
Seamless FPGA Integration with Stream
Processing Engines

Alberto Ottimo[0009−0003−9411−2475], Gabriele Mencagli[0000−0002−6263−7723],
and Marco Danelutto[0000−0002−7433−376X]

Department of Computer Science, University of Pisa, Pisa, 56127, Italy
{alberto.ottimo@phd.unipi.it, gabriele.mencagli@unipi.it,

marco.danelutto@unipi.it}

Abstract. Stream processing is a computing paradigm enabling the
analysis of data streams arriving at high speed from data producers. Its
goal is to extract knowledge and complex events by processing streams
with high throughput and low latency. To accomplish this goal, Stream
Processing Engines (SPEs) try to exploit the parallel processing capa-
bilities provided by modern hardware (usually multi-core CPUs and dis-
tributed systems). The exploitation of hardware accelerators, and in par-
ticular of FPGAs, is promising because they can maximize parallelism
and reduce energy consumption. However, programming FPGAs is a very
cumbersome and challenging task requiring a lot of expertise. In this pa-
per, we discuss the seamless integration of FSPX, a prototype system for
generating FPGA-based implementations of streaming pipelines, with an
existing SPE (WindFlow). Our goal is to integrate these two tools by pro-
viding high-level programming interfaces to end users and guaranteeing
high performance with efficient hardware utilization.

Keywords: Data Stream Processing, WindFlow, FSPX, FPGA

1 Introduction

A growing number of applications require the fast processing of data streams,
i.e., unbounded sequences of data items (often records of attributes called tuples)
generated by a plethora of data sources. The Data Stream Processing [2] (DSP)
paradigm was introduced years ago as a way to process streams efficiently by
continuous queries [10] described as data-flow graphs. Vertices of such graphs
are operators doing computational steps, while arcs represent streams.

DSP applications need to process streams with high throughput and low la-
tency to meet the Quality of Service constraints dictated by their specific use
cases. To do that, several systems called Stream Processing Engines (SPEs) have
been released by different communities and industries to facilitate the develop-
ment of continuous queries, and to deploy them in a distributed architecture
easily and transparently to the programmer.

One opportunity to accelerate DSP queries is represented by the exploitation
of hardware accelerators. Field-Programmable Gate Arrays (FPGAs) represent

2 A. Ottimo, G. Mencagli, and M. Danelutto

valuable candidates since they have a very high performance-to-energy ratio.
However, programming such devices is very complex and requires deep expertise
by developers. FSPX [9] has been recently proposed as a solution to fill this gap.
It provides a Python-based API to define the data-flow graph, and to generate
starting from this representation the low-level code whose compilation results
in the final bitstream to be loaded on the device. Although interesting, FSPX
is currently a standalone project. It provides a host C/C++ library to interact
with an FPGA pipeline generated by the tool. However, such an API is very
low-level and error-prone to use by standard developers. Furthermore, FSPX do
not have any integration with existing SPEs.

In this paper, we propose an integration between FSPX and WindFlow [6].
The latter is a C++17 parallel library for DSP, which exposes a very high-level
programming interface and supports the execution on multi-core CPUs. This
paper describes our integration of how to interact with an FSPX pipeline from
a WindFlow application in an easy manner through a well-engineered interface
and programming model. We also demonstrate with some experiments that the
internal implementation and the host-to-device interaction still provide high per-
formance and justify the use of FPGAs in this domain.

This paper is organized as follows. Sect. 2 provides the background by show-
ing the features of DSP, WindFlow and FSPX. Sect. 3 shows the design of our
integration and its implementation. Sect. 4 provides a preliminary experimental
analysis, Sect. 5 describes related works, and Sect. 6 concludes the paper.

2 Background

This section presents a review of the DSP paradigm and a brief introduction to
the WindFlow and FSPX research projects.

2.1 Data Stream Processing

DSP [2] is a computing paradigm enabling the continuous processing of data
streams. DSP applications are continuous queries described as data-flow graphs
of operators. Each operator is an intermediate transformation stage transforming
inputs into outputs. Connections between operators represent data dependencies,
implemented through data streams.

Operators can be classified into two categories: stateless operators produce
outputs by computing pure functions that depend solely on the current input
tuple. On the other hand, stateful operators maintain internal data structures
to store statistics of the data stream. For each input tuple, the corresponding
output (if any) will be computed by updating such internal data structures.

Data-flow graphs expose several parallelism patterns. Operators compute
different input tuples in parallel, enabling pipeline parallelism. They can also
compute different functions over the same or different tuples, enabling task par-
allelism. Furthermore, each operator can be internally replicated to increase its
throughput: more threads can be used to replicate the operator processing logic.

Seamless FPGA Integration with Stream Processing Engines 3

This pattern is called data parallelism [10]. When operators are stateful, data
parallelism is usually applied with keyby distributions [10], i.e., tuples are de-
livered to the replicas of the destination operator by assigning all tuples having
the same key attribute to the same replica, which keeps the portion of the state
associated with that key.

2.2 WindFlow

WindFlow is a parallel processing library [6] for shared-memory systems devel-
oped for accelerating streaming workloads. It provides a C++17 fluent API to
instantiate operators and configure them, and two constructs (PipeGraph and
MultiPipe) to create the data-flow graph. The library is built on top of the
FastFlow parallel programming environment [1], so it inherits all the features of
the FastFlow runtime system. This is based on lock-free single-producer single-
consumer queues for fast data exchange between operators through memory
pointers, while threads are pinned onto the cores of the machine.

Listing 1.1 shows an example of an application in WindFlow with four opera-
tors including the Source and the Sink. Each operator has its parallelism degree
(withParallelism), and other configuration options. When an operator is de-
clared with the withOutputBatchSize, the user specifies that output results will
be delivered to the next operator in batches, to amortize runtime overheads.

Listing 1.1. Example of WindFlowAPI usage
1 PipeGraph app;
2 Source src = Source_Builder(
3 [](Source_Shipper <Raw_t > &s) -> void {...})
4 .withParallelism (2). build ();
5 Map op1 = Map_Builder(
6 [](const Raw_t &t) -> Input_t {...})
7 .withParallelism (2)
8 .withOutputBatchSize(batchSize).build ();
9 Keyed_Windows op2 = Keyed_Windows_Builder(

10 [](const Input_t &a, const Input_t &b, Input_t &c) {
11 c.value = a.value + b.value;
12 })
13 .withKeyBy([](const Input_t &t) -> Key_t { return t.key; })
14 .withTBWindows(milliseconds (1000) , milliseconds (100))
15 .withParallelism (3). build ();
16 Sink sink = Sink_Builder(
17 [](std::optional <Input_t > &win_res) {...})
18 .withParallelism (2). build ();
19 app.add_source(src).add(op1).add(op2). add_sink(sink);
20 app.run (); // execute the application

SRC

SRC

OP1

OP1

OP2

OP2

OP2

SNK

SNK

lock-free queuethreadoperator replicaOP

The example above provides two internal operators: the first is a Map com-
puting one output per input according to a user-defined function provided to
the constructor of the Map builder class (omitted in the snippet for the sake of
brevity). The second is a Keyed_Windows operator maintaining the set of tu-
ples received in the last second. The user computes a result upon completion of
a new window of data, where windows move ahead of 100 ms each. Such a kind
of window-based processing is usually adopted in DSP as a fundamental stateful
operator, where the state management (e.g., window update with new tuples,
and expiring of old tuples) is automatically done by the internal implementation.

4 A. Ottimo, G. Mencagli, and M. Danelutto

2.3 FSPX

FPGAs are powerful hardware accelerators. They are notoriously challenging to
program as they require specific engineering expertise. In recent years, High-
Level Synthesis (HLS) tools [4] have been developed to mitigate such a problem.
However, these tools are still challenging to be used by application domain ex-
perts. FSPX [9] is a research prototype that enables the development of DSP
applications on FPGAs by abstracting many of the implementation details and
guaranteeing optimal performance.

FSPX provides a Domain-Specific Language (DSL) written in Python that
allows the high-level definition of a pipeline of operators that will be imple-
mented in hardware by the resulting FPGA bitstream. The development of a
DSP application in FSPX takes place in three stages. In the first stage, the de-
veloper should write a description of the application using the DSL, defining the
operators and their properties (e.g. type, degree of parallelism, data distribu-
tion, results collection strategies). This description is used by FSPX to generate
the application skeleton for the target FPGA. Such a skeleton fully instantiates
the data-flow graph in terms of operators and data distributions according to
the options selected in the DSL. However, the skeleton is incomplete because it
misses the operator business logic (which should be user-defined). Therefore, in
the second phase, the developer is required to implement the business logic code
for each operator in the application, by defining some functions with predefined
signatures depending on the operator type. As a last step, the application can
be compiled into the FPGA bitstream and it is ready to run.

The current implementation of FSPX supports a set of stateless/stateful com-
puting operators (i.e., Map, Filter, and FlatMap) that can be replicated accord-
ing to their parallelism degree. An operator replica is directly connected to all the
m > 0 subsequent operator replicas through m single-producer single-consumer
FIFO streams. Each operator replica defines the policies to collect the tuples
from n > 0 input streams (e.g., round-robin), and to dispatch the resulting
output tuples to the replicas of the next operator in the pipeline.

In addition to computing operators (all implemented by an OpenCL kernel),
FSPX also provides two built-in memory operators (each implemented by a sep-
arate OpenCL kernel): MemoryReader and MemoryWriter. The former produces
an input stream that feeds the computing operators on the FPGA by reading a
buffer filled by the host program with new inputs. The latter collects the stream
of results from the computing operators and stores them in a pre-allocated global
memory buffer that is eventually read by the host program.

FSPX provides a host library that should be used by the host program to
interact with the FPGA pipeline and with its MemoryReader and MemoryWriter
instances on the device. The host library includes the StreamGenerator class,
which abstracts the low-level actions to push new inputs to a MemoryReader
operator, and the StreamDrainer class, which collects the results generated by
a MemoryWriter operator in a convenient way.

FSPX employs the K-buffering technique, a generalization of the well-known
double-buffering optimization. The idea is to overlap the data transfers of the

Seamless FPGA Integration with Stream Processing Engines 5

next up to K−1 buffers while the currently running kernel is using the previous
one. The StreamGenerator and the StreamDrainer adopt this technique by
allocating K > 1 buffers in the FPGA memory before the application starts.
During the application lifetime, buffers that have been consumed are recycled
to avoid repeated allocations and de-allocations.

3 Proposed Architecture

The seamless integration of FSPX into WindFlow requires a careful design to
hide most of the low-level details of the FSPX configuration and of the FPGA
board. In our solution, the idea is to allow the programmer to offload a partition
of the data-flow graph (i.e., likely the most computationally demanding part
that will be implemented as a FSPX pipeline) to the device. At the same time,
data generation, results collection, and some pre-/post-processing activities are
executed by the host. The general solution is depicted in Fig. 1.

FPGA DataFlow

· · ·

FPGA
Generator

FPGA
Generator

· · ·

· · ·

FPGA
Forwarder

FPGA
Forwarder

FPGA
Drainer

FPGA
Drainer

FPGA

· · ·

Memory
Writer

Memory
Writer

· · ·

Memory
Reader

Memory
Reader

FPGA
Operators

Fig. 1. WindFlow and FSPX integration: proposed architecture.

3.1 FPGA DataFlow

The FPGA_Dataflow is a new meta operator that we introduce to provide the
integration with FSPX. As any library operator, it can be used by adding it to
an existing MultiPipe. The main constraint is that the preceding operator(s)
before the FPGA_Dataflow is/are obliged to produce inputs in batches, through
the use of the method withOutputBatchSize in its/their builder/s.

The FPGA_Dataflow can be instantiated as shown in Listing 1.2. The class
builder is a template with two parameters: the first is the data type of inputs
arriving at the FPGA dataflow (in the snippet input_t), while the second is the
data type of outputs produced by the dataflow (in the snippet output_t).

The user specifies the name of the operator for logging purposes and the path-
name of the bitstream file previously generated through the FSPX programming
model and the Vitis tool-chain. Other configuration options will be described

6 A. Ottimo, G. Mencagli, and M. Danelutto

later in this section. In the next part, we describe in detail the internal pri-
vate operators implementing the dataflow, and the seamless interaction with the
FSPX bitstream according to the architecture previously shown in Fig. 1.

Listing 1.2. Fluent interface to instantiate an FPGA_Dataflow meta operator in
WindFlow.
1 FPGA_DataFlow df = FPGADF_Builder <Input_t , Output_t >
2 .withName("dataflow")
3 .withBitStream("/home/user/fpga_examples/bitstream.xclbin")
4 .withParallelism(fpga_par)
5 .withMaxBatchSize_Gen(max_batch_g)
6 .withNumBatches_Gen(n_batch_g)
7 .withMaxBatchSize_Drainer(max_batch_d)
8 .withNumBatches_Drainer(n_batch_d)
9 .withOutputBatchSize(batch_size)

3.2 FPGA Generator

The FPGA_Generator private operator is hidden to the programmer since it is
added to a MultiPipe as an effect of adding the FPGA_Dataflow meta operator.

The operator makes use of the StreamGenerator class provided by the FSPX
host library to forward incoming batches from preceding WindFlow operators to
the FSPX pipeline. More precisely, each replica of the FPGA_Generator instan-
tiates a private copy of the StreamGenerator that is coupled with a specific
MemoryReader on the FPGA application. Therefore, the parallelism degree of the
FPGA_Generator should match the number of MemoryReader in the bitstream.
Since the FPGA bitstream is loaded at runtime, the FPGA_Dataflow automati-
cally replicates the FPGA_Generator according to the number of MemoryWriter
present in the FSPX application. This information can be obtained by calling the
clGetKernelInfo() function with CL_KERNEL_COMPUTE_UNIT_COUNT (a param-
eter extension API provided by Xilinx) on the MemoryReader OpenCL kernel.

Each instance of the FPGA_Generator fetches an empty buffer from its own
StreamGenerator object and copies the tuples of the current input batch into
that buffer. Then, it notifies the StreamGenerator that the buffer is ready to
be consumed by the FSPX pipeline and triggers the execution of the associated
MemoryReader on the FPGA, which will be responsible for reading that buffer
and feeding the FPGA operators with new tuples. Once the stream is ended,
the FPGA_Generator replica notifies the End-of-Stream (EOS) special message
by pushing an empty batch flagged with the EOS flag equal to true.

3.3 FPGA Drainer

The FPGA_Dataflow meta operator includes a second private operator called
FPGA_Drainer. Its role is dual to the FPGA_Generator, i.e., it is in charge of
receiving batches of computed results from the FSPX pipeline (batch of results
are filled by the MemoryWriter replicas on the device) and delivering them to
the FPGA_Forwarder (see the next section). Similar to the FPGA_Generator,

Seamless FPGA Integration with Stream Processing Engines 7

this private operator is replicated with a parallelism degree that must match the
number of MemoryWriter present in the FPGA bitstream.

In the initialization phase, the FPGA_Drainer allocates K > 0 different
buffers in global memory and enqueues the same number of executions of the
MemoryWriter kernel. This way, the operator ensures the overlapping of data
transfers with the execution of MemoryWriter kernels. After the initialization
phase, this operator waits for the completion of the launched MemoryWriter in-
stances to read back a batch of results from the FPGA. Then, it delivers the
obtained batch to the FPGA_Forwarder private operator.

3.4 FPGA Forwarder

The FPGA_Drainer is in charge of delivering results produced by the FSPX
pipeline to the next operator running in the host. The delivery of such results
might generate overheads. For example, suppose the FPGA_Drainer replicas are
requested to deliver individual tuples in a keyby manner. In that case, tuples
in each output batch must be read to push them one-at-a-time (or again in
batches) to the right destination replicas. This might require tuning the paral-
lelism degree of the FPGA_Drainer to remove potential bottlenecks in this phase.
However, as previously discussed, the number of replicas of the FPGA_Drainer
cannot be an arbitrary value, but it matches the number of MemoryWriter in the
bitstream. Tuning the right parallelism would be needed in that case to produce
different bitstreams (with different numbers of MemoryWriter each), which is
time-consuming from the FPGA compilation perspective.

For the reason above, we introduce a new private operator included in the
FPGA_Dataflow called FPGA_Forwarder. Each replica of the FPGA_Drainer sends
pointers of the received batches of results from the device to the replicas of the
FPGA_Forwarder. The latter can be easily configured to have any parallelism
degree (it is conceptually a stateless operator), and it is responsible for delivering
the results to the next operator by respecting the required distribution semantics.

4 Experiments

The experiments are conducted on a host machine with two Intel Xeon E5-2650
V3 CPUs and 128 GiB of DDR4 at 2133 MHz Quad-channel. Each CPU has 10
cores (20 hardware threads) sharing an Intel Smart Cache L3 of 25 MiB. Each
core has a clock rate of 2.3 GHz (3.0 GHz with Turbo Frequency), and an L2
cache of 256 KiB. The host machine is equipped with a Xilinx Alveo U50 Data
Center Acceleration Card. The FPGA is connected to the host machine through
the PCIe Gen3x16. Bitstreams are generated using the Vitis v++ v2023.1 com-
piler within the Vitis Core Development Kit 2023.1. The host program is com-
piled with g++ 11.4.0 with the -O3 optimization flag. The FSPX host library
uses the OpenCL standard implemented by the Xilinx Runtime Library (XRT).

8 A. Ottimo, G. Mencagli, and M. Danelutto

4.1 Benchmark Applications

We evaluate our work with a synthetic and a real-world application. The syn-
thetic application filters those tuples that do not satisfy a given predicate. The
FSPX pipeline is composed of a three-phased logical pipeline: a MemoryReader, a
stateless Filter, and a MemoryWriter. The WindFlow host program is a pipeline
comprising a Source generating a stream of tuples that satisfy the predicate in
a given percentage (called Keep Rate), a FPGA_Dataflow to offload the filter
computation to the FPGA, and a Sink counting the number of results.

The SpikeDetection (SD) application was chosen as a real example. This
application analyses a stream of sensor readings and detects spikes of temper-
ature. The FPGA implementation with FSPX is a pipeline of a MemoryReader,
a stateful Map (Average Calculator) emitting a moving average value computed
over a counting window, a Filter (Spike Detector) evaluating whether the current
sensor reading is a spike, and a MemoryWriter. The Map operator implements a
key-partitioned sliding window. The business logic code of the operator employs
the shift register pattern [13]. The Filter implements a simple Boolean predi-
cate, ensuring that only records that satisfy the predicate are delivered to the
MemoryWriter. The WindFlow host program is a pipeline with a Source gener-
ating data by reading them from a dataset file, an FPGA_Dataflow interacting
with the FPGA pipeline, and a Sink collecting results.

4.2 Experimental setup

In the experimental evaluation, we investigate the sustained throughput of the
proposed architecture, denoted as WindFlow+FSPX. As our Baseline, we use a
hard-coded C/C++ implementation of the host program that utilizes the low-
level API provided by the FSPX host library. It employs a single thread per
MemoryReader for the generation of data, and a single thread per MemoryWriter
for the collection of results. This version tries to reduce at best the overheads
from the host side. Therefore, our goal is to understand the additional overheads
paid by programming the host program with a high-level library for stream
processing like WindFlow. The tuple size of the synthetic application is a 16-byte
struct composed of 4 fields. The SD application, instead, employs an input tuple
of 8 bytes, and an output tuple of 16 bytes.

The experiments are repeated five times, configuring the batch size of both
MemoryReader and MemoryWriter to 220 tuples, setting K = 4 global buffers
allocated using the Vitis Host Memory. On WF+FSPX, each source replica
emits 512 batches, while in the Baseline we instruct the Source threads to emit
the same amount of batches overall.

We set the FPGA_Forwarder parallelism degree to be the same as the Sink
operator. However, Sink replicas and FPGA_Forwarder replicas are chained in
the same threads to avoid thread over-subscription, leaving more cores available
to increase the Source parallelism (i.e., the input rate of the application).

FSPX generates optimal bitstreams for our FPGA board with FMax of 300
MHz and with an Initiation Interval (II) of 1, meaning that every operator replica

Seamless FPGA Integration with Stream Processing Engines 9

can process one new input per clock cycle. As a result, the ideal throughput of
the bitstream can be predicted as the product of the parallelism of the operators
and the operating frequency FMax.

Synthetic application. In this set of experiments, we vary the parallelism
degree and the keep rate of the Filter. By controlling the keep rate, we can control
the number of results produced by the FSPX pipeline, and so the utilization of
the device-to-host bandwidth. Fig. 2 shows the throughput by changing the keep
rate. We consider three parallelism degrees 1, 2, and 3. With parallelism 2 for
example, the FSPX pipeline consists of 2 MemoryReader, 2 replicas of the Filter,
and 2 MemoryWriter. The total number of threads is shown in Table 2.

0% 25% 50% 75% 100%
0

4

8

12

16

Ideal Throughput

Par = 1
Baseline
WF+FSPX

0% 25% 50% 75% 100%

Ideal Throughput

Par = 2
Baseline
WF+FSPX

0% 25% 50% 75% 100%

Ideal Throughput

Par = 3
Baseline
WF+FSPX

Keep Rate

Th
ro
ug
hp
ut
(G
iB
/s
)

1Fig. 2. Throughput of the synthetic application: comparison between WF+FSPX and
the Baseline with different parallelism degrees and keep rates.

With parallelism 1, the throughput remains stable by changing the keep rate,
while the reduction in terms of throughput between WF+FSPX and the Baseline
remains limited (on average it is of 2%). With parallelism 2, the FPGA pipeline
consumes more inputs per second, and more threads are used on the host side
to try to exploit adequately the device. This generates higher overheads in the
host program, more significant with the WF+FSPX version compared with the
hard-coded Baseline (on average the throughput loss of using WF+FSPX is of
49%). In this case, the effect of the keep rate appears more remarkable, since
with a higher keep rate (so more results produced by the FSPX pipeline), the
overall throughput is lower. With parallelism degree 3 the effect is very evident,
with a throughput loss of 71% of WF+FSPX compared with the Baseline.

Table 1 shows the number of threads required to achieve the highest through-
put in WF+FSPX and with the Baseline. One of the reasons for the higher num-
ber of threads with WF+FSPX is the limited throughput of the Sources, which
are only capable of producing 50–60 Mt/s each. This is likely because WindFlow,
as well as other SPEs, are designed to process single tuples or small batches.
These mechanisms are not designed for the generation of large batches, which
are needed to maximize the utilization of the PCIe bandwidth and the FPGA
capabilities.

10 A. Ottimo, G. Mencagli, and M. Danelutto

Table 1. Bitstreams and host threads configuration of the synthetic application.

Par. FMax
MHz II

Ideal
Throughput Baseline

#Threads

WF+FSPX #Threads
Keep Rate

MT/s GiB/s 0% 25% 50% 75% 100%

1 300 1 300 4.8 2 8 9 10 12 12
2 300 1 600 9.6 4 17 19 22 25 28
3 300 1 900 14.4 6 25 29 33 39 42

SpikeDetection application. SpikeDetection has been employed as a real-
world application. Given that the keep rate is very low, we assigned the paral-
lelism of the Sink to match the number of MemoryWriter of the FSPX pipeline.
This saves cores that can be used to increase the number of Sources to maximize
the throughput of the input generation phase.

1 2 3 4
Parallelism

0

4

8

12

Th
ro
ug

hp
ut

(G
iB
/s
)

SpikeDetection
Baseline
WF+FSPX

0

500

1000

1500 M
illions

Tuples/second

1Fig. 3. Throughput of the SD application: comparison between WF+FSPX and the
Baseline with different parallelism degrees.

Fig. 3 shows the throughput by changing the parallelism degree up to 4. With
parallelism of 1, WF+FSPX performs slightly worse than the Baseline, with an
average loss in throughput of 4%. With parallelism higher than 1, however, the
loss is more significant, with an average decrease of 7%, 14%, and 21%.

5 Related works

The seamless utilization of hardware accelerators to enhance the performance
of DSP applications has been the subject of intensive research. Saber [11] is an
SPE accelerating sliding-window aggregates on GPUs. Similarly, FineStream [14]
adopts a hybrid approach where operators can be scheduled on the host or the
GPU based on their properties. In both works, operators are the ones of relational

Seamless FPGA Integration with Stream Processing Engines 11

Table 2. Bitstreams and host threads configurations of SD application.

Par. FMax
MHz II

Ideal
Throughput Baseline

#Threads
WF+FSPX
#Threads

MT/s GiB/s

1 300 1 300 2.4 2 9
2 300 1 600 4.8 4 18
3 300 1 900 7.2 6 27
4 300 1 1200 9.6 8 36

algebra, and no support for general operators doing arbitrary imperative code
is provided. G-Storm [3] provides general support to offload computations on
a GPU in Apache Storm. However, the programmer is involved in the manual
implementation of GPU kernels, which requires skills and expertise.

The integration of FPGAs is more challenging than GPUs since their pro-
gramming abstractions usually pose additional challenges and often a deep hard-
ware and compiler knowledge. Glacier [7] is an SPE oriented to relational algebra,
with a limited set of built-in operators that can be implemented on the FPGA.
F-Storm [12,5] integrates the use of FPGAs into Storm. The API is not ade-
quately high level, since data transfers, bitstream management activities, and
programming, and still the responsibility of the user.

FSPX [8,9] is a system designed to help the programmer in developing
general-purpose DSP applications for FPGAs (both Intel and Xilinx). It is based
on a Python DSL to define a pipeline of operators. A code generation approach
is enforced to generate the pipeline skeleton, to be completed by the user with
some C/C++ functions of the operator’s business logic. FSPX provides a host
library to copy input data to the device and to get results from it continuously.
However, this API is low level and the integration of FSPX with existing SPEs
is possible provided that proper operators to transfer data and to collect results
with the device are implemented based on this library. This paper discussed the
integration with the WindFlow library.

6 Conclusions

This paper presents an integration between WindFlow, a C++ parallel library
for DSP, and FSPX, a tool for generating FPGA pipelines with a reduced pro-
gramming effort. This work shows the API and implementation of such an in-
tegration, and we discussed the performance overheads induced by running the
host program (feeding the FSPX pipeline and collecting the produced results)
with a high-level general-purpose DSP library like WindFlow compared with a
hard-coded low-level host program controlling the FPGA implementation.

Acknowledgments. This research has been supported by the National Resilience and
Recovery Plan (PNRR) through the National Center for HPC, Big Data and Quantum
Computing, and by the Italian PRIN project OUTFIT n. 2022BAL2F3.

12 A. Ottimo, G. Mencagli, and M. Danelutto

References
1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-Level

and Efficient Streaming on Multicore, chap. 13, pp. 261–280. John Wiley & Sons,
Ltd (2017). https://doi.org/https://doi.org/10.1002/9781119332015.ch13

2. Andrade, H.C.M., Gedik, B., Turaga, D.S.: Fundamentals of Stream Processing:
Application Design, Systems, and Analytics. Cambridge University Press, 1st edn.
(2014)

3. Chen, Z., Xu, J., Tang, J., Kwiat, K., Kamhoua, C.: G-storm: Gpu-enabled high-
throughput online data processing in storm. In: Proceedings of the 2015 IEEE In-
ternational Conference on Big Data (Big Data). p. 307–312. BIG DATA ’15, IEEE
Computer Society (2015). https://doi.org/10.1109/BigData.2015.7363769

4. Cong, J., Lau, J., Liu, G., Neuendorffer, S., Pan, P., Vissers, K., Zhang, Z.: Fpga
hls today: Successes, challenges, and opportunities. ACM Trans. Reconfigurable
Technol. Syst. 15(4) (2022). https://doi.org/10.1145/3530775

5. Li, H., You, J., Li, X., Song, W.: Implementation and optimization of distributed
stream processing system based on fpga. In: 2022 3rd International Conference on
Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). pp.
303–307 (2022). https://doi.org/10.1109/ICBAIE56435.2022.9985849

6. Mencagli, G., Torquati, M., Cardaci, A., Fais, A., Rinaldi, L., Danelutto, M.:
Windflow: High-speed continuous stream processing with parallel building blocks.
IEEE Transactions on Parallel and Distributed Systems pp. 1–1 (2021). https:
//doi.org/10.1109/TPDS.2021.3073970

7. Mueller, R., Teubner, J., Alonso, G.: Streams on wires: A query compiler for fpgas.
Proc. VLDB Endow. 2(1), 229–240 (2009). https://doi.org/10.14778/1687627.
1687654

8. Ottimo, A., Mencagli, G., Danelutto, M.: Fsp: a framework for data stream process-
ing applications targeting fpgas. In: 2023 31st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP). pp. 92–99 (2023).
https://doi.org/10.1109/PDP59025.2023.00021

9. Ottimo, A., Mencagli, G., Danelutto, M.: Boosting general-purpose stream pro-
cessing with reconfigurable hardware. The Journal of Supercomputing (2024).
https://doi.org/10.1007/s11227-024-05894-4

10. Röger, H., Mayer, R.: A comprehensive survey on parallelization and elasticity in
stream processing. ACM Comput. Surv. 52(2) (2019). https://doi.org/10.1145/
3303849

11. Theodorakis, G., Koliousis, A., Pietzuch, P., Pirk, H.: Lightsaber: Efficient window
aggregation on multi-core processors. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. p. 2505–2521. SIGMOD ’20, As-
sociation for Computing Machinery (2020). https://doi.org/10.1145/3318464.
3389753

12. Wu, S., Hu, D., Ibrahim, S., Jin, H., Xiao, J., Chen, F., Liu, H.: When fpga-
accelerator meets stream data processing in the edge. In: 2019 IEEE 39th Inter-
national Conference on Distributed Computing Systems (ICDCS). pp. 1818–1829
(2019). https://doi.org/10.1109/ICDCS.2019.00180

13. Xilinx: Inferring shift registers, https://docs.amd.com/r/2023.1-English/
ug1399-vitis-hls/Inferring-Shift-Registers

14. Zhang, F., Yang, L., Zhang, S., He, B., Lu, W., Du, X.: Finestream: Fine-grained
window-based stream processing on cpu-gpu integrated architectures. In: Proceed-
ings of the 2020 USENIX Conference on Usenix Annual Technical Conference.
USENIX Association (2020)

https://doi.org/https://doi.org/10.1002/9781119332015.ch13
https://doi.org/https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1109/BigData.2015.7363769
https://doi.org/10.1109/BigData.2015.7363769
https://doi.org/10.1145/3530775
https://doi.org/10.1145/3530775
https://doi.org/10.1109/ICBAIE56435.2022.9985849
https://doi.org/10.1109/ICBAIE56435.2022.9985849
https://doi.org/10.1109/TPDS.2021.3073970
https://doi.org/10.1109/TPDS.2021.3073970
https://doi.org/10.1109/TPDS.2021.3073970
https://doi.org/10.1109/TPDS.2021.3073970
https://doi.org/10.14778/1687627.1687654
https://doi.org/10.14778/1687627.1687654
https://doi.org/10.14778/1687627.1687654
https://doi.org/10.14778/1687627.1687654
https://doi.org/10.1109/PDP59025.2023.00021
https://doi.org/10.1109/PDP59025.2023.00021
https://doi.org/10.1007/s11227-024-05894-4
https://doi.org/10.1007/s11227-024-05894-4
https://doi.org/10.1145/3303849
https://doi.org/10.1145/3303849
https://doi.org/10.1145/3303849
https://doi.org/10.1145/3303849
https://doi.org/10.1145/3318464.3389753
https://doi.org/10.1145/3318464.3389753
https://doi.org/10.1145/3318464.3389753
https://doi.org/10.1145/3318464.3389753
https://doi.org/10.1109/ICDCS.2019.00180
https://doi.org/10.1109/ICDCS.2019.00180
https://docs.amd.com/r/2023.1-English/ug1399-vitis-hls/Inferring-Shift-Registers
https://docs.amd.com/r/2023.1-English/ug1399-vitis-hls/Inferring-Shift-Registers

	Seamless FPGA Integration with Stream Processing Engines

