example: Tumor growth (cell cycle)

These are some results of numerical simulation.
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Probabilistic Reachability in the Tumor Growth Model
Let us reformulate the tumor growth example as a set of reactions.

Reactions:

TM
a4−→ 2TI TI

d2−→

TI
a1−→ TM TM

d3−→

In this case we have only two
parameter regions:

In R-I the tumor grows

In R-II the tumor decays
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Probabilistic Reachability in the Tumor Growth Model

We consider three
abstract models of tumor
growth.
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Probabilistic Reachability in the Tumor Growth Model

We consider three
abstract models of tumor
growth.

We consider an initial
population consisting of
10TM and 10TI .
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Probabilistic Reachability in the Tumor Growth Model

Reach(TM = x) on M◦
1 ,M◦

2 ,M◦
3
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Some Considerations

Our approach gives meaninful answers when the sensitivity of the system
on variation of the uncertain parameters is not too high

The approach can also be used for parameter estimation by iteratively

1 constructing an abstract model with wide intervals

2 checking properties known to hold

3 refine the model until model checking gives [1,1] as result

The efficiency of the approach depends very much on the number of
uncertain parameters

the translation of an IMC into a MDP is exponential in the number of
parameter intervals
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Further Developments

We are working at a continuous time approach, in which the elapsing of
time is taken into account
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