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Introduction: Systems Biology

“Systems Biology is a comprehensive quantitative analysis of the manner in which
all the components of a biological system interact functionally over time.”

Alan Aderem, Systems Biology: Its Practice and Challenges. Cell 121, 511-513 (2005)

The aim of current research in Systems Biology is to integrate the
knowledge about single constituents of living organisms into system view.

The two main approaches to biological systems modelling:

Biomath Models are given as differential equations (or recurrence
equations), and are studied by applying analytical and
numerical techniques.

Bioinfo Biological systems are modelled as stochastic concurrent
systems and analyzed by simulation and model checking .

The application of such tools is limited to small, well known pathways
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Introduction: The need of approximations

“Biological processes are profoundly complex, containing hundreds or thousands
of component interactions. This leads to uncertainty i.e., precise information

about probabilities, pathway structure, rate constants and similar parameters, is
often unknown. Further, it is often impossible to assign precise point probabilities

to each of the myriad constituents of an intricate biological pathway.”

Iyengar M.S., McGuire M.F., Imprecise and Qualitative Probability in Systems Biology,
ICSB, October 1-6, 2007

The two main problems in biological systems modelling are:

complexity of the systems

unavailability of (precise) kinetic parameters

Hence, the need of constructing approximated models

by means (if possible) of conservative abstractions
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Introduction: our approaches

We propose two approaches for the construction and analysis of models
with approximations:

Delay stochastic simulation
I PhD thesis (in progress) by Giulio Caravagna

Dipartimento di Informatica, Università di Pisa

Probabilistic model checking with uncertainty on kinetic rates
I PhD thesis (in progress) by Guido Scatena

IMT Lucca Institute for Advanced Studies
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Outline of the talk

1 Introduction

2 Delay Stochastic Simulation
Delay Differential Equations (DDEs)
A model of tumor growth
Stochastic simulation of chemical reactions (Gillespie)
Delay stochastic simulation of chemical reactions (Barrio et Al.)
A purely delayed approach to stochastic simulation

3 Probabilistic Model Checking with Uncertain Kintetic Rates
Probabilistic Reachability
Probabilistic Reachability with Uncertainty
Application to the Tumor Growth Model

4 References
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Delays in models of biological systems

Delays may be used to model events for which the underlying dynamics

either cannot be precisely observed

or is too complex to be handled efficiently by analysis tools

A delay σ represents the time necessary for the underlying network of
events to produce some result observable in the higher level model.

Mathematical modelling of biological systems with delays is mainly based
on delay differential equations (DDEs)

the derivative of the unknown function at time t is given in terms of
the values of the function at time t − σ.
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An example: Tumor growth (cell cycle)

Tumor growth is based on cell divisions (or mitosis).

The cell cycle, the process between two mitosis, consists of 4 phases :

I : interphase

G1: pre-synthetic phase
S : replication of DNA
G2: post-synthetic phase

M : mitosis phase
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An example: Tumor growth (cell cycle)

We consider a DDE model of tumor growth proposed by Villasana and
Radunskaya.

Tumor cells are classified in two populations:

TI : cells in the interphase (phases G1, S and G2);

TM : cells in the mitotic phase (M).

The model includes the following events:

1 cell death in any phase (apotosis)

2 interphase → mitosis (one cell in TI moves to TM)

3 mitosis → interphase (one cell in TM becomes two in TM)

The passage from interphase to mitosis takes much more time than the
other events.
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An example: Tumor growth (cell cycle)

The DDEs model by Villasana and Radunskaya is:

dTI

dt
= 2a4TM − d2TI − a1TI (t − σ) TI (t) = φ0(t) for t ∈ [−σ, 0]

dTM

dt
= a1TI (t − σ)− d3TM − a4TM TM(t) = φ1(t) for t ∈ [−σ, 0]

Let d = d3 + a4, namely d is the rate at which mitotic cells disappear.

The number of cells that enter mitosis at time t depends on the number
of cells that entered the interphase σ time units before, namely TI (t − σ).

This means that the interphase is associated with a duration σ (about one
day in human cells).

In DDEs delays are modelled as dependencies form states of the system in
the past.
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An example: Tumor growth (cell cycle)

Analytical study by varying a1 and d gives five parameter regions:

When σ = 0:

In R-I the tumor
grows

In other regions the
tumor decays

When σ > 0:

In R-I the tumor
grows

In R-II the tumor
decays

In other regions the
tumor size oscillates
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An example: Tumor growth (cell cycle)

These are some results of numerical simulation with σ = 1.
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An example: Tumor growth (cell cycle)

These are some results of numerical simulation with σ = 10.
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Stochastic simulation of chemical reactions (no delays)

Usual notation for chemical reactions:

`1S1 + . . .+ `ρSρ
k


k−1

`′1P1 + . . .+ `′γPγ

where:

Si ,Pi are molecules (reactants)

`i , `
′
i are stoichiometric coefficients

k , k−1 are the kinetic constants
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Stochastic simulation of chemical reactions (no delays)

Gillespie’s stochastic simulation algorithm (SSA):

represents a chemical solution as a multiset of molecules

computes the reaction rate aµ by multiplying the kinetic constant by
the number of possible combinations of reactants

Example: chemical solution with X1 molecules S1 and X2 molecules S2

reaction R1 : S1 + S2
k1−→ 2S1 rate a1 =

(
X1

1

)(
X2

1

)
k1 = X1X2k1

reaction R2 : 2S1
k2−→ S1 + S2 rate a2 =

(
X1

2

)
k2 = X1(X1−1)

2 k2

Given a set of reactions {R1, . . .RM} and a current time t

The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter

∑M
ν=1 aν ;

The reaction Rµ that has to occur at time t + τ is randomly chosen
with probability

aµPM
ν=1 aν

.

At each step t is incremented by τ and the chemical solution is updated.
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Stochastic simulation of chemical reactions (no delays)

Paolo Milazzo (Università di Pisa) Approximation and Uncertainty Torino – November 16, 2009 15 / 49



Delay stochastic simulation of chemical reactions

Algorithm proposed by Barrio et Al. in 2006.

Chemical reactions may be associated with delays: S
k,σ−−→ P

Similar to Gillespie’s algorithm, but when a delayed reaction is chosen at
time t:

reactants are removed at time t + τ

products addition is scheduled for time t + τ + σ

The delay σ is actually interpreted as a duration

different interpretation w.r.t. DDEs
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Delay stochastic simulation of chemical reactions

Given a set of reactions {R1, . . .RM} and a current time t

The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter

∑M
ν=1 aν ;

If there are no scheduled products additions in [t, t + τ ]:
I Choose reaction Rµ with probability

aµPM
ν=1 aν

.

I If Rµ is associated with a delay σ:
F remove the reactants and update t to t + τ
F schedule products addition for t + τ + σ

I Otherwise, execute Rµ as in Gillespie’s algorithm and update t to t + τ ;

If there is a scheduled product addition at t + τ ′ with τ ′ ≤ τ :
I add the products and update t to t + τ ′
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Delay stochastic simulation of chemical reactions
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Delay Stochastic Model of Tumor growth

Let us reformulate the tumor growth example as a delay stochastic model.

Reactions:

TM
a4−→ 2TI TI

d2−→

TI
a1,σ−−→ TM TM

d3−→

where σ is the duration of the interphase

we will consider σ = 1 and σ = 10 as before
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Delay Stochastic Model of Tumor growth

These are some results of delay stochastic simulation with σ = 1.
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Delay Stochastic Model of Tumor growth

These are some results of delay stochastic simulation with σ = 10.
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Delay Stochastic Model of Tumor growth

Stochastic simulation results are qualitatively similar to numerical
simulation results:

both approaches show tumor growth and eradication with similar
parameters

But let us consider average tumor eradication times:

DDE DSSA

R-II with σ = 1.0 50 64
R-II with σ = 10.0 59 224

R-III with σ = 1.0 15 29
R-III with σ = 10.0 12 126

R-IV with σ = 1.0 238 302
R-IV with σ = 10.0 440 1072

In the delay stochastic model tumor eradication requires much more time...
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Delay Stochastic Model of Tumor growth

Why this difference?

in the delay stochastic model the tumor cell involved in a delayed
reaction cannot die for σ time units!

This motivated us to develop a variant of the approach with a different
interpretation of delays

Delay as duration vs purely delayed
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The Purely Delayed Approach

Chemical reactions may be associated with delays: S
k,σ−−→ P

Similar to Barrio’s algorithm, but when a delayed reaction is chosen at
time t:

the simulation state is left unchanged

the whole reaction is scheduled for time t + τ + σ

The delay σ is actually interpreted as a delay

interpretation more similar to that of DDEs
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The Purely Delayed Approach

Given a set of reactions {R1, . . .RM} and a current time t

The time t + τ at which the next reaction will occur is randomly
chosen with τ exponentially distributed with parameter

∑M
ν=1 aν ;

If there are no scheduled reactions in [t, t + τ ]:
I Choose reaction Rµ with probability

aµPM
ν=1 aν

.

I If Rµ is associated with a delay σ:
F update t to t + τ
F schedule reaction Rµ for t + τ + σ

I Otherwise execute Rµ as in Gillespie’s algorithm and update t to t + τ ;

If there is a scheduled reaction Rν at t + τ ′ with τ ′ ≤ τ :
I if Rν is still applicable, apply Rν

I update t to t + τ ′
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The Purely Delayed Approach
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Purely Delayed Model of Tumor growth

These are some results of purely delayed stochastic simulation with σ = 1.
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Purely Delayed Model of Tumor growth

These are some results of purely delayed stochastic simulation with σ = 10.
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Purely Delayed Model of Tumor growth

Again, stochastic simulation results are qualitatively similar to previous
results:

all of the three approaches show tumor growth and eradication with
similar parameters

But let us consider again average tumor eradication times:

DDE DSSA PureDelay

R-II with σ = 1.0 50 64 51
R-II with σ = 10.0 59 224 67

R-III with σ = 1.0 15 29 17
R-III with σ = 10.0 12 126 20

R-IV with σ = 1.0 238 302 214
R-IV with σ = 10.0 440 1072 248
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Some considerations
The purely delayed approach is not in general better than Barrio’s
approach

it depends on the phenomena to be modelled

Optimal solution: allow both the approaches to be used in models

Moreover, the purely delay approach has to be improved:

Correctness issue: the reactants of a scheduled reaction may
disappear and be recreated

Performance issue: the same reaction can be scheduled several times
on the same reactants
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Further Developments

We are developing a CCS-like process algebra that includes stochasticity
and delays as in the simulation algorithms

not ready for presentation...
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Uncertain kinetic rates

Kinetic parameters of (bio)chemical reactions are often very difficult to
estimate precisely

the rate of a reaction depends many physical parameters:
temperature, pH, volumes, etc. . .

Moreover, some parameters cannot be measured at all in laboratory

inferred (with rough approximations) from similar reactions

The approach we propose consists in:

replacing kinetic constants with intervals of possible values

applying probabilistic model checking to obtain conservative upper
and lower bounds for probabilistic reachability properties

We expolit abstract interpretation techniques to prove the correctness of
our approach

Paolo Milazzo (Università di Pisa) Approximation and Uncertainty Torino – November 16, 2009 33 / 49



Probabilistic Reachability without Uncertainty

Let us consider the following simple example:

Mex = { R1 : X Y
3−→ Z R2 : X W

1−→W }

with initial state s0 = 2X 2Y 10W .

We can easily construct the following Labelled Transition System (LTS):

where the transition rate is computed as in Gillespie’s algorithm.
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Probabilistic Reachability without Uncertainty

Let us consider the following simple example:

Mex = { R1 : X Y
3−→ Z R2 : X W

1−→W }

with initial state s0 = 2X 2Y 10W .

We can translate the LTS into a Discrete Time Markov Chain (DTMC):

We consider only sequentiality of events and we loose information on the
elapsing of time.
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Probabilistic Reachability without Uncertainty

Let us consider the following simple example:

Mex = { R1 : X Y
3−→ Z R2 : X W

1−→W }

with initial state s0 = 2X 2Y 10W .

The DTMC can be used for probabilistic reachability analysis:

Example: P(obtaining two Z ) = Reach(s3) = 3/8× 3/13 = 9/104
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Probabilistic Reachability with Uncertainty

Our approach:

we allow intervals of possible values to be used in place of kinetic
constants

a model of chemical reactions with intervals (abstract model)
represents an infinite set of models of reactions with kinetic constants
(concrete models)

For example, the following abstract model

M◦ex = { R◦1 : X Y
[1,5]−−→ Z R◦2 : X W

[1,5]−−→W }

includes the previously considered concrete model

Mex = { R1 : X Y
3−→ Z R2 : X W

1−→W }
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Probabilistic Reachability with Uncertainty
Let us consider the following simple example:

M◦ex = { R◦1 : X Y
[1,5]−−→ Z R◦2 : X W

[1,5]−−→W }

with initial state s0 = 2X 2Y 10W .

We can easily construct the following Labelled Transition System (LTS):

where the abstract transition rate is computed as in Gillespie’s algorithm
on the interval endpoints.
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Probabilistic Reachability with Uncertainty
Let us consider the following simple example:

M◦ex = { R◦1 : X Y
[1,5]−−→ Z R◦2 : X W

[1,5]−−→W }

with initial state s0 = 2X 2Y 10W .

We can translate the LTS into a Interval Markov Chain (IMC):
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Probabilistic Reachability with Uncertainty
Let us consider the following simple example:

M◦ex = { R◦1 : X Y
[1,5]−−→ Z R◦2 : X W

[1,5]−−→W }

with initial state s0 = 2X 2Y 10W .

The IMC can be used for probabilistic reachability analysis:

Example: P(obtaining two Z ) = Reach(s3) =

= [4/104, 1/2]×Int [1/51, 1/3] = [1/1326, 1/6]
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Probabilistic Reachability with Uncertainty

In a DTMC the outgoing
transitions of each state are
associated with a probability
distribution

In a IMC the outgoing
transitions of each state may
be associated with a infinite
number of probability
distributions
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Probabilistic Reachability with Uncertainty

We have proved that the probability distributions of states of a concrete
model M are included in those of the corresponding abstract model M◦

abstract probabilistic reachability gives correct upper- and
lower-bounds

We have applied standard abstract interpretation techniques:

M◦ LTS◦−−−−→ LT S◦ H◦−−−−→ IMCxα xαLT S xαMC
M LTS−−−−→ LT S H−−−−→ DTMC
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Probabilistic Reachability with Uncertainty
Probabilistic reachability analysis becomes more complex when the model
consists of more than two chemical reactions

We have followed a standard extreme distributions approach (Fecher
et Al.) that requires translation of the IMC into a Markov Decision
Process (MDP)

We have developed a translator from chemical reactions with uncertain
rates into PRISM input language

I AMSR2PRISM translator,
http://www.di.unipi.it/msvbio/

I PRISM model checker,
http://www.prismmodelchecker.org
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Probabilistic Reachability in the Tumor Growth Model
Let us reformulate the tumor growth example without delays.

Reactions:

TM
a4−→ 2TI TI

d2−→

TI
a1−→ TM TM

d3−→

In this case we have only two
parameter regions:

In R-I the tumor grows

In R-II the tumor decays
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Probabilistic Reachability in the Tumor Growth Model

We consider three
abstract models of tumor
growth.

We consider an initial
population consisting of
10TM and 10TI .

Abstract model M◦1 :

TM
0.5−−→ 2TI

TI
[0.8,0.9]−−−−−→ TM

TI
0.3−−→

TM
[0.05,0.1]−−−−−→

Abstract model M◦2 :

TM
0.5−−→ 2TI

TI
[0.8,0.9]−−−−−→ TM

TI
0.3−−→

TM
[1,1.4]−−−→

Abstract model M◦3 :

TM
0.5−−→ 2TI

TI
[0.8,0.9]−−−−−→ TM

TI
0.3−−→

TM
[0.005,2]−−−−−→
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Probabilistic Reachability in the Tumor Growth Model

Reach(TM = x) on M◦1 ,M
◦
2 ,M

◦
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Some Considerations

Our approach gives meaninful answers when the sensitivity of the system
on variation of the uncertain parameters is not too high

The approach can also be used for parameter estimation by iteratively

1 constructing an abstract model with wide intervals

2 checking properties known to hold

3 refine the model until model checking gives [1,1] as result

The efficiency of the approach depends very much on the number of
uncertain parameters

the translation of an IMC into a MDP is exponential in the number of
parameter intervals
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Further Developments

We are working at a continuous time approach, in which the elapsing of
time is taken into account
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