
Evaluation of Adaptive Micro-batching
Techniques for GPU-accelerated Stream

Processing⋆

Ricardo Leonarczyk1[0000−0002−5202−5694], Dalvan
Griebler1[0000−0002−4690−3964], Gabriele Mencagli2[0000−0002−6263−7723], and

Marco Danelutto2[0000−0002−7433/−376X]

1 School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto
Alegre, Brazil

2 Computer Science Department, University of Pisa, Pisa, Italy

Abstract. Stream processing plays a vital role in applications that re-
quire continuous, low-latency data processing. Thanks to their extensive
parallel processing capabilities and relatively low cost, GPUs are well-
suited to scenarios where such applications require substantial computa-
tional resources. However, micro-batching becomes essential for efficient
GPU computation within stream processing systems. However, finding
appropriate batch sizes to maintain an adequate level of service is often
challenging, particularly in cases where applications experience fluctua-
tions in input rate and workload. Addressing this challenge requires ad-
justing the optimal batch size at runtime. This study proposes a method-
ology for evaluating different self-adaptive micro-batching strategies in a
real-world complex streaming application used as a benchmark.

Keywords: Stream processing · Micro-batching · Multicores · GPUs

1 Introduction

Stream processing systems (SPSs) such as Apache Flink3 and Apache Spark
Streaming4 have traditionally been deployed in commodity clusters, aiming at
horizontal scalability [5]. In these scenarios, the emphasis is typically on in-
put/output (I/O), accompanied by relatively low computing requirements that
involve logic for data filtering and transformations. However, high-capacity com-
puting infrastructures become critical when there is the need to maintain accept-
able service level objectives (SLO) (e.g., bounds in terms of latency) for stream
processing applications (SPAs) with high computational demands, such as those
in computer vision and robotics.

⋆ This research has been supported by the Italian Resilience and Recovery Plan
(PNRR) through the National Center for HPC, Big Data and Quantum Computing.

3 https://flink.apache.org
4 https://spark.apache.org/streaming



2 Leonarczyk et al.

Accelerators such as graphics processing units (GPUs) offer significant advan-
tages in such cases due to their capacity for massive data parallelism. However,
the integration of a GPU into an SPS can exhibit several challenges. In streaming
analytics, data streams convey small items in the form of records of attributes
(which we call tuples). Such tuples are often small (e.g., a few hundred bytes),
so individually processing them on GPU leads to the under-utilization of its
computing capacity.

A potential solution to the challenge of GPU integration into SPSs is the
processing of stream tuples in micro-batches. Micro-batching is a technique used
in SPSs to process small batches of data simultaneously rather than process-
ing tuples individually. The SPS collects a defined number of incoming tuples,
groups them into a batch, and processes them as a unit of computation. This
is the default processing model for SPSs such as Spark Streaming. In contrast,
for tuple-at-a-time SPSs like Flink, the user usually performs micro-batching
manually when co-processors are present in the system.

Once micro-batching is adopted, a subsequent challenge arises in determining
the optimal batch size. Increasing the batch size in GPU-accelerated SPAs leads
to a rise in both buffering requirements and the time it takes for the GPU to
start processing. This results in a trade-off between latency and throughput,
which can be managed by finding a batch size that can satisfy the particular
application SLO [7]. If the workload and input rate are stable, finding a suitable
batch size can be a one-time task, which the user may manually find or use auto-
tuning approaches. However, SPAs are often subjected to workload and input
rate fluctuations, making the suitable batch size an evolving target.

Self-adaptation techniques can be used to determine a suitable batch size
at different stages of the SPA’s execution, as demonstrated in Sect. 2. Broadly
defined, self-adaptation is the capability of a system to autonomously change
itself to better respond to its dynamic environment [11]. In practice, a self-
adaptive system will collect metrics data about the SPA, and based on them, it
will perform adaptation actions (e.g., variating the batch size or the parallelism
degree) at runtime to achieve defined SLOs.

A recent paper [9] presented four adaptation algorithms for adapting the
batch size to keep the SPA’s latency within a threshold around a target latency.
Our goal in the current study is to provide a methodology (Sect. 3) consisting
of a set of metrics that complement the metric used to compare the algorithms
and workloads in this original study, offering a novel way to analyze experiments
with SLO-constrained SPAs which use micro-batching techniques. Additionally,
(in Sect. 4), we evaluate the adaptive strategies and algorithms with a new
complex and real-world application. We believe that an understanding of how
the algorithms in [9] behave with an entirely different use case will shed more
light on their generalizability and usefulness beyond the basic scenarios they
were originally evaluated. The application we selected is the Military Server
Benchmark [2] (MSB), a SPA designed to exploit data parallelism and highly
configurable to reflect workload variations and changes in the input rate. We
also consider in the evaluation how latency sampling affects the adaptation. The



Evaluation of Adaptive Micro-batching Techniques 3

original study did not address this aspect, which affects the average of a set of
latencies corresponding to the process variable in control theory.

2 Related Work

Stein et al. [9] present a control-loop strategy driven by four algorithms for
adapting the batch size to keep a user-defined latency SLO in streaming com-
pression applications targeting GPUs. The proposed algorithms expect a target
latency provided by the user. Internally, they also consider a threshold indicat-
ing an acceptable percentage of variation in latency, as well as a step size for
changing the batch size. The metric used to compare the algorithms and work-
loads is named SLO hit, which is the percentage of batches that meet the SLO
in relation to the overall batch count.

De Matteis et al. [5] propose Gasser, an SPS that offloads sliding-window
operators on GPUs. Gasser adapts the batch size and parallelism to balance
latency and throughput. It calibrates a predictive model at the beginning of ex-
ecution based on the throughput achieved by different configurations on CPU
and GPU. However, Gasser’s predictive model does not react effectively to ir-
regular workloads. The Chebyshev distance is used in the study to measure the
effectiveness of Gasser’s auto-tuning approach.

Das et al. [4] introduce the fixed-point iteration method to find the intersec-
tion between batch processing time and batch interval, providing adaptability
without specifying a step size. However, this algorithm assumes the existence of
a batch interval where the processing rate can keep up with the input rate and
may suffer from control-loop delays in cases of sudden workload variations.

Zhang et al. [12] propose the DyBBS algorithm, which uses online historical
statistics to adapt batch interval through isotonic regression and block interval
through a heuristic approach. DyBBS prioritizes accuracy over convergence time
but also assumes the presence of a stable batch interval.

In some studies, the batch size is associated with the efficiency of task sched-
ulers. Venkataraman et al. [10] propose Drizzle, which organizes batches into
groups and dynamically adapts the group size using a technique based on the
additive-increase/multiplicative-decrease (AIMD) feedback control algorithm.
Cheng et al. [3] propose adapting the batch interval through the expert fuzzy
control (EFC) technique integrated with A-scheduler, a new Spark Streaming
scheduler. They also use a reinforcement learning algorithm to adapt job paral-
lelism based on historic workload variations.

From the studies presented, only [9] and [5] adapt the batch size for GPU-
accelerated SPAs, demonstrating that this specific scenario is not currently re-
ceiving significant attention from the literature. The remaining studies focus on
batch size adaptation for SPAs built upon the Spark DSPS. Besides the tradi-
tional latency and throughput metrics, [9] uses the SLO hit, while [5] use the
notion of distance from a optimal configuration. Our work extends the SLO-
related metrics from [9], and introduces distance-related metrics.



4 Leonarczyk et al.

3 Evaluation Methodology

Our methodology consists of a new set of metrics: the SLO hit and the SLO
distance metric. They are used to compare the adaptation algorithms among
themselves in terms of quality and effectiveness from different perspectives. Each
metric has both a less and a more sensitive version. For the SLO hit, we pro-
pose a batched and an itemized definition. The batched SLO hit is described in
Definition 1.

Definition 1 (B-SLH). Let t be the target SLO, h be a threshold percentage
such that 0 < h < 1, B be the set of batches processed during the whole or part
of the application execution, and ω : B → R be a mapping of a batch bi ∈ B to
its measured performance metric value (e.g., in terms of latency or throughput).
The set B′ ⊆ B containing the batches which fell within threshold bounds is
defined as B′ = {b ∈ B | t ∗ (1− h) ≤ ω(b) ≤ t ∗ (1 + h)}. The batched SLO hit
is defined as the percentage of batches that fall within threshold bounds, formally
as:

B-SLH = |B′|/|B| (1)

What we refer to as the batched SLO hit was the metric chosen by Stein et
al.[9] to evaluate the adaptation algorithms they proposed. This metric is use-
ful to understand the effectiveness of the adaptation algorithms for achieving a
defined SLO. However, it presents a notable limitation resulting from the focus
on the batch level. Specifically, batches containing large quantities of items will
have the same weight as batches containing only a few items. This can produce
situations where the adaptation algorithm fails to achieve the SLO for the ma-
jority of the items processed by the application, but the resultant SLO hit still
remains greater than 50%. The problem described with the batched SLO hit
becomes more pronounced as the range of batch sizes is increased. To solve this
problem, we propose the itemized SLO hit, formalized in Definition 2. It is fun-
damentally the same as the batched SLO hit, with the additional consideration
of the batch sizes.

Definition 2 (I-SLH). Let the definition of the sets B and B′ ⊆ B be the same
as in Definition 1, and let σ : B → N be the mapping of a batch bi ∈ B to its
size. The itemized SLO hit is defined as follows:

I-SLH =

∑
b′∈B′ σ(b′)∑
b∈B σ(b)

(2)

The two SLO hit metrics are binary in the sense that a given batch is either
inside or outside threshold bounds. Such metrics can work perfectly for users
whose only concern is to know whether the application is meeting the SLO.
However, they fail to provide information for the researcher/practitioner who
wants to know how much the SLO is being met or not. In the latter case, proper
SLO distance metrics can be defined to supplement the SLO hit metrics by
providing a measure of how far the batches were from the target SLO.



Evaluation of Adaptive Micro-batching Techniques 5

We propose two distance metrics: the MAD-based SLO distance and the SD-
based SLO distance. They are calculated in the same fashion as the population’s
mean absolute deviation (MAD) and the population’s standard deviation (SD).
The only difference from the standard statistical forms of MAD and SD is that
the target SLO value is used instead of the mean. As the second and final step,
we divide the value obtained in the first step by the target SLO value. We found
that expressing the values in percentage helps with the interpretability because
it is expected that the distance values will not surpass more than one time the
target SLO. Furthermore, the percentage format fits naturally with the way the
thresholds are specified (as a percentage of the target SLO).

We define below the MAD-based SLO distance in Definition 3 and the SD-
based SLO distance in Definition 4.

Definition 3 (MAD-D). Let t be the target SLO, and let the set B and the
function ω be as defined in Definition 1. The MAD-based SLO distance is defined
as:

MAD-D =

∑
b∈B(|t− ω(b)|)

|B| · t
. (3)

Definition 4 (SD-D). Let t be the target SLO, and let the set B and the func-
tion ω be as defined in Definition 1. The SD-based SLO distance is defined as:

SD-D =

√∑
b∈B(|t− ω(b)|2)

|B| · t
(4)

The MAD-based SLO distance arguably provides the most intuitive results
when compared to the SD-based SLO distance. When applied over a single batch,
it provides a value that can be directly compared with the threshold. In fact,
the batched SLO hit metric can be derived from the MAD-based SLO distance
by checking if every batch’s distance value is less or equal to the threshold.
The MAD-based SLO distance also exhibits the property of not being affected
by a few large batch distance values (outliers). In contrast, the SD-based SLO
distance is more sensitive to such values, given that it is based on squaring
distances from the target.

4 Evaluation

4.1 Military Server Benchmark

The Military Server Benchmark (MSB) is an application developed by Araujo
et al. [2] designed to leverage accelerated computing in stream processing. The
benchmark is composed of heavy computations and allows for the exploitation
of data parallelism within each input item (i.e., inputs are records of attributes
also called tuples) or in batches (depending on the size of the tuples used). The
problem domain involves allocating military units on a map while considering
the location requirements specific to each unit type. Drones fly over designated



6 Leonarczyk et al.

coordinates of the map and collect data that will be used to allocate their as-
signed units. The system performs the required computations to allocate the
military units efficiently using the data continuously received from the drones.

The application is structured as a pipeline of five computational stages. The
first and the last are devoted to generating data and gathering results (I/O-
bound source and sink stages). The three internal stages are each one parallel.
The first executes a compute-intensive map pattern running on GPU, which
extracts information for each coordinate explored by the drone. The second still
runs on GPU and is based on the map-reduce pattern to find the most suitable
coordinate for each military unit. The last stage is lightweight and still done by
GPU. It performs final data validation.

The MSB implementation used in this work has been parallelized with Fast-
Flow [1] and GSPARLIB [8]. FastFlow assembles and coordinates the pipeline
stages, while GSPARLIB is responsible for the GPU offloading inside the stages.
In the MSB pipeline, each tuple carries data from a specific drone. Batches are
allocated in the GPU memory at the source stage and deallocated at the sink
stage. As a result, batch sizes are defined for the entire pipeline rather than
individually stage by stage.

Runtime performance variability in a SPA can be attributed to variables such
as tuple inter-arrival time and tuple processing time. The time series generated
by the moving average of these variables often demonstrates non-stationarities in
real-world scenarios, such as increasing or decreasing trends and cyclic behaviors
such as seasonal patterns. The overall software architecture of MSB is capable
of reproducing workload variations called computation patterns applied to the
computation time per tuple by the system (while the input rate is kept fixed for
each execution). This is a realistic scenario for MSB, since drones generate data
and transmit them at fixed rate. The algorithms to generate the computation
patterns were based on [6]. Since they were originally designed for generating
different frequency patterns of data arrivals, we adapted them to reproduce time-
varying patterns affecting the tuple computation time.

We adopted a feedback control strategy [9] that turns the MSB pipeline into
a closed loop in which the sink measures the end-to-end latencies of computed
batches and transmits the measurements to the source stage. The source is re-
sponsible for receiving the measured latencies and applying the adaptation algo-
rithm to decide the size for the next batches. The feedback loop should not result
in additional delays for the source stage to process the incoming tuples. Hence, if
the updated latencies did not arrive in time to decide the size of the next batch,
the batch is delivered with the last computed size without blocking the data flow
through the pipeline. We also perform sampling of the batch latencies, where the
average of the samples is provided as input to the adaptation algorithm. Sam-
pling is controlled by a parameter named sample size. This parameter can be
used to try reducing interferences from specific batches containing latencies that
significantly deviate from their neighbors.

Stein et al. [9] presented four adaptation algorithms for adapting the batch
size, namely Fixed Adaptation Factor (FAF), Percentage-Based Adaptation Fac-



Evaluation of Adaptive Micro-batching Techniques 7

tor (PBAF), PBAF without threshold (PBAF-WT), and Multiplier-Based Adap-
tation Factor (MBAF). The algorithms accept as parameters a target latency
(our SLO), a threshold region around the target latency, the current batch size,
and step size (called adaptation factor by the authors). The goal is to regulate
the batch size to keep the target latency inside the threshold region, which is
expressed in percentage.

Regarding the main differences among the algorithms, the most straightfor-
ward is FAF. FAF increments or decrements the batch size by a fixed step when
the actual latency exceeds the lower or upper bound respectively. PBAF behaves
similarly but reduces the (user-specified) step size as it approaches the target
latency, aiming for more precision and likely avoiding stepping out of threshold
bounds. PBAF-WT focuses solely on the target, resulting in frequent batch size
changes to improve precision but risking going out of bounds with larger step
sizes. MBAF prioritizes reaching the threshold region quickly by scaling the step
size based on the distance from the target, aiming at offering a faster response
to workload variations.

4.2 Evaluation Results

In this section we present the results of our evaluation of the algorithms pro-
posed by [9] applied in the Military Server Benchmark [2]. The experiments were
executed in a computer equipped with an AMD Ryzen 5 processor (6 cores and
12 threads) and 32 GB of RAM. The GPU was an NVIDIA GeForce RTX 3090
(Ampere architecture) with 24 GB of VRAM and 10,496 CUDA cores. The oper-
ating system was Ubuntu 20.04 LTS. The software used was GCC 9.0.5, CUDA
11, FastFlow 3, and an optimized version of GSPARLIB provided by [2]. We
used the GCC compiler-level optimization 3 (flag O3). There was no replicated
stage in our stream processing pipeline, so each stage is run by a dedicated host
thread offloading computation on GPU.

We execute MSB ten times for each parameter combination to obtain the
means and standard deviations. The evaluation parameters are as follows:

– Target latency (SLO): 3 milliseconds
– Threshold value: 5%
– Step sizes (adaptation factors): 1, 5, 10, 15, and 20
– Latency sample sizes: 1, 5, 10 and 20
– Adaptation algorithms: FAF, PBAF, PBAF-WT, and MBAF

The execution time for processing our workload (containing 500k tuples) var-
ied from 6.4 seconds to around 1 minute and a half, depending on the parameters
used. We consider the whole execution in the experiments, without warm-up or
cool-down periods. We select the parameter values based on the characteristics of
the MSB in the chosen hardware platform. The three-millisecond target latency
has been chosen because empirically it is achievable at practically any point in
the execution if the right batch size is applied by the system. It is (approx-
imately) the highest tuple latency encountered when executing MSB without



8 Leonarczyk et al.

batching, such that it can be achieved with a batch size close to one in the most
compute-intensive regions, while the lowest tuple latencies require batch sizes of
around 300 tuples. The threshold values are kept the same as in [9].

Figure 1 presents the best results for the metrics discussed in Sect. 3. For
each algorithm, the metrics values (in percentage) from the best batched and
itemized SLO hits are shown, as well as the best MAD-based and SD-based
distances. They are labelled using the abbreviations for the definitions in Sect. 3.
Furthermore, in Tables 1 and 2 we present the metrics values, as well as the
configuration (step size and latency sample size) used for achieving those metrics.

B-SLH I-SLH MAD-D SD-D
0

20

40

60

80

B-SLH I-SLH MAD-D SD-D
0

20

40

B-SLH I-SLH MAD-D SD-D
0

20

40

B-SLH I-SLH MAD-D SD-D
0

20

40

FAF

PBAF

PBAF-NT

MBAF

Metrics

P
er
ce
nt
ag

es

Fig. 1. Best SLO hit and distance metrics per algorithm.

Table 1 presents the best SLO hit metrics achieved by each algorithm, as
well as the configuration used to achieve the metric value.

Table 1. Best SLO Hit metrics and configurations by algorithm.

Algo. Batched SLO Hit Itemized SLO Hit
VALUE STEP SAMPLE VALUE STEP SAMPLE

FAF 47.83 1 1 29.25 1 1
PBAF 51.02 5 1 36.35 10 1

PBAF-WT 35.72 5 5 32.28 5 1
MBAF 36.30 5 5 37.55 1 1

The algorithms were able to meet the latency SLO for 29% (FAF) to 37%
(MBAF) of the 500K processed tuples. The SLO hit per batch ranged between
32% and 51%, with MBAF and PBAF-WT defining the lower end, and FAF and
PBAF defining the higher end of the range. The best batched SLO hit results



Evaluation of Adaptive Micro-batching Techniques 9

achieved in [9] for the 5% threshold range from 50.58% to 90.39%. The highest
batched SLO hit we achieve in MSB with the same threshold is 53.452%, which
is comparable with the lowest result from [9]. These results demonstrate that
our workload is more challenging than the previous one from [9].

The algorithms achieve comparable results across all SLO hit metrics. How-
ever, the configuration they use to achieve their best results is not homogeneous.
A step size of 5 or 10 yielded the best SLO hit results for PBAF and PBAF-
WT, owing to their ability to use a fraction of the step size as they approach the
threshold bounds. Conversely, the best SLO hit results for FAF and MBAF are
achieved with a step size of 1 in most cases. This happens because larger step
sizes for these algorithms, while allowing a faster reaction, also prevent them
from fine-tuning the batch size when latencies are close to the target.

In Table 1 a consistent pattern can be discerned where the latency sample
sizes are always 1 for the itemized SLO hit, while for the batched SLO hit
they are set to 5 in half of the instances (rows). This behavior stems from a
trade-off between two conflicting situations that favor one metric over the other.
The first situation is that a latency sampling greater than 1 increases the SLO
hit in regions with very frequent latency variations, such as in the workload
segments belonging to the (gradually) increasing and decreasing computation
patterns depicted in Figure 2 across the green line. However, (as in the second
situation) this increased sampling reduces reactivity since five latency samples
must be collected before re-evaluating the strategy again. Consequently, the
SLO hit will be lower in regions with abrupt latency changes necessitating high
reactivity, e.g., spike and binary patterns. Furthermore, these patterns contain
extensive regions with minimal computation, where large batch sizes (close to
300) are needed to keep the SLO. Specifically for the itemized SLO hit, batches
missing the threshold bounds in these regions result in a greater cost than for
the batched SLO hit. Consequently, the best results for the itemized SLO hit do
not incorporate latency sample sizes greater than 1. Table 2 presents the best
distance metrics achieved by each algorithm, as well as the configuration used
to achieve the metric value.

Table 2. Best distance metrics and configurations by algorithm.

Algo. MAD-based Distance SD-based Distance
VALUE STEP SAMPLE VALUE STEP SAMPLE

FAF 41.78 5 1 92.64 20 1
PBAF 33.2 10 1 47.04 1 20

PBAF-WT 34.95 1 5 47.61 1 5
MBAF 23.73 5 5 53.3 1 20

Regarding the distance metrics, the best results for the MAD-based distance
are similar for all algorithms except MBAF, predominantly staying within the
range of the first five digits of 30. MBAF presented MAD-based distances around
25% smaller than the other algorithms. We attribute this behavior mainly to its
high reactivity to spikes in latency.



10 Leonarczyk et al.

The best configurations in terms of distance metrics do not necessarily match
the best configurations in terms of SLO hit metrics. In Table 1, the maximum
latency sample size used was 5. However, Table 2 includes configurations under
the SD-based distance metric where the combination of the smallest step size (1)
and the largest sample size (20) leads to significant delays in adaptation com-
bined with minimal adjustments in batch size. This results in executions where
the batch latencies converge towards the target from the lower threshold bound,
albeit failing to cross into the threshold bounds most of the time. Figure 2 illus-
trates this behavior across the red lines. Keeping the latency closer to the lower
threshold bound requires smaller batch sizes, which consequently contributes
to avoiding extreme latency spikes caused by large-sized, computation-heavy
batches. Another successful strategy for mitigating spikes is the use of large
step sizes combined with small sample sizes to increase reactivity. Although the
latency spikes are high with this strategy, they are reduced more quickly to a
latency closer to the target. We do not observe the largest tested sample sizes
being used in Table 2 for the MAD-based distance because this metric does not
penalize latency spikes as much as the SD-based distance does. However, we
observed that smaller values of the former are more indicative of greater SLO
hits, an observation that does not always hold for the latter.

0

10

20

30

La
te

nc
y 

(m
s)

INC. SPIKE DEC. 1 BIN. DEC. 2

Target
Reactive (latency)
Slow Conv. (latency)

0 100k 200k 300k 400k 500k
0

100

200

Ba
tc

h 
Si

ze

Reactive (batch)
Slow Conv. (batch)
Comp. Load

Fig. 2. Latency, batch size and computational load per item.

Figure 2 depicts the two most successful strategies concerning the SLO hit
and distance metrics. We use strategy as a general term referring to the combi-
nations of algorithms and configurations that generate a specific adaptation be-
havior. The strategies we chose to show are particularly remarkable due to their



Evaluation of Adaptive Micro-batching Techniques 11

effectiveness in mitigating latency spikes through different means. The strategy
we named Reactive comes from MBAF, which attained the best itemized and
batched SLO hit, and the best MAD-based distance. The metrics and config-
uration for this strategy can be found in Table 1 in the row corresponding to
MBAF. It is the same configuration found in Table 2 under the MAD-based
distance. The second strategy, which we named Slow Conv., comes from PBAF.
It can be found in Table 2 under SD-based distance, having achieved the best
result in this metric.

Figure 2 depicts the latency and the choice of batch sizes for two different
algorithms and configurations along an execution time representation. In the x-
axis, time is normalized across all executions, progressing based on a numerical
identifier (id) associated with each tuple, according to the order that it was pro-
duced (which is fixed). Regarding the y-axis, the red lines represent the reactive
configuration, labelled Reactive. The blue lines represent the slow convergence
configuration, labelled Slow Conv.. The orange line represents the target latency.

The green line (named Comp. Load) is meant to represent the computational
load of the item. It provides a (theoretical/conceptual) notion of the computation
patterns (Sect. 4.1). For instance, if there is an increasing load, we will usually
observe the batch size lines decreasing in an attempt to offset it. We name
each pattern in Figure 2. The abbreviated names are Inc for increasing, Dec for
decreasing, and Bin for binary.

Summary. Our key findings can be summarized as follows. Firstly, the al-
gorithms mostly achieve comparable results (although using different configu-
rations) for the SLO hit metrics, while MBAF stands out mainly in the MAD-
based distance. Secondly, the itemized SLO hits were consistently lower than the
batched SLO hits, indicating that relying solely on the latter metric to assess
SLO compliance can be misleading. Thirdly, the SLO hit, and distance metrics
demonstrate that more reactive algorithms (such as MBAF) and configurations
produce superior results. Lastly, the distance metrics indicate that less respon-
sive configurations attaining low SLO hits can still be close to the threshold and
mitigate large latency spikes.

5 Conclusion

In this paper we presented an evaluation of four self-adaptive algorithms for
stream processing with GPUs from Stein et al. [9]. We implemented the self-
adaptive strategy and algorithms with FastFlow [1] and GSPARLIB [8] in the
Military Server Benchmark application [2].

One of the current limitations of the proposed algorithms is the exclusive
focus on latency. Having only the latency as a target creates situations in which
the batch size is increased with the sole purpose of artificially increasing latency,
e.g., there is no gain in terms of throughput. This is not desirable, given that
the reason for increasing latency is to achieve a greater throughput. In such
cases, it would be preferable to disregard the lower threshold bound. Another



12 Leonarczyk et al.

notable limitation arises from the tradeoff presented by the current algorithms
between reactivity (MBAF) and finer tuning near threshold bounds (PBAF and
PBAF-WT). In future work, we plan to explore new approaches to overcome the
aforementioned limitations of the evaluated algorithms, by targeting other SLOs
besides latency, and by exploring adaptation algorithms that can adequately
achieve both fine-tuning and reactivity.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-Level
and Efficient Streaming on Multicore, chap. 13, pp. 261–280. John Wiley & Sons,
Ltd (2017)

2. Araujo, G.A.d., et al.: Data and stream parallelism optimizations on GPUs. Mas-
ter’s thesis, Pontif́ıcia Universidade Católica do Rio Grande do Sul (2022)

3. Cheng, D., Zhou, X., Wang, Y., Jiang, C.: Adaptive scheduling parallel jobs with
dynamic batching in spark streaming. IEEE Transactions on Parallel and Dis-
tributed Systems 29(12), 2672–2685 (2018)

4. Das, T., Zhong, Y., Stoica, I., Shenker, S.: Adaptive stream processing using dy-
namic batch sizing. In: Proceedings of the ACM Symposium on Cloud Computing.
p. 1–13. SOCC ’14, Association for Computing Machinery, New York, NY, USA
(2014)

5. De Matteis, T., Mencagli, G., De Sensi, D., Torquati, M., Danelutto, M.: Gasser:
An auto-tunable system for general sliding-window streaming operators on gpus.
IEEE Access 7, 48753–48769 (2019)

6. Garcia, A.M., Griebler, D., Schepke, C., Fernandes, L.G.L.: Evaluating micro-batch
and data frequency for stream processing applications on multi-cores. In: 2022 30th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP). pp. 10–17. IEEE (2022)

7. Rockenbach, D.A., Stein, C.M., Griebler, D., Mencagli, G., Torquati, M., Dane-
lutto, M., Fernandes, L.G.: Stream processing on multi-cores with gpus: Parallel
programming models’ challenges. In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). pp. 834–841 (2019)

8. Rockenbach, D.A.: High-level programming abstractions for stream parallelism on
gpus. Master’s thesis, Pontif́ıcia Universidade Católica do Rio Grande do Sul (2020)

9. Stein, C.M., Rockenbach, D.A., Griebler, D., Torquati, M., Mencagli, G., Dane-
lutto, M., Fernandes, L.G.: Latency-aware adaptive micro-batching techniques for
streamed data compression on graphics processing units. vol. 33, p. 5786 (2021)

10. Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M., Ghodsi, A., Franklin,
M.J., Recht, B., Stoica, I.: Drizzle: Fast and adaptable stream processing at
scale. In: Proceedings of the 26th Symposium on Operating Systems Principles. p.
374–389. SOSP ’17, Association for Computing Machinery, New York, NY, USA
(2017)

11. Vogel, A., Griebler, D., Danelutto, M., Fernandes, L.G.: Self-adaptation on parallel
stream processing: A systematic review. Concurrency and Computation: Practice
and Experience 34(6), e6759 (2022)

12. Zhang, Q., Song, Y., Routray, R.R., Shi, W.: Adaptive block and batch sizing
for batched stream processing system. In: 2016 IEEE International Conference on
Autonomic Computing (ICAC). pp. 35–44 (2016)


