
Fundamenta Informaticae XX (2006) 1–15 1

IOS Press

A Calculus of Looping Sequences for Modelling
Microbiological Systems

Roberto Barbuti, Andrea Maggiolo–Schettini, Paolo Milazzo∗ and Angelo Troina

Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, 56127 - Pisa, Italy

E-mail: {barbuti,maggiolo,milazzo,troina}@di.unipi.it

Abstract. The paper presents the Calculus of Looping Sequences (CLS) suitable to describe micro-
biological systems and their evolution. The terms of the calculus are constructed by basic constituent
elements and operators of sequencing, looping, containment and parallel composition. The looping
operator allows tying up the ends of a sequence, thus creating a circular sequence which can repre-
sent a membrane. We show that a membrane calculus recently proposed can be encoded into CLS.
We use our calculus to model interactions among bacteria and bacteriophage viruses, and to reason
on their properties.

1. Introduction

In the last few years a notable research effort has been devoted to formally describe biological processes
by using means originally developed by computer scientists to model systems of interacting compo-
nents. This permits simulation of system behaviour and verification of properties. Among the many
formalisms that have been applied to biology there are Petri Nets [11], Hybrid Systems [1], and the
π-calculus [14, 7]. Moreover, some new formalisms have been proposed to describe biomolecular and
membrane interactions [2, 4, 5, 6, 8, 13].

In this paper we present a new calculus suitable to describe microbiological systems and their evolu-
tion. The terms of our calculus are constructed by starting from basic constituent elements and compos-
ing them by means of operators of sequencing, looping, containment and parallel composition. Looping
allows tying up the ends of a sequence, thus creating a circular sequence of the constituent elements.
We assume that the elements of a circular sequence can rotate, and this motivates the terminology of

∗Address for correspondence: Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 - Pisa, Italy

2 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

looping sequence. A looping sequence can represent a membrane and the containment operator allows
representing that some element is inside the membrane.

Viewing membranes as sequences of elements allows representing interactions of these elements, and
thus describing real biological phenomena. This cannot be described by calculi that consider membranes
as atomic objects, as in [5].

A set of congruence rules allows considering as equivalent terms that are intended to represent the
same biological system. The evolution of a system is described by a set of rewrite rules to be applied to
terms. We show that reachability of a term is decidable for monotonic rewrite rules.

As an application, we model interactions among bacteria and bacteriophage viruses, and bacteria
sporulation. We represent bacteria and viruses as terms, and give a set of rewrite rules for describing
how bacteriophages parasitize bacteria, and how bacteria produces spores and spores germinate.

Finally, we encode Cardelli’s phago/exo/pino calculus (PEP Calculus, [5]) into CLS and prove the
correctness of the encoding.

2. Calculus of Looping Sequences

In this section we introduce our Calculus of Looping Sequences (CLS). We assume a set E of elementary
constituents a, b, c, . . ., and a neutral term ε.

Definition 2.1. (Terms)
A Term T of CLS is given by the following grammar:

T ::= a
∣∣ ε

∣∣ T · T
∣∣ (

T
)L ∣∣ T cT

∣∣ T |T

where a is a generic element of E . We denote with T the (infinite) set of terms.

A term T may be either an element in E or a concatenation of terms T1 ·T2 (a sequence), or a looping
(T)L or a combination of terms by means of the containment operator c and the parallel operator | . A
term (T)L is a closed circular sequence of the elements constituting term T . Term T1 cT2 represents the
containment of term T2 in the term T1, while term T1 |T2 represents term T1 in parallel with term T2.
If we have the c operator together with a looping, as in (T1)

L cT2, we have that the term T2 is really
inside the closed circular sequence (T1)

L represents, otherwise the c operator reduces to the | operator
for non-looping (open) terms.

Brackets can be used to indicate the order of application of the operators in a term. We assume the
· operator to have the highest precedence and the c operator to have the precedence over the | operator.
Therefore T1 cT2 |T stands for (T1 cT2) |T . Moreover, we assume c to be right–associative, therefore
with T1 cT2 cT we denote the term T1 c (T2 cT).

Example 2.1. In Figure 1 we give a visual representation of some examples of CLS terms. In Figure 1.a
we represent the term

(
a · b · c

)L
, in Figure 1.b we represent the term

((
c · d · e

)L
· a · b

)L
, in Figure 1.c

we represent the term
(
(
(
c · d · e

)L
ch) · a · b

)L
c f · g.

Concatenation can represent a physical link between elements, while parallel composition represents
juxtaposition of separated elements. When we have the parallel composition of two or more terms in a
sequence, only one may actually be linked to elements of the sequence. We assume that this element

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 3

(a) (b) (c)
b

a c

a

c

a

gf

c
h

dd

e e

b b

Figure 1. Examples of CLS terms

(b)(a)

Figure 2. A real situation

is the first in the parallel composition, while the others are considered close to it. For example, the
term a · (b | d) · c represents a sequence a · b · c with the element d near the sequence in proximity of
b. Analogously, when we have that a term is contained in the parallel composition of two terms, the
term may be contained only in one of the two, and again we assume that this is the first term. Finally,
a looping of a parallel composition of terms is intended as the looping of one, the first term, in parallel
with the other terms. These assumptions allow us to define a structural congruence relation on terms of
the calculus as follows.

Definition 2.2. (Structural Congruence)
The structural congruence ≡ is the least congruence relation on terms satisfying associativity of | and
· , and the following axioms:

A1. (T1 |T) · T2 ≡ (T1 · T2) |T ≡ T1 · (T2 |T)

A2. (T1 |T2) cT ≡ (T1 cT) |T2 A3.
(
T |T1

)L
≡

(
T

)L
|T1

A4. T |T1 |T2 ≡ T |T2 |T1 A5. (T1 cT2) cT3 ≡ T1 c (T2 |T3)

A6.
(
T1 · T2

)L
≡

(
T2 · T1

)L
A7. a cT ≡ a |T A8. (T1 · T2) cT ≡ (T1 · T2) |T

A9. T | ε ≡ T c ε ≡ T A10. T · ε ≡ ε · T ≡ T A11.
(
ε
)L

≡ ε

Axioms A1, A2 and A3 state that if we apply either sequential composition, containment or looping
to a parallel composition of terms, these operators act upon the first term of the parallel composition.
This means that the first element of the parallel composition plays the special role discussed before and
it cannot be commuted in a series of parallel compositions. This is said by axiom A4.

We remark that assigning a special role to an element of a parallel composition is not unusual. For
instance, in [9, 10] the last element in a series of parallel compositions has the special role of giving the
result of the computation of the whole series. Thus, it cannot be commuted.

Axiom A5 says that putting a term inside a term which already contains a term, results in the term
containing the parallel composition of the terms inside.

Axiom A6 says that terms in a looping can rotate and axioms A7 and A8 say that a term cannot stay
inside a term which is not a looping term, and, in this case, the containment operator is equivalent to the
parallel composition.

Finally, axioms A9, A10 and A11 describe the neutral role of ε and
(
ε
)L

with respect to the operators
of the calculus. We remark that in axiom A9 the neutral term ε is placed on the right hand side of the
| operator otherwise ε could be inserted at the left hand of a series of parallel compositions and its first
term would lose its privileged role.

4 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

Remark 2.1. We have T c (T1 |T2) ≡ T c (T2 |T1).

Proof:

The equivalence of the two terms can be derived as follows: T c (T1 |T2)
(A9)
≡ (T c ε) c (T1 |T2)

(A5)
≡

T c (ε |T1 |T2)
(A4)
≡ T c (ε |T2 |T1)

(A5)
≡ (T c ε) c (T2 |T1)

(A9)
≡ T c (T2 |T1). ut

The remark shows that the first element of a series of parallel compositions can be commuted when
the whole series is contained inside another term. As a consequence, if one wants to have unrestricted
commutativity of a parallel composition at the top level of a term, he can insert the term into the term(
ε
)L

by using the containment operator. In this way we forbid the first element of a series of parallel com-
positions to commute only when the whole series is an element of a sequence. Standard commutativity
holds otherwise.

Consider the model of a real situation in which a membrane that is part of another membrane breaks,
and its content is released in the environment. This situation is depicted in Figure 2.a. The smaller
membrane (depicted with a thick line) is part of the larger one (depicted with a lighter line), namely, it is
part of the sequence representing that membrane (in the picture it is shown to adhere to it). If the smaller
membrane breaks and opens, we have as a result of the process one only membrane, and the content of
the smaller one (the black circle) is freed. The definition of axioms A1, A2 and A3 is such that the content
of the smaller membrane is freed outside the resulting membrane (as is shown in Figure 2.b). Formally,
the initial situation in Figure 2.a corresponds to the term (((b · . . . · b)L c a) · c · . . . · c)L in which the
large membrane is represented by a looping of c and the smaller one by a looping of b and the content by
a. Breaking the smaller membrane means removing the looping operator of the sequence of b elements,
thus obtaining the term ((b · . . . · b c a) · c · . . . · c)L. By applying congruence A8, we obtain the term
((b · . . . ·b | a) ·c · . . . ·c)L, and then, applying congruence A1, we obtain the term (b · . . . ·b ·c · . . . ·c | a)L.
Finally, applying congruence A3, we obtain the term (b · . . . · b · c · . . . · c)L | a, which represents the final
situation in Figure 2.b. Situations in which the content of the smaller membrane is released inside the
bigger one should be explicitly described by using rewrite rules (defined in the following).

The situation described above is generalized by the next proposition to terms representing n mem-
branes where the i-th membrane is element of the (i − 1)-th membrane.

Proposition 2.1. Consider a term consisting of a nesting of looping terms:

T =
(
(
(
(
(
. . .

(
(
(
a1 · . . . ·an

)L
cTi) · bi1 · . . . · bini

)L
. . .

)L
cT2) · b21 · . . . · b2n2

)L
cT1) · b11 · . . . · b1n1

)L
cT0

where Tj may be any term and each cTj can also be absent. The term obtained by removing from T the
looping operator of the sequence at the i-th level

(
(
(
(
(
. . .

(
((a1 · . . . · an) cTi) · bi1 · . . . · bini

)L
. . .

)L
cT2) · b21 · . . . · b2n2

)L
cT1) · b11 · . . . · b1n1

)L
cT0

is structurally congruent to:

(
(
(
(
(
(
. . .

(
a1 · . . . · an · bi1 · . . . · bini

)L
. . .

)L
cT2) · b21 · . . . · b2n2

)L
cT1) · b11 · . . . · b1n1

)L
cT0) |Ti

Proof:
By structural induction and by applying the structural congruence ≡. ut

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 5

Now, we define rewrite rules, which can be used to describe the evolution of terms, and we give a
transition relation as a semantics for rule applications.

We assume a set V of term variables X,Y,Z, An instantiation is a partial function σ : V → T .
With TV we denote the set of CLS terms which may also contain variables in V and, given T ∈ TV , with
Tσ we denote the term obtained by replacing each occurrence of each variable X ∈ V appearing in T
with the corresponding term σ(X). With Σ we denote the set of all the possible instantiations. Finally,
given T ∈ TV , with V ar(T) we denote the set of variables in T and with V arM (T) we denote the
multiset of variables in T . For example, if T = a · X | (Y)L cX , we have that V ar(T) = {X,Y } and
V arM (T) = {X,X, Y }.

Given a term T ∈ TV , we denote with size(T) the number of constituent elements syntactically
occurring in T . For example, if T = (a · b)L | c we have size(T) = 3, and if T = a · a |X we have
size(T) = 2. Moreover, we define a function occ : T ×T → N such that occ(T ′, T) returns the number
of the terms T ′ syntactically occurring in the term T .

Definition 2.3. (Rewrite Rules)
A rewrite rule is a triple (T, T ′,Σ′) such that T, T ′ ∈ TV , V ar(T ′) ⊆ V ar(T), Σ′ ⊆ Σ and, for all
σ ∈ Σ′, V ar(T) ⊆ Dom(σ). We denote with < the infinite set of all the possible rewrite rules.

A rewrite rule (T, T ′,Σ′) states that a ground term Tσ, obtained by instantiating variables in T by
an instantiation function σ ∈ Σ′, can be transformed into the ground term T ′σ (note that we assume
V ar(T ′) ⊆ V ar(T)). A rule can be applied to all the terms which can be obtained by instantiating the
variables in T with any of the instantiations in Σ′. For instance, if Σ′ = {σ ∈ Σ|occ(a, σ(X)) = 0},
then a rule (b ·X · b, c ·X · c,Σ′) can be applied to b · c · b (obtaining c · c · c) and to b · c · c · b (obtaining
c · c · c · c), but not to b · a · b.

In what follows, we shall often write a rewrite rule as T −→ T ′ [C] instead of (T, T ′,Σ′ = {σ ∈
Σ | Cσ}), where C is a condition, and we shall omit Σ′ when Σ′ = Σ and write T −→ T ′. For instance,
with b ·X ·b −→ c ·X ·c [occ(a,X) = 0] we denote (b ·X ·b, c ·X ·c,Σ′ = {σ ∈ Σ|occ(a, σ(X)) = 0}).

We define the transition relation between terms, based on the application of rewrite rules. We assume
that the relation is closed under structural congruence and under the application of the operators.

Definition 2.4. (Reaction Semantics)
Given a set of rewrite rules R ⊆ <, the reaction semantics of the CLS is the transition system given by

the least relation → on terms closed under ≡ , | , c , · ,
()L

and satisfying the following inference
rule:

(T, T ′,Σ′) ∈ R σ ∈ Σ′

Tσ → T ′σ

Given a set of rewrite rules R and two term T, T ′ ∈ T , we say that T ′ is reachable from T (denoted
T →∗ T ′) iff there exist T1, . . . , Tn ∈ T s.t. T → T1 → . . . → Tn → T ′.

Now we introduce a particular class of rewrite rules.

Definition 2.5. (Monotonic Rewrite Rules)
A rewrite rule (T, T ′,Σ′) ∈ < is monotonic iff V arM (T) = V arM (T ′) and size(T ′) ≥ size(T).

Intuitively, a rewrite rule is monotonic if the number of constituent elements of the term we obtain
applying the rule is greater than or equal the number of constituent elements of the initial term.

6 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

DNA

Step 3: Coat Step 4: Release

The bacterium Step 1: Duplication Step 2: Prespore

Figure 3. The Sporulation Process

Proposition 2.2. Given a finite set of monotonic rewrite rules R and a CLS term T ∈ T , it is decidable
whether a term T ′ ∈ T is reachable from T .

Proof:
Based on the fact that terms obtained by applying a monotonic rewrite rule or a structural congruence
axiom have a size greater than or equal to the size of the source terms. ut

3. An Application

In this section we show how CLS can be used to describe some aspects of the reproduction of bacteria
and of bacteriophage viruses. For the sake of our study we can assume that a bacterium consists of a
cellular membrane containing its DNA. In particular, as regards bacteria reproduction, we consider the
sporulation mechanism, which allows producing inactive and very resistant forms, called spores. A spore
can germinate and then produce a new bacterium.

Schematically, the sporulation process (shown in Fig. 3) proceeds as follows:

1. the DNA inside the bacterium is duplicated (duplication);

2. inside the bacterium a new membrane is formed containing the copy of the DNA (prespore);

3. around the prespore a second layer is formed (coat);

4. eventually, the spore passes through the bacterium membrane and becomes a free spore (release).

For the sake of clarity, before giving the rules for the process, let us introduce some denotations for

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 7

terms which occur very often:

PRESPORE ::=
(
m · . . . · m︸ ︷︷ ︸

n

2

)L
cDNAb

SPORE1 ::=
(
c · . . . · c︸ ︷︷ ︸

n

2

)L
cPRESPORE SPORE2 ::=

(
d · . . . · d︸ ︷︷ ︸

n

2

)L
cPRESPORE

Now, the rewrite rules for describing the steps of the process are the following:

S1.
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (DNAb |X) −→

(
m · . . . · m︸ ︷︷ ︸

n

)L
c (DNAb |DNAb |X) [occ(DNAb, X) = 0]

S2.
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (DNAb |DNAb |X) −→

(
m · . . . · m︸ ︷︷ ︸

n

)L
c (DNAb |PRESPORE |X)

S3.
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |PRESPORE |Y) −→

(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |SPORE1 |Y)

S4.
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |SPORE1 |Y) −→

(
SPORE1 · m · . . . · m︸ ︷︷ ︸

n

)L
c (X |Y)

S5.
(
SPORE1 · m · . . . · m︸ ︷︷ ︸

n

)L
cX −→ (

(
m · . . . · m︸ ︷︷ ︸

n

)L
cX) |SPORE2

S6. SPORE2 −→ d · . . . · d︸ ︷︷ ︸
n

2

|
(
m · . . . · m︸ ︷︷ ︸

n

)L
cDNAb

Rule S1 describes DNA duplication inside a bacterium (step 1 of the process). The bacterium mem-
brane is represented by a looping of n membrane elements m (with n fixed); DNAb represents the
bacterium DNA and the term variable X represents any other element inside the bacterium membrane.
The condition that DNAb does not appear in the term X means that a sporulation process must terminate
before starting a second one (no more than one copy of DNA inside the bacterium at one time).

Rule S2 models the forming of a prespore (step 2). Conventionally, we assume that the number of
membrane elements of a prespore is n

2 .
Rule S3 models the forming of the spore coat (step 3), where c represents the elements of the outer

coat. The double layer of the spore is represented by two looping terms, one inside the other, by the term:

(
c . . . c︸ ︷︷ ︸

n

2

)L
c (

(
m. . . m︸ ︷︷ ︸

n

2

)L
cDNAb).

Rules S4 and S5 model the exiting of the spore from the bacterium (step 4). In a first phase (rule
S4) the spore adheres to the bacterium membrane, becoming one element of the looping representing
it. Note that the spore is represented in the rule as first element of the looping, but it can be shifted to
any position by using the congruence rules. In a second phase (rule S5) the spore becomes free. In this
phase, in order to distinguish a free spore from a spore inside the bacterium, the outer coat of the spore
changes its elements from c to d.

A free spore may germinate by loosing its coat, which becomes an open membrane, and by growing
to a normal size of n membrane elements (rule S6).

Bacteriophage viruses (or phages) exploit the enzymes of the bacteria for duplicating their DNA. In
particular, they behave according to the following pattern (depicted in Figure 4):

8 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

The bacteriophage

DNA

Step 1: Adsorption Step 2: Penetration

Step 3: Replication Step 4: Maturation Step 5: Release

Figure 4. The Bacteriophage Replication Process

1. the phage joins with the bacterium membrane (adsorption);

2. the phage releases its DNA inside the bacterium (penetration);

3. the DNA of the phage replicates itself using bacterium enzymes (replication);

4. each copy of the phage DNA forms a new phage inside the bacterium membrane (maturation);

5. when the number of new phages inside the bacterium reaches a certain number, the membrane
breaks and the new phages become free (release).

As before, we introduce a denotation for a term which occurs quite often:

V IRUS ::=
(
v · . . . · v︸ ︷︷ ︸

k

)L
cDNAv

The rewrite rules for describing the steps of the process are the following:

V 1. V IRUS |
(
m · . . . · m︸ ︷︷ ︸

n

)L
cX −→

(
V IRUS · m · . . . · m︸ ︷︷ ︸

n

)L
cX

V 2.
(
V IRUS · m · . . . · m︸ ︷︷ ︸

n

)L
cX −→

(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |DNAv) | v · . . . · v︸ ︷︷ ︸

k

V 3.
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |DNAv) −→

(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |DNAv |DNAv) [occ(DNAv , X) < max]

V 4.
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |DNAv) −→

(
m · . . . · m︸ ︷︷ ︸

n

)L
c (X |V IRUS) [occ(DNAv , X) > max − s]

V 5.
(
m · . . . · m︸ ︷︷ ︸

n

)L
cX −→ m · . . . · m︸ ︷︷ ︸

n

|X [occ(V IRUS, X) > max − s]

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 9

Rule V1 describes the joining of phage with the bacterium membrane (step 1 of the process). The
phage membrane is represented by a looping of k membrane elements v (with k fixed); DNAv rep-
resents the phage DNA. The application of the rule causes the phage to become part of the bacterium
membrane. Namely, the looping representing the phage becomes an element of the looping representing
the bacterium membrane.

We remark that the situation described, in which the phage joins the membrane without entering it,
cannot be described by membrane calculi as [5, 13].

Rule V2 models the releasing of phage DNA inside the bacterium. The phage membrane becomes a
free open membrane (step 2).

Rule V3 describes the replication of phage DNA inside the bacterium (step 3). We assume that the
replication happens only if the occurrences of DNAv inside the bacterium are less than a number max.

Rule V4 describes the formation of a membrane around a phage DNA inside the bacterium (step 4).
Rule V5 models the breaking of the bacterium membrane when the number of phages inside it

reaches a value close enough to max (the distance is less then a value s > 0). The bacterium mem-
brane becomes a free open membrane, and everything contained in it (variable Y) is released (step 5).

Note that we have assumed that bacteria and phages cannot die a natural death. In particular, bac-
teria can die only if parasitized by viruses, and viruses die only when inoculating their DNA inside the
bacterium.

We remark that congruence rules have the same number of constituent elements in the left- and in
the right-hand side, and that the rewrite rules are monotonic. Hence, by Proposition 2.2, given an initial
configuration of the system we can prove the reachability of a particular state. More general properties
of the microbiological system we are considering, can be proved by model checking.

Example 3.1. Assume max = 2 and s = 0, namely that no replication of DNAv can occur in a
bacterium already containing two or more copies of DNAv , and that the bacterium membrane can break
when at least two viruses are inside. Consider the initial configuration in which there is one bacterium
and three phages. This is represented by the term:

(
(
m · . . . · m︸ ︷︷ ︸

n

)L
cDNAb) |V IRUS |V IRUS |V IRUS.

We can prove that, in a possible evolution, we can reach the configuration:
(
m · . . . · m︸ ︷︷ ︸

n

)L
c (DNAb|DNAv|DNAv|DNAv|DNAv)| v · . . . · v︸ ︷︷ ︸

k

| v · . . . · v︸ ︷︷ ︸
k

| v · . . . · v︸ ︷︷ ︸
k

.

The configuration represents a situation in which the bacterium contains a number of copies of virus
DNA greater than max.

Actually, the steps to reach the configuration are the following: one virus infects the bacterium and
its DNA is replicated inside the bacterium membrane (by application of rules V1, V2 and V3, in the
order). Then the other two phages infect the bacterium (rule V1) and inoculate their DNA in it (rule V2).

4. Encoding Brane Calculi

In the previous section we have remarked that CLS can model situations which cannot be described by
other membrane calculi. In this section, we recall the definition of the phago/exo/pino (PEP) calculus,

10 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

Syntax

P,Q,R . . . ::= �
∣∣ P ◦ P

∣∣ !P
∣∣ σ(|P |) Systems

σ, τ, ρ, . . . ::= 0
∣∣ σ|σ

∣∣ !σ
∣∣ a.σ Branes

a, b, c, . . . ::= φn

∣∣ φ⊥
n (σ)

∣∣ εn

∣∣ ε⊥n
∣∣ } (σ) Actions

Structural Congruence

The least congruence relation ≡ satisfying the following axioms

P ◦ Q ≡ Q ◦ P P ◦ (Q ◦ R) ≡ (P ◦ Q) ◦ R P ◦ � ≡ P

!� ≡ � !!P ≡!P !P ≡ P◦!P 0(| � |) ≡ �

σ|τ ≡ τ |σ σ|(τ |ρ) ≡ (σ|τ)|ρ σ|0 ≡ σ

!0 ≡ 0 !!σ ≡!σ !σ ≡ σ|!σ

Reaction Semantics

The least relation containing the following axioms, closed wrt ◦ P , σ(| |) and ≡

(phago) φn.σ|σ0(|P |) ◦ φ⊥
n (ρ).τ |τ0(|Q|) → τ |τ0(|ρ(|σ|σ0(|P |)|) ◦ Q|)

(exo) ε⊥n .τ |τ0(|εn.σ|σ0(|P |) ◦ Q|) → P ◦ σ|σ0|τ |τ0(|Q|)

(pino) } (ρ).σ|σ0(|P |) → σ|σ0(|ρ(| � |) ◦ P |)

Figure 5. The phago/exo/pino (PEP) calculus: syntax and semantics

which is the simplest of Brane Calculi [5], and we give a sound and complete encoding of it into CLS.

4.1. The PEP Calculus

The syntax and the semantics of the PEP calculus is summarized in Figure 5. Terms are systems. Sys-
tems consist of composition of systems, ◦, with unit �. Replication ! is used to model the notion of
“multitude” of systems. Systems can be membrane containing systems, σ(|P |). Membranes can be a
parallel compositions σ|σ′ with unit 0, or replication of membranes, or action prefixing.

Actions are: phagocytosis, denoted φn, incorporates one external membrane into another by “engulf-
ing” it; exocytosis, denoted by εn, is the reverse process; pinocytosis, denoted by }, engulfs zero external
membranes. Phagocytosis and exocytosis have co-actions that are intended to interact with, indicated by
the symbol ⊥. Pinocytosis does not have a co-action. Figure 6 gives a pictorial representation of the three
actions.

We consider a structural congruence relation ≡ that describes associativity, commutativity, replica-

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 11

P
Q Q

P

P ρ P

P P

ρ

Q

Q

ε .n 0τ|τ

ε .n σ|σ0 exo σ|σ0

0τ|τ σ|σ0(ρ).

pino

σ|σ0

0nφ .σ|σ

nφ (ρ).τ|τ 0 0τ|τ

σ|σ0

phago

Figure 6. Pictorial representation of phagocytosis, exocytosis and pinocytosis

tion and unit elements of operators on systems and membranes. We denote with PEP the infinite set of
Systems, and with Branes the infinite set of membranes in the PEP calculus. Moreover, we denote with
N the (possibly infinite) set of names n used as subscripts of Actions.

4.2. Encoding of the PEP Calculus

We define an encoding of a system of the PEP calculus into a CLS term. The encoding of a system results
in a pair of a CLS sequence and a set of elementary constituents.

Operators and actions of the encoded system are translated into elements of the sequence. The en-
codings of the operands and of the action parameters follow the encodings of the corresponding operators
and actions in the sequence, and are delimited by elements acting as separators. The set of elementary
constituents given by the encoding contains all these separators.

The elementary constituent act is used in the sequence as a program counter: during the evolution of
the term it preceeds every element which encodes a currently active action.

Definition 4.1. (Encoding)
The encoding of a system P of the PEP calculus into the CLS is the term T ∈ T such that, for some
(finite) E ⊂ E , it holds {[P]} = (T,E), where {[·]} : PEP → T × P(E) is given by the following
recursive definition:

{[�]} =
(
act · 0, ∅

)

{[P1 ◦ P2]} =
(
act · circ · a · P ′

1{ε/act} · a · P ′
2{ε/act}, {a} ∪ E1 ∪ E2

)

where {[Pi]} = (P ′
i , Ei), E1 ∩ E2 = ∅ and a ∈ E \ (E1 ∪ E2)

{[!P]} =
(
act · bangS · P ′{ε/act}, E

)
where {[P]} = (P ′, E)

{[σ(|P |)]} =
(
act · brane · a · σ′{ε/act} · a · P ′{ε/act}, {a} ∪ EP ∪ Eσ

)

where {[P]} = (P ′, EP), [[σ]] = (σ′, Eσ),

a ∈ E \ (EP ∩ Eσ) and EP ∩ Eσ = ∅

12 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

where [[·]] : Branes → T ×P(E) is given by the following recursive definition:

[[0]] =
(
act · 0, ∅

)

[[σ1|σ2]] =
(
act · par · a · σ′

1{ε/act} · a · σ′
2{ε/act} · a,E1 ∪ E2 ∪ {a}

)

where [[σi]] = (σ′
i, Ei), E1 ∩ E2 = ∅ and a ∈ E \ (E1 ∪ E2)

[[!σ]] =
(
act · bangB · a · σ′{ε/act} · a,E ∪ {a}

)

where [[σ]] = (σ′, E) and a ∈ E \ E

[[φn.σ]] =
(
act · φ · n · a · σ′{ε/act} · a,E ∪ {a}

)

where [[σ]] = (σ′, E) and a ∈ E \ E

[[φ⊥
n (ρ).σ]] =

(
act · φ⊥ · n · a · ρ′{ε/act} · a · σ′{ε/act} · a,Eρ ∪ Eσ ∪ {a}

)

where [[ρ]] = (ρ′, Eρ), [[σ]] = (σ′, Eσ) and a ∈ E \ (Eρ ∪ Eσ)

[[εn.σ]] =
(
act · ε · n · a · σ′{ε/act} · a,E ∪ {a}

)

where [[σ]] = (σ′, E) and a ∈ E \ E

[[ε⊥n .σ]] =
(
act · ε⊥ · n · a · σ′{ε/act} · a,E ∪ {a}

)

where [[σ]] = (σ′, E) and a ∈ E \ E

[[}(ρ).σ]] =
(
act · } · a · ρ′{ε/act} · a · σ′{ε/act} · a,Eρ ∪ Eσ ∪ {a}

)

where [[ρ]] = (ρ′, Eρ), [[σ]] = (σ′, Eσ) and a ∈ E \ (Eρ ∪ Eσ)

In Figure 7 we give the rewrite rules which are applicable to encoded systems and membranes. We
denote with x, y, z, . . . variables which can be instantiated only to single elementary constituens, and with
x̃, ỹ, z̃, . . . variables which can be instantiated to (possibly empty) sequences of elementary constituents.

Rules are conceptually of two kinds. Rules from rule (par) to rule (sc6) rearrange elementary CLS
sequences encoding PEP systems and membranes, into CLS terms (containing all CLS operators) and
simplifying them accordingly to structural congruence on PEP terms. We denote with R〈〉 this set of
rules. Rules from rule (phago) to rule (bangB) correspond to PEP semantics. In particular, rules (phago),
(exo) and (pino) correspond to phagocytosis, exocytosis and pinocytosis, respectively, and rules (bangS)
and (bangB) correspond to structural congruence for the replication operator.

We remark that by applying rules in R〈〉 to the encoding of a PEP system P we obtain a term T in
which each membrane system (|P ′|) in P is represented by a looping sequence in T , and each occurrence
of ◦ in P is represented by an occurrence of | in T .

Example 4.1. Let us consider the PEP system !
(
P

)
where P = φn(| � |) ◦ φ⊥

n (0)(| � |). According to the
semantics of the calculus the system may evolve as follows:

!(P) ≡ !(P) ◦ φn(| � |) ◦ φ⊥
n (0)(| � |) → !(P) ◦ 0(|0(|0(| � |)|) ◦ �|) ≡ !(P)

By applying the encoding to the system we obtain the following term T :

act · bangS · circ · e · brane · b · φ · n · a · 0 · a · b · 0 · e · brane · d · φ⊥ · n · c · 0 · c · 0 · c · d · 0

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 13

(
act · par · x · ỹ · x · z̃ · x · w̃

)L
cX 7→

(
act · ỹ · act · z̃ · w̃

)L
cX (par)

act · circ · x · ỹ · x · z̃ 7→ act · ỹ | act · z̃ (circ)

act · brane · x · ỹ · x · z̃ 7→
(
act · ỹ

)L
c act · z̃ (brane)

x · w̃ | act · 0 7→ x · w̃
(
x · w̃

)L
c act · 0 7→

(
x · w̃

)L
(sc1,2)

act · bangS · 0 7→ act · 0
(
act · 0

)L
7→ act · 0 (sc3,4)

(
act · 0 · x · w̃

)L
cX 7→

(
x · w̃

)L
cX (sc5)

(
act · bangB · 0 · w̃

)L
cX 7→

(
act · 0 · w̃

)L
cX (sc6)

(
act · φ⊥ · xn · x · ỹ · x · z̃ · x · w̃

)L
cX |

(
act · φ · xn · x′ · ỹ′ · x′ · z̃′

)L
cY

7→
(
act · z̃ · w̃

)L
c (X |

(
act · ỹ

)L
c
(
act · ỹ′ · z̃′

)L
cY) (phago)

(
act · ε⊥ · xn · x · ỹ · x · z̃

)L
c (X |

(
act · ε · xn · x′ · ỹ′ · x′ · z̃′

)L
cY)

7→ Y |
(
act · ỹ · z̃ · act · ỹ′ · z̃′

)L
cX (exo)

(
act · } · x · ỹ · x · z̃ · x · w̃

)L
cX 7→

(
act · z̃ · w̃

)L
c (X |

(
act · ỹ

)L
) (pino)

act · bangS · x̃ 7→ act · bangS · x̃ | act · x̃ (bangs)

(
act · bangB · x · ỹ · x · w̃

)L
cX 7→

(
act · bangB · x · ỹ · x · act · ỹ · w̃

)L
cX (bangb)

Figure 7. Rewrite rules associated with the encoding of the PEP calculus

which may evolve as follows:

T → T | act · circ · e · brane · b · φ · n · a · 0 · a · b · 0 · e

· brane · d · φ⊥ · n · c · 0 · c · 0 · c · d · 0 (bangS)

→ T | act · brane · b · φ · n · a · 0 · a · b · 0

| act · brane · d · φ⊥ · n · c · 0 · c · 0 · c · d (circ)

⇒ T |
(
act · φ · n · a · 0 · a

)L
c act · 0

(
act · φ⊥ · n · c · 0 · c · 0 · c

)L
c act · 0 2 × (brane)

→ T |
(
act · 0

)L
c (act · 0|

(
act · 0

)L
c
(
act · 0

)L
c act · 0) (phago)

⇒ T

14 R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems

Now we introduce a normal form for CLS terms which will be used to prove the correctness of the
encoding. This normal form can be obtained by applying rules in R〈〉 as long as possible.

Proposition 4.1. (Normal Form)
Assume R〈〉 as the set of rules that can be applied to terms. Given a CLS term T , there exists a unique
CLS term (modulo structural congruence), denoted 〈T 〉, such that T →∗ 〈T 〉 and 〈T 〉 6→.

Proof:
The term 〈T 〉 is reachable after a finite number of rule applications as all rules in R〈〉 reduce the number
of elementary constituents in the term. Moreover, it is easy to see that, by definition of the rules in R〈〉,
〈T 〉 is unique. ut

We prove now the correctness of the encoding in terms of soundness and completeness. For the sake
of simplicity, let us denote with {[P]} and [[σ]] the terms obtained by the application of the encoding to
system P and to membrane σ, respectively. Moreover, we denote with →∗ the reflexive and transitive
closure of → for both CLS and PEP semantics.

Theorem 4.1. (Soundness)
Given a system P of the PEP calculus:

P → P ′ =⇒ ∃T.∃P ′′. s.t. {[P]} →∗ T, 〈T 〉 ≡ 〈{[P ′′]}〉 and P ′′ ≡ P ′ .

Proof:
We show first that structurally congruent PEP systems without replication are encoded into CLS terms
whose normal forms are structurally congruent. As regards replication, we show that given two congruent
PEP systems the encoding of one can be transformed into the encoding of the other by applications of
a rule in R〈〉. Therefore, the prove can be done by induction on the structure of P without considering
structural congruence. ut

Theorem 4.2. (Completeness)
Given a system P of the PEP calculus:

{[P]} →∗ T =⇒ ∃P ′ s.t. 〈T 〉 ≡ 〈{[P ′]}〉 and either P ≡ P ′ or P →∗ P ′ .

Proof:
By induction on the number of steps in {[P]} → T . ut

5. Conclusions

The paper presents a new calculus suitable to describe microbiological systems and their evolution. We
use the calculus to model interactions among bacteria and bacteriophage viruses, and to reason on their
properties, and we give an encoding of one of Cardelli’s Brane Calculi into ours.

We remark that systems composed by parts delimited by membranes and whose evolution may be
described by rewrite rules have been considered by authors interested in proposing new models of com-
puting inspired by biological systems (natural computing). See e.g. [12].

We believe that a further step of our work should be the introduction in the calculus of concepts of
time and probability, which have been considered in other formalisms and have been shown to be crucial
for describing biological systems [2, 3].

R. Barbuti et al. / A Calculus of Looping Sequences for Modelling Microbiological Systems 15

References

[1] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin and J. Schug. “Hybrid modeling
and simulation of biomolecular networks”. In Hybrid Systems: Computation and Control, LNCS 2034,
pages 19–32, Springer, 2001.

[2] R. Barbuti, S. Cataudella, A. Maggiolo-Schettini, P. Milazzo and A. Troina. “A probabilistic model for
molecular systems”. Fundamenta Informaticae, volume 67, pages 13–27, 2005.

[3] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo and A. Troina. “An alternative to Gillespie’s algorithm
for simulating chemical reactions”. Computational Methods in Systems Biology (CMSB’05), Edinburgh,
2005.

[4] L. Cardelli. “Bioware languages”. In Computer Systems. Theory, Technology and Applications. Papers for
Roger Needham, Springer, pages 59–66, 2003.

[5] L. Cardelli. “Brane calculi. interactions of biological membranes”. Computational Methods in Systems
Biology (CMSB’04), LNCS 3082, pages 257–280, Springer, 2005.

[6] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages and V. Schachter. “Modeling and querying biomolec-
ular interaction networks”. Theoretical Computer Science, volume 325, number 1, pages 25-44, 2004.

[7] M. Curti, P. Degano, C. Priami and C.T. Baldari. “Modelling biochemical pathways through enhanced
pi-calculus”. Theoretical Computer Science, volume 325, number 1, pages 111–140, 2004.

[8] V. Danos and C. Laneve. “Formal molecular biology”. Theoretical Computer Science, volume 325, number
1, pages 69–110, 2004.

[9] C. Flanagan and M. Abadi. “Object types against races”. CONCUR’99, LNCS 1664, pages 288-303,
Springer, 1999.

[10] A. Gordon and P. Hankin. “A concurrent object calculus: reduction and typing”. High-Level Concurrent
Languages (HLCL’98), Elsevier ENTCS, volume 16, number 3, 1998.

[11] H. Matsuno, A. Doi, M. Nagasaki and S. Miyano.“Hybrid Petri net representation of gene regulatory net-
work”. In Pacific Symposium on Biocomputing, World Scientific Press, pages 341–352, 2000.

[12] G. Păun. “Membrane computing. an introduction”. Springer, 2002.

[13] A. Regev, E.M. Panina, W. Silverman, L. Cardelli and E. Shapiro. “BioAmbients: an abstraction for bio-
logical compartments”. Theoretical Computer Science, volume 325, number 1, pages 141–167, 2004.

[14] A. Regev, W. Silverman and E.Y. Shapiro. “Representation and simulation of biochemical processes using
the pi-calculus process algebra”. Pacific Symposium on Biocomputing, World Scientific Press, pages 459–
470, 2001.

