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Abstract. The amount of data generated is increasing exponentially.
However, processing data and producing fast results is a technological
challenge. Parallel stream processing can be implemented for handling
high frequency and big data flows. The MPI parallel programming model
offers low-level and flexible mechanisms for dealing with distributed ar-
chitectures such as clusters. This paper aims to use it to accelerate video
analytics and data visualization applications so that insight can be ob-
tained as soon as the data arrives. Experiments were conducted with
a Domain-Specific Language for Geospatial Data Visualization and a
Person Recognizer video application. We applied the same stream par-
allelism strategy and two task distribution strategies. The dynamic task
distribution achieved better performance than the static distribution in
the HPC cluster. The data visualization achieved lower throughput with
respect to the video analytics due to the I/O intensive operations. Also,
the MPI programming model shows promising performance outcomes for
stream processing applications.

Keywords: parallel programming, stream parallelism, distributed pro-
cessing, cluster

1 Introduction

Nowadays, we are assisting to an explosion of devices producing data in the
form of unbounded data streams that must be collected, stored, and processed
in real-time [12]. To achieve high-throughput and low-latency processing, parallel
processing techniques and efficient in-memory data structures are of fundamental
importance to enable fast data access and results delivery [16,4]. Such features
and problems characterize a very active research domain called Data Stream
Processing [2] in the recent literature.

The demand of efficient on-the-fly processing techniques presents several re-
search challenges. One of the most compelling ones is related to how to exploit



at best the underlying parallel hardware, both in the form of scale-up servers
(i.e. single powerful servers equipped with NUMA configurations of multi-core
CPUs and co-processors like GPUs and FPGAs) as well as scale-out platforms
(i.e. based on multiple machines interconnected by fast networking technologies).

In scale-out scenarios, several streaming frameworks have been developed
over the years such as Apache Flink [7] and Apache Storm [13]. Both of them are
based on the Java Virtual Machine to ease the portability and the distribution of
application jobs onto different interconnected machines. However, the penalty of
executing partially interpreted code is widely recognized in the literature [8]. In
the field of High Performance Computing, MPI [22] (Message Passing Interface)
is the most popular approach to develop distributed parallel applications, and it
is the de-facto standard programming model for C/C++ distributed processing.
The programming model is based on the MPMD paradigm (Multiple Program
Multiple Data), where a set of processes is created during program initialization,
with each process running a different program. The MPI run-time system pro-
vides a set of low-level distributed communication mechanisms, point-to-point
communications and complex collective ones (e.g., scatter, gather and reduce).

Following this idea, in previous work [5] we presented a MPI-based dis-
tributed support for a data stream preprocessing and visualization DSL. In this
paper, we extend this prior work by delivering the following scientific contribu-
tions:

– Distributed stream parallelism support to real-time data visualization. This
is made possible by the distributed preprocessing implementations using the
MPI programming model (Section 4.1).

– Distributed stream parallelism support for video analytics with a real-world
application using the MPI programming model (Section 4.2).

– Experiments and evaluation of the applications with two task distribution
strategies running in a cluster environment.

The remainder of this paper is organized as follows. Section 2 introduces
the problem tackled in this work. Section 3 presents the solution that supports
distributed processing in a streaming like manner. In Section 4, we present the
case studies used to experimentally evaluate our solution. Then, the related
works are discussed in Section 5. Finally, in Section 6 we draw the conclusion
and discuss some possible future directions.

2 Problem

Currently, the majority of real-world stream processing applications are facing
challenges for increasing their performance. On one hand, the applications are
demanding more processing power for speeding up their executions. On the other
hand, we are viewing lately the end of Moore’s law [27], which is limiting the
performance provided by a single processor. The solution is to introduce stream
parallelism in such a way that multi-core/multi-computer architectures are ex-
ploited.



However, parallel software developing is not a trivial task for application pro-
grammers that are experts in sequential coding. To tackle this problem, several
high-level parallel programming frameworks where introduced, aiming at facili-
tating parallel programming for non-experts in computer architecture targeting
single machines (multi-cores). It is worth mentioning as high-level frameworks
Intel TBB [23] and FastFlow [6,1]. We also have DSLs suitable for expressing
high-level parallelism, such as StreamIt [28] and SPar [9]. SPar4 was specifically
designed to simplify the stream parallelism exploitation in C++ programs for
multi-core systems [9]. It offers a standard C++11 annotation language to avoid
sequential source code rewriting. SPar also has a compiler that generates parallel
code using source-to-source transformation technique.

Offering higher-level abstractions, GMaVis is a DSL for simplifying the data
visualization generation [15]. The parallelism is completely transparent for the
users. GMaVis expressiveness allows users to filter, format and specify the target
data visualization. Among the steps performed by a GMaVis execution, Data
Preprocessing is the most computational intensive one. Preprocessing is impor-
tant to abstract from users to avoid the need to manually handling huge data
sets. This step already runs in parallel compatible with SPar backend in a single
machine.

A representative experimental result when running the data preprocessing
in parallel is shown by [15], where the parallel execution ran on a single multi-
core machine with several number of replicas (degree of parallelism) achieved
limited performance gains. There, even using up to 12 replicas, the performance
presented a limited scalability. Such a limited performance is caused by the single
machine (number of processors available) and I/O bottleneck.
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Fig. 1. Person Recognizer Throughput on Multi-core.

Another relevant example of the limited multi-core performance is shown in
Figure 1 with the Person Recognizer [10] application. This application is used to
identify faces in video feeds, which is described in more details in Section 4.2. In
Figure 1 it is possible to note that the performance does not increase when using
more than 8 threads, which is also caused by the limited processing capability of

4 SPar’s home page: https://gmap.pucrs.br/spar



a single machine. Moreover, considering that stream processing applications are
required to produce results in as soon as data arrive under low latencies, there
is a need for new programming models for increasing the performance of stream
processing applications.

3 Stream Parallelism Strategy with MPI

In Section 2, we have seen two examples of real-world applications achieving a
limited performance when running on a single machine. Considering the inherent
performance limitations achieved when running an stream processing application
on a multi-core machine, in this work we propose and implement the support
for running stream processing applications on distributed clustered architec-
tures. When referring to distributed processing and High-Performance Comput-
ing (HPC), MPI (Message Passing Interface) [22] is the de facto standard pro-
gramming model. Consequently, MPI is exploited for implementing real-world
applications running on architectures with distributed memory.

The solution is proposed using a task decomposition strategy accordingly
to the parallel stream processing context. A Farm pattern [17] was used for
building the distributed application workflow. The first part is the Emitter (E)
that schedules and distributes task to the Worker (W) entities. The computations
performed by the worker are usually the most intensive ones. Consequently,
this part is replicated, in such a way that additional parallelism is achieved for
dividing the tasks and processing them concurrently. The last part of the Farm is
the Collector (C), which gathers the results given by the Workers. The Collector
can also perform the ordering when needed [11].

The MPI distributed computing support for the two stream processing appli-
cations is designed with two task distribution strategies: the Static and Dynamic.
The Static is similar to the a Round-Robin, where the Emitter distributes one
task for each worker and continuously performs this step until all tasks are dis-
tributed to Worker replicas. In the Dynamic distribution, the Emitter sends
one task for each worker, then the Workers request ondemand new tasks to the
Emitter. In general, the Static scheduling tends to reduce the communication
overhead by sending fewer messages, while the Dynamic one tends to improve
the performance due to the sensitive load balancing.

We used MPI functions to communicate among the Farm entities as well
as for sending tasks. They are the MPI Send and MPI Recv. For instance, the
Emitter sends a task to a given Worker replica with a MPI Send and the Worker
replica receives the task with the MPI Recv function. The same logic is used for
communication between the Worker replicas and the Collector.

4 Evaluation

In this section, we present the implementations considering the aforementioned
research problem (2) as well as the proposed solution (3) for HPC clusters. Sub-



section 4.1 presents the parallel stream processing for data visualization. Addi-
tionally, Subsection 4.2 shows the parallel stream processing for video analytics.

4.1 Parallel Stream Processing for Data Visualization

GMaVis is a DSL that provides a high-level description language and aims to
simplify the creation of visualizations for large-scale geospatial data. GMaVis
enables users to express filter, classification, data format, and visualization spec-
ifications. In addition, GMaVis has limited expressiveness to reduce complexity
and automatize decisions and operations such as data pre-processing, visualiza-
tion zoom, and starting point location.

The data preprocessing module is responsible for transforming the input data
through filtering and classification operations. This module enables GMaVis to
abstract the first phase of the pipeline to create the view [19], preventing users
from having to manually handle large datasets. The module works by receiving
the input data, processing and saving in an output file. The data preprocessing
operations are showed in Table 1.

Table 1. Data preprocessing operations [15].

Definition Description

F = {α1, α2, α3, ..., αn} F is a set of input files to be processed and α represents a
single file from a partitioned data set.

Split(α) It splits a data set file of F into N chunks.

D = {d1, d2, d3, ..., dn} D is a set of chunks of a single file. We can say that D is the
result of a Split(α) function.

Process(D) It processes a single file D of F .

Read(d) It opens and reads a data chunk d of a α in F .

Filter(d) It filters a given data chunk d in D, producing a set of reg-
istries to create the visualization.

Classify(...) It classifies the results of Filter(...).

Write(...) It saves the results of
∑n

i=1
Process(F ), where F represents a

set of files (α) in an output file to be used in the visualization
generation.

GMaVis compiler uses source code details to generate the data preprocessing
using the C++ programming language [15]. C++ enables the use of a wide range
of parallel programming APIs (Application Programming Interfaces) as well as
low-level improvements for memory management and disk reading. Thus, the
compiler generates a file named data preprocessor.cpp. All code is generated and
executed sequentially or with SPar annotations that target single multi-core
machines by default. In addition, the relevant GMaVis source code information
is transformed and written to that file.

Thus, to support for distributed parallel stream processing in this applica-
tion, we implemented the stream parallelism using the Farm pattern [10] with



MPI, as described in Section 3. Figure 2(a) shows the preprocessing functions
decomposition accordingly to a Farm pattern with MPI for distributed process-
ing. In this case, the Emitter corresponds to the first stage that distributed
the Input Data to the next stage, where the worker replicas generate the Data
Preprocessing Operations, as showed in Table 1. The results of the data pre-
processing operations are given to the last stage, which is the Collector that
orders and save an Output File with structured and formatted data. Moreover,
Figure 2(b) illustrates the visualization generating a Heatmap of traffic collision
in the city of Porto Alegre, Brazil.

(a) Farm on MPI Preprocessing. (b) Heatmap showing car accidents.

Fig. 2. Data preprocessing and visualization.

Performance tests were executed on a homogeneous HPC cluster using six
machines. Each machine is equipped with a dual socket Intel(R) Xeon(R) CPU
2.40GHz (12 cores with Hyperthreading disabled) and 32 GB - 2133 MHz mem-
ory configurations. The machines were interconnected by a Gigabit Ethernet
network. The operating system used was Ubuntu Server, G++ v. 5.4.0 with the
-O3 compilation flag.

In Figures 3(a) and 3(b) we show the performance of distributed implemen-
tations for data preprocessing stage with a large 40 GB sized file, and data items
with 1 MB and 8MB respectively. The data amount in megabytes per second
(MBPS) processed is used as throughput metric. The processes distribution oc-
curs in rounds enforcing that each process is placed on each physical machine
and the next process goes to the subsequent machine. For instance, if we have 4
machines and 16 processes, the first process goes to machine one, the second to
machine two and so on, until the 16 processes are running on the 4 machines.
This strategy called Process Distribution 1 aims at overcoming the single node
I/O limits by distributing the processes among all machines.

The results from Figure 3 emphasize a poor performance. Although using
two data sizes and up to 60 replicas, the performance did not scale up very well.
Consequently, we tested a new processes distribution called Processes Distribu-
tion 2 that first used all physical cores of a given machine, then places the next
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Fig. 3. Data preprocessing with large 40 GB sized file.
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Fig. 4. Custom Processes Distribution - Data preprocessing with large 40 GB sized
file.

processes to additional machines. In short, each node is fully allocated and only
then a new node is considered if necessary. Similarly, it is possible to view in
Figures 4(a) and 4(b) a custom distribution of tasks with the same input param-
eters, called of Process Distribution 2. In general, it is possible to view a limited
performance scalability both with Process Distribution 1 and Distribution 2. In
this test with a huge input file of 40 GB, the static and dynamic scheduling
did not have significant performance differences. The best throughput over 140
MBPS with six replicas demonstrated the limited performance even with more
replicas available. This behavior led us to assume that the cluster data storage
system could be limiting the tests performance.

In order to minimize the data storage overhead, the file size was reduced to
4GB. Using smaller file size reduced the IO utilization. Consequently, as shown
in Figures 5(a) and 5(b), the performance improved dramatically. In this case,
it is possible to view that the performance significantly improved with the MPI
support, which is a relevant outcome considering the hypothesis of data stor-
age system I/O being the bottleneck. The strategy with a Dynamic behavior



using Distribution 1 reached a throughput of 1200 MBPS with data items of
1MB, and a throughput of 1000 MBPS with data items 8MB. In general, both
strategies (Static and Dynamic) using Processes Distribution 2 presented a lower
performance compared to Distribution 1.

Different relevant aspects can be viewed in the best performatic results shown
in Figure 5(a). The strategy with a Dynamic processes distribution achieved the
highest throughput rates due to its optimized load balancing. Regarding the
Static strategy, a significant drop in performance with Processes Distribution 1
can be viewed when using more that 6 replicas, which occurs when more than
1 process is running on each machine, causing concurrency for network and
storage access. This increases the performance variability that unbalances the
load and causes performance overhead with the Static tasks distribution. It is
also relevant to note that the scalability limitation is achieved around 18 replicas.
In this case, the potential bottleneck was the network and storage saturation.
The next results show additional insights corroborating this finding.
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Fig. 5. Data preprocessing with large 4 GB sized file.

In Figure 6, the file size was increased to 8GB in order to compreensivelly
evaluate our implementation. The intention was to verify if the previously used
workload (4GB) was providing enough load for the distributed executions. The
results emphasize significant performance gains, similar to tests performed with
large 4GB sized file, as showed in Figure 5. Consequently, the workload with file
sizes of 4GB and 8GB was presumably enough for our distributed implementa-
tions. With these results it is possible to assume that the performance bottleneck
was generated by data storage and network system.

An overview of the MPI distributed implementations shows significant per-
formance gains. For instance, the peak multi-core performance viewed in [15]
was 140 MBPS. Here, the distributed implementation achieved a throughput
higher that 1200, which is a speedup of almost 10 over an already parallel ver-
sion. Comparing the data sizes used, 1 MB achieved a best performance than
8 MB. Although a smaller data size tends to increase the number of messages
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Fig. 6. Data preprocessing with large 8 GB sized file.

exchanged, this fine granularity gains in performance by reducing I/O demands
and improving the load balancing.

Supporting visualization in real-time tends to be a challenge due to the pre-
processing bottleneck. For instance, the registers used for generating each visu-
alization line often are not computed fast enough for presenting timely results. A
significant outcome of our distributed stream processing is the fact that with the
peak performance 1178 registers were processed per second, such a high number
enables a visualization to be generated quickly enough to provide insights.

4.2 Parallel Stream Processing for Video Analytics

This video analytics application is used to recognize people in video streams.
It starts by receiving a video feed and detecting the faces. The faces that are
detected are then marked with a red circle, and then compared with the training
set of faces. When the face comparison matches, the face is marked with a green
circle. A relevant example of using Person Recognition is on security surveillance
systems.

The parallel version of this application is composed by a three staged Farm [10].
The Emitter corresponds to the first stage that sends the Frames to the next
stage, where the worker replicas detect and mark the faces. The results of the
faces are given to the last stage, which is the Collector that orders the frames
and produces the output video.

Person Recognition workflow was implemented using the stream parallelism
strategy with MPI proposed in Section 3. The distributed Farm implementation
is illustrated in Figure 7, where a video input is processed by the application’s
functions and the output is produced with marks in the faces detected. The
Emitter sends a frame for each Worker replicas using the MPI Send function,
the same function is used by replicas when sending the processed frames to the
Collector. It is important to note that the Static and Dynamic tasks distribu-
tion strategies, presented in Section 3, were implemented in this application.



These strategies are compared for evaluating which one is more suitable for the
distributed video processing with MPI.

Fig. 7. Farm on Person Recognizer.

Performance tests were executed on a HPC cluster where each node is equipped
by 2 Sockets Intel(R) Xeon(R) CPU 2.40GHz (8 cores-16 threads) with Hyper-
threading intentionally disable. Each node had available 16 GB of RAM memory
- DDR3 1066 MHz. The hosts were interconnected by a Gigabit (10/1000) net-
work. The Worker replicas run on 5 nodes with up to 40 processes (at most 8
per machine - one process per hardware core). The Emitter and Collector were
executed on dedicated machines for reducing the variability and managing I/O
bottlenecks. Moreover, the input simulating a representative load used a file
with 1.4 MB, which has a duration of 15 seconds and 450 frames. The intensive
computations performed in the input is can be view due to the fact that the
sequential execution takes around 450 seconds to process the 15 seconds video.
Consequently, our distributed implementations are expected to accelerate the
video processing.

In Figure 8 it is shown the performance of distributed implementations of Per-
son Recognition using the throughput metric of frames processed per second. In
general, it is possible to view that the performance significantly improved with
the MPI support, which is a relevant outcome considering the limited perfor-
mance seen in a multi-core machine in Figure 1.

Noteworthy, in Figure 8, the performance increased linearly with the Dy-
namic tasks distribution strategy. The strategy with a Static behavior presented
a lower throughput, but still achieved significant performance gains. The Dy-
namic strategy outperformed the static version because of its improved load
balancing, which is justified by the fact that Person Recognition presents a ir-
regular and unbalanced execution in terms of the time taken to process each
video frame. In some cases, for example, with 30 and 38 replicas, the Static
strategy achieved a performance similar to the Dynamic. In such cases, the
number of frames (load) was divided evenly by the number of worker replicas.
Consequently, a higher throughput was achievable as all Worker replicas finished
their tasks in a similar time.
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5 Related Work

In this section we present different approaches for parallel and distributed pro-
cessing and DSLs for visualization and preprocessing of large amounts of data for
geovisualization applications. We also consider as related work those approaches
that address distributed video stream processing.

In the work of Seo et al. [24], an implementation of MPI nonblocking collective
I/O is described. The implementation in MPICH was based on ROMIO’s collec-
tive I/O algorithm, replacing all blocking operations used in ROMIOs collective
I/O algorithm with nonblocking counterparts. The results indicate a better per-
formance (if compared to blocking collective I/O) in terms of I/O bandwidth and
is capable of overlapping I/O and other operations. Latham et al. [14] proposes
an extension for MPI-3, enabling to determine which nodes of a system share
common features. The extension provided a portable approach for investigating
the topology of a compute system, making it possible to determine which nodes
share faster local devices. The results obtained with benchmark tests demon-
strated the efficiency of the approach to investigate the topology of a system.
Mendez et al. [18] presents a methodology to evaluate the performance of parallel
applications based on the I/O characteristics, requirements and severity degree.
The implementation defined the use of five severity degrees considering the I/O
requirement of parallel applications and parameters of the HPC system. Results
showed that the methodology allows to identify if a parallel application is limited
by the I/O subsystem and to identify possible causes of the problem.

Ayachit [3] describes the design and features of ParaView, which is a multi-
platform open source tool that allows visualization and analysis of data. In Par-
aView data manipulation can be done interactively in 3D or through batch
processing. The tool was designed to analyze large data sets using distributed
memory computing capabilities. Wylie and Baumes [30] present an expansion



project for the open source tool Visualization Toolkit (VTK). The project was
named Titan, and supports the insertion, processing, and visualization of data.
In addition, the data distribution, parallel processing, and client/server feature
of the VTK tool provides a scalable platform.

Steed et al. [25] describes a visual analysis system, called Exploratory Data
Analysis Environment (EDEN) with specific application for the analysis of large
datasets inherent to climate science. EDEN was developed as an interactive
visual analysis tool allowing to transform data into insights. Thus, improving
the critical understanding of terrestrial system processes. Results were obtained
based on real-world studies using point sets and global simulations of the ter-
restrial model (CLM4). Perrot et al. [21] presents an architecture for Big Data
applications that allows the interactive visualization of large-scale heat maps.
The implementation performed in Hadoop, HBase, Spark, and WebGL includes
a distributed algorithm for computing a canopy clustering. The results show the
efficiency of the approach in terms of horizontal scalability and quality of the
visualization produced.

The study presented by Zhang et al. [31] explores the use of geovisual ana-
lytics and parallel computing technologies for geospatial optimization problems.
Development has resulted in a set of interactive geovisual tools to dynamically
steer the optimization search in an interactive way. The experiments show that
visual analytics and the search through the use of parallel trees are promising
approaches in solving multi-objective land use allocation problems.

The work of Pereira et al. [20] addressed the need for stream processing sys-
tems that are able to process large data volumes. Particularly, in video processing
a new distributed processing architecture was proposed using split and merges
operations according to a MapReduce system. The solution was validated with
a real-world application from the video compressing scenario running on dedi-
cated cluster and on cloud environments. The results emphasize significant per-
formance gains with the proposed distributed architecture. Tan and Chen [26] in
its turn, propose an approach for parallel video processing on MapReduce-based
clusters. To illustrate details of implementing a video processing algorithm, were
used three algorithms: face detection, motion detection, and tracking algorithm.
Performance tests with Apache Hadoop show that the system is able to reduce
the running time to below 25% of that of a single computer.

Comparing the related approaches, it is notable that [24], [14] focused on
performance improvement of I/O applications, while others [18] allow to identify
if the application is limited by the I/O subsystem. Some approaches [3], [30] were
concerned with the visualization and analysis of data sets and others in allowing
the interactive visualization of Big Data applications [25], [21]. The approach of
[31] demonstrates the use of geovisual analysis technologies through parallel trees
and finally [20] and [26] are focused in parallel video processing on MapReduce-
based clusters.

It is possible to note that the literature does not present studies with focus
on distributed programming models for video and data preprocessing taking
into account a distributed environment. In contrast to this observed behavior,



we focused essentially on stream parallelism and MPI programming model for
video and data preprocessing. Also, different applications and file sizes are tested
in this paper.

6 Conclusion

In the previous work [5], a moderated scalability was achieved with MPI dis-
tributed data preprocessing. In this study, we presented a solution for processing
in a stream manner producing results as soon as the data arrives. Moreover, the
distributed stream processing support enabled the applications to overcome a
single machine performance bottleneck. Two MPI strategies were proposed, one
for reducing communication overhead and other for optimizing load balancing.
Then, the strategies were evaluated for data visualization and video analytics
scenarios.

The MPI strategy with a Dynamic tasks distribution outperformed the Static
one in both scenarios. The dynamic mode achieved a better load balancing among
the running processes. Load balance is so important for stream processing be-
cause such executions are usually characterized with irregular and fluctuating
workloads.

In the data visualization application, we noticed a significant impact of the
file sizes in the performance, too large files cause the I/O saturation result-
ing in performance losses. Although the scalability was suboptimal in the data
preprocessing because of the I/O subsystem, our implemented solution showed
promising performance outcomes. The performance in the video analytics has
proven to be effective and efficient, performing with QoS for end users.

It is important to note that our work is limited in some aspects. For instance,
the performance trend can be different in other applications or environments. Al-
though both applications were reading the input from a file (I/O operations), the
applications could be easily adapted for reading from a more realistic external
source (e.g., network). Moreover, the strategy with dynamic tasks distribution
is expected to be efficient in heterogeneous environments, but our results are
limited to homogeneous clusters with dedicated resources for the running appli-
cations.

We plan to extend this work for other real-world stream processing ap-
plication scenarios. The long term goal is to identify patterns in parallelizing
stream processing applications and exploit this findings for developing a library.
This library can be generic enough for application programmers easily paral-
lelize stream processing applications. In the future, modern stream processing
features such as self-adaptivity [16,29] are aimed to the encompassed in our so-
lution. Moreover, low-level optimizations could be provided by I/O experts for
tuning the performance of the storage system for data visualization applications.
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12. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A Catalog of Stream

Processing Optimizations. ACM Computing Surveys 46(4), 46:1–46:34 (Apr 2014)
13. Jain, A.: Mastering Apache Storm: Real-time Big Data Streaming Using Kafka,

Hbase and Redis. Packt Publishing (2017)
14. Latham, R., Bautista-Gomez, L., Balaji, P.: Portable Topology-Aware MPI-I/O.

In: IEEE International Conference on Parallel and Distributed Systems (ICPADS).
pp. 710–719 (Dec 2017). https://doi.org/10.1109/ICPADS.2017.00096

15. Ledur, C., Griebler, D., Manssour, I., Fernandes, L.G.: A High-Level DSL for
Geospatial Visualizations with Multi-core Parallelism Support. In: 41th IEEE
Computer Society Signature Conference on Computers, Software and Applications.
pp. 298–304. COMPSAC’17, IEEE, Torino, Italy (July 2017)

https://doi.org/10.1016/j.jss.2016.08.037
https://doi.org/10.1016/j.jss.2016.08.037
https://doi.org/10.1016/j.jss.2016.08.037
http://mc-fastflow.sourceforge.net/
http://mc-fastflow.sourceforge.net/
https://doi.org/10.1145/1297105.1297033
http://doi.acm.org/10.1145/1297105.1297033
http://doi.acm.org/10.1145/1297105.1297033
https://doi.org/10.1007/s11227-018-2482-7
https://doi.org/10.1007/s11227-018-2482-7
https://doi.org/10.1007/s11227-018-2482-7
https://doi.org/10.1109/ICPADS.2017.00096


16. Matteis, T.D., Mencagli, G.: Keep Calm and React with Foresight: Strategies for
Low-latency and Energy-efficient Elastic Data Stream Processing. In: Proceedings
of the ACM Symposium on Principles and Practice of Parallel Programming. pp.
13:1–13:12 (2016)

17. McCool, M., Robison, A.D., Reinders, J.: Structured Parallel Programming: Pat-
terns for Efficient Computation. Morgan Kaufmann, MA, USA (2012)

18. Mendez, S., Rexachs, D., Luque, E.: Analyzing the Parallel I/O Severity of MPI
Applications. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. pp. 953–962 (May 2017). https://doi.org/10.1109/CCGRID.2017.45

19. Moreland, K.: A Survey of Visualization Pipelines. IEEE Transactions on Visual-
ization and Computer Graphics 19(3), 367–378 (March 2013)

20. Pereira, R., Azambuja, M., Breitman, K., Endler, M.: An Architecture for Dis-
tributed High Performance Video Processing in the Cloud. In: international con-
ference on cloud computing. pp. 482–489. IEEE (2010)

21. Perrot, A., Bourqui, R., Hanusse, N., Lalanne, F., Auber, D.: Large Interactive
Visualization of Density Functions on Big Data Infrastructure. In: IEEE Sympo-
sium on Large Data Analysis and Visualization (LDAV). pp. 99–106 (Oct 2015).
https://doi.org/10.1109/LDAV.2015.7348077

22. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill,
New York, USA (2003)

23. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly Media (2007)

24. Seo, S., Latham, R., Zhang, J., Balaji, P.: Implementation and Evaluation
of MPI Nonblocking Collective I/O. In: IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing. pp. 1084–1091 (May 2015).
https://doi.org/10.1109/CCGrid.2015.81

25. Steed, C.A., Ricciuto, D.M., Shipman, G., Smith, B., Thornton, P.E.,
Wang, D., Shi, X., Williams, D.N.: Big Data Visual Analytics for Ex-
ploratory Earth System Simulation Analysis. Comput. Geosci. 61, 71–82
(Dec 2013). https://doi.org/10.1016/j.cageo.2013.07.025, http://dx.doi.org/10.
1016/j.cageo.2013.07.025

26. Tan, H., Chen, L.: An approach for fast and parallel video processing on apache
hadoop clusters. In: 2014 IEEE International Conference on Multimedia and Expo
(ICME). pp. 1–6 (July 2014). https://doi.org/10.1109/ICME.2014.6890135

27. Theis, T.N., Wong, H.S.P.: The End of Moore’s Law: A New Beginning for Infor-
mation Technology . Computing in Science & Engineering 19(2), 41 (2017)

28. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming
Applications. In: Proceedings of the International Conference on Compiler Con-
struction. pp. 179–196 (2002)

29. Vogel, A., Griebler, D., Sensi, D.D., Danelutto, M., Fernandes, L.G.: Autonomic
and Latency-Aware Degree of Parallelism Management in SPar. In: Euro-Par 2018:
Parallel Processing Workshops. p. 12. Springer, Turin, Italy (August 2018)

30. Wylie, B.N., Baumes, J.: A Unified Toolkit for Information and Scientific Visual-
ization. In: VDA. p. 72430 (2009)

31. Zhang, T., Hua, G., Ligmann-Zielinska, A.: Visually-driven Parallel Solving of
Multi-objective Land-use Allocation Problems: A Case Study in Chelan, Washing-
ton. Earth Science Informatics 8, 809–825 (2015)

https://doi.org/10.1109/CCGRID.2017.45
https://doi.org/10.1109/LDAV.2015.7348077
https://doi.org/10.1109/CCGrid.2015.81
https://doi.org/10.1016/j.cageo.2013.07.025
http://dx.doi.org/10.1016/j.cageo.2013.07.025
http://dx.doi.org/10.1016/j.cageo.2013.07.025
https://doi.org/10.1109/ICME.2014.6890135

	Parallel Stream Processing with MPI for Video Analytics and Data Visualization

