A Cooperative Predictive Control Approach to Improve the
Reconfiguration Stability of Adaptive Distributed Parallel
Applications

Gabriele Mencagli, University of Pisa
Marco Vanneschi, University of Pisa
Emanuele Vespa, University of Pisa

Adaptiveness in distributed parallel applications is a key feature to provide satisfactory performance re-
sults in the face of unexpected events such as workload variations and time-varying user requirements.
The adaptation process is based on the ability to change specific characteristics of parallel components (e.g.
their parallelism degree) and to guarantee that such modifications of the application configuration are ef-
fective and durable. Reconfigurations often incur a cost on the execution (a performance overhead and/or
an economic cost). For this reason advanced adaptation strategies have become of paramount importance.
Effective strategies must achieve properties like control optimality (making decisions that optimize the
global application QoS), reconfiguration stability expressed in terms of the average time between consec-
utive reconfigurations of the same component, and optimizing the reconfiguration amplitude (number of
allocated/deallocated resources). To control such parameters, in this paper we propose a method based on
a Cooperative Model-based Predictive Control approach in which application controllers cooperate to make
optimal reconfigurations and taking account of the durability and amplitude of their control decisions. The
effectiveness and the feasibility of the methodology is demonstrated through experiments performed in a
simulation environment and by comparing it with other existing techniques.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems
General Terms: Design, Theory, Performance

Additional Key Words and Phrases: Parallel Computing, Autonomic Computing, Model-based Predictive
Control, Distributed Cooperative Optimization, Reconfiguration Stability.

ACM Reference Format:

Mencagli, G., Vanneschi, M., Vespa, E. 2012. A Cooperative Predictive Control Approach to Improve the
Reconfiguration Stability of Adaptive Distributed Parallel Applications. ACM Trans. on Auton. and Adapt.
Syst. 9, 4, Article 39 (June 2013), 28 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Nowadays the scientific community widely recognizes the need for smart strategies
and run-time supports to make distributed parallel applications adaptive. By adap-
tiveness we mean the general property of a system to react to statically unpredictable
dynamics related to the computation semantics and the execution environment. The
adaptation process involves the ability to perform dynamic reconfigurations (e.g. vary-

Author’s addresses: G. Mencagli, M. Vanneschi and E. Vespa, Computer Science Department, Univer-
sity of Pisa, (Current address) Largo B. Pontecorvo, 3, I-56127, Pisa, Italy. Email: {mencagli, vannesch,
vespa}@di.unipi.it

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 1539-9087/2013/06-ART39 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:2 G. Mencagli et al.

ing the parallelism degree and the parallel version adopted by software components)
and the control logic that takes proper reconfigurations at certain time instants.

Reconfigurations often induce performance and economic costs. Before making a re-
configuration decision, it is important to consider the cost of the newly selected con-
figuration (e.g. in a pay-per-use environment dependent on the class of dynamically
provisioned computing resources [Yuan et al. 2011; Costa et al. 2013]). The reconfig-
uration cost can also be an economic cost or a performance overhead [Vanneschi and
Veraldi 2007] proportional to the reconfiguration amplitude, i.e. number of comput-
ing resources allocated/deallocated during a change in the application configuration.
Consequently, reconfigurations should be executed only when they bring real benefits in
achieving the desired Quality of Service.

In this direction applications need to be equipped with effective adaptation strate-
gies. Apart from the desired control optimality (e.g. trade-off between performance and
resource consumption), strategies can be compared according to their reconfiguration
stability and amplitude. In this paper we use the term stability with a different mean-
ing w.r.t the classic concept of closed-loop stability used in Control Theory. In our vision
the degree of stability of an adaptation strategy, hereinafter referred as reconfigura-
tion stability, expresses how frequent reconfigurations are issued by the adaptation
strategy. This concept can be quantitatively captured by the average time between
consecutive reconfigurations of the same part of the controlled system. Due to the pres-
ence of reconfiguration costs, the goal of adaptation strategy is to achieve the desired
QoS by performing the strictly necessary number of reconfigurations. If the effects of
reconfigurations are robust and durable, the result is a performance improvement and
a reduction of operating costs.

The literature is rich in work related to adaptiveness for distributed systems.
Some approaches are inspired by Artificial Intelligence. Examples are strategies pro-
grammed using declarative languages [Kephart and Walsh 2004] (e.g. event-condition-
action rules) that map undesirable situations onto corrective actions. Similar strate-
gies have been adopted to control the parallelism degree of Algorithmic Skeletons
in [Aldinucci et al. 2008; Weigold et al. 2012]. Another research direction is based on
Control Theory foundations [Hellerstein et al. 2004]. The optimization of performance,
power and resource consumption of physical and virtualized platforms such as HPC
clusters and data-centers have been addressed using Admission Control [Park and
Humphrey 2011] and Optimal Control [Kusic et al. 2011]. Although the results of that
work are convincing, properties like reconfiguration stability and amplitude are not
directly addressed. Targeting these aspects and providing more application-oriented
methodologies is an important research problem still open to new contributions.

In our seminal work [Mencagli 2012; Mencagli and Vanneschi 2011; 2013] we have
applied Model-based Predictive Control [Garcia et al. 1989] (shortly MPC) to dis-
tributed parallel applications modeled as general graphs of parallel components (e.g.
streaming computations such as video surveillance, continuous query and digital sig-
nal processing systems). This approach is based on two fundamental assumptions:

— the capability to predict the future application QoS using a performance model of the
most relevant metrics of interest;

— the possibility to express trade-offs between different QoS requirements using a set
of objective functions associated with application components.

In this strategy the application behavior is predicted to find the optimal sequence of
reconfigurations over a finite time horizon. By using statistical predictions of external
factors influencing the application execution, it is possible to make reconfigurations in
advance reducing QoS violations. In this paper we extend our prior work by provid-
ing formal adaptation strategies taking account of stability and amplitude aspects of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:3

reconfigurations, and optimizing performance and efficiency goals. Our main contribu-
tions are:

— we introduce multiple-step ahead predictive strategies in which reconfigurations
take into account not only what is going to happen in the immediate future, but
also what is likely to happen further in the prediction horizon;

—we introduce a Switching Cost term that has significant effects on the number of
reconfigurations and their amplitude;

— we compare our approach with adaptation strategies expressed by policy rules.

This paper is organized as follows. In the next section we compare our approach
with other existing solutions. Section 3 introduces our methodology. In Section 4 we
present predictive control strategies. Section 5 applies our approach to an example of
optimization between performance and resource consumption objectives, and provides
a first evaluation of our strategies by simulations. In Section 6 we give the conclusion
of this work and the future directions of our research.

2. RELATED WORK

In the context of distributed parallel applications adaptiveness is a critical feature
which requires a careful design of run-time supports and the definition of decision-
making strategies. A first issue concerns how reconfigurations are defined and ex-
ecuted, since they represent intrusive actions often inducing performance degrada-
tions [Arshad et al. 2007; Gomes et al. 2007; Tsai et al. 2007]. The work presented
in [Vanneschi and Veraldi 2007] provides an overview of reconfiguration issues for
structured parallelism patterns (task-parallel and data-parallel programs).

The definition of adaptation strategies is a complex issue which leads to interdisci-
plinary researches in fields like Control Theory and Artificial Intelligence. A solution
consists in using policy logic rules [Kephart and Walsh 2004], which specify a map-
ping between unexpected events and corresponding corrective actions on the system.
Frameworks adopting this vision are described in [Liu and Parashar 2006] for general
distributed systems, and [Aldinucci et al. 2008; Coppola et al. 2007; Aldinucci et al.
2006] for high-performance applications. In [Ghanbari et al. 2011] an accurate com-
parison between mathematical approaches and policy rules (called heuristic rules) is
discussed in the domain of elasticity for Cloud environments.

Policy rules can pose serious problems of programmability and effectiveness when
conflicts between rules arise [Reiff-Marganiec and Turner 2004]. In [Aldinucci et al.
2009] the control of large-scale systems has been approached by considering applica-
tions as composition and nesting of Algorithmic Skeletons [Cole 2004], and organizing
a corresponding hierarchy of controllers featuring their adaptation rules. In our opin-
ion this view may be unrealistic, especially because parallelization is often introduced
when specific sub-parts of preexisting systems act as performance bottlenecks. Our
approach starts from a different perspective: applications will be considered as gen-
eral as possible while the parallelization inside each component will be performed by
instantiating structured parallelism patterns.

Besides rule-based approaches, strategies investigating the applicability of Control
Theory to computing systems have moved beyond the preliminary stage. A formal
control of software performance is described in [Zhang et al. 2002]. Application of
PID (Proportional-Integral-Derivative) controllers to web servers and enterprise ap-
plications is described in [Hellerstein et al. 2004; Horvath et al. 2007; Raghavendra
et al. 2008] with encouraging results in controlling non-functional aspects like perfor-
mance and power consumption. Admission Control of HPC servers has been recently
described in [Park and Humphrey 2011] using black-box models to predict job progress
and the CPU allocation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:4 G. Mencagli et al.

A thorough overview of control-theoretic strategies is presented in [Maggio et al.
2012]. In this work it emerges that Optimal Control [Garcia et al. 1989] is a promis-
ing approach, not only in theory but in real applications. In [Abdelwahed et al. 2004]
and [Kusic and Kandasamy 2007] a finite-horizon optimal strategy has been applied to
the dynamic adaptation of the clock rate of embedded CPUs and to control the number
of machines allocated to a web server.

An emerging field in which these concepts can be applied is the dynamic allocation
of Cloud resources [Yuan et al. 2011; Costa et al. 2013]. An example is shown in [Ku-
sic et al. 2011], in which optimal control is applied by adapting the number of active
virtual machines. Our work extends the actual state-of-the-art by giving the following
contributions:

— our approach can be applied to general distributed parallel applications whose struc-
ture is provided in terms of interacting components, their internal performance and
the probability of performing communications among distributed entities;

— the methodology is applied directly to applications, i.e. coupling them with their con-
trol logic. This solution distinguishes from other approaches oriented towards the
control of physical or virtualized computing platforms, e.g. autonomic control of data
centers and HPC servers as in [Kusic et al. 2011; Loureiro et al. 2012; Park and
Humphrey 2011; Wang et al. 2008; Khargharia et al. 2008];

— we use a single-layer organization in which controllers are at the same level of au-
thority. We avoid to use hierarchical schemes that may introduce single points of
failure and more complex system models (e.g. taking into account the behavior of
lower-control layers too [Kandasamy et al. 2006; Aldinucci et al. 2009]);

— optimal control techniques are computationally expensive and must be solved using
heuristics and relaxations to alleviate the combinatorial state-space explosion [Ab-
delwahed et al. 2009]. In this paper we apply a feasible cooperative method based on
a continuous relaxation of the original problem. This makes it possible to consume a
negligible part of resources for the control activity with a minor optimality loss;

— we introduce two meaningful metrics, the reconfiguration stability and the maximum
reconfiguration amplitude, and we use them to compare adaptation strategies.

3. PREDICTIVE CONTROL OF DISTRIBUTED PARALLEL APPLICATIONS

In this section we describe the concept of adaptive parallel module (namely ParMod)
and the adaptation strategy to control graphs of parallel components. In this paper we
use the term parallel module (ParMod) as a synonym of application component.

3.1. Adaptive Parallel Modules

A distributed parallel application can be represented as a directed acyclic computation
graph in which the vertices are parallel modules that process the data (representing
tasks), and the edges are continuous data streams that connect two or more compo-
nents. Each ParMod is composed of two parts organized in a closed-loop model:

— the Operating Part performs a parallel computation instantiating structured par-
allelism paradigms (e.g. task-farm and data-parallel schemes). The computation is
activated by receiving tasks from input data streams from other application compo-
nents;

—the Control Part (controller) observes the Operating Part and performs reconfigu-
ration activities (e.g. run-time modifications of the parallelism degree - by allocating
new threads/processes and connecting them to the actual computation structure).

Figure 1 shows an abstract representation of two interconnected ParMods. The
closed-loop interaction consists in the following information flows:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:5

— monitoring data from Operating Part to Control Part are metrics that describe the
current computation behavior (e.g. memory usage, resource utilization, service time
and computation latency);

—reconfiguration commands, issued by the Control Part, are messages that trigger
the execution of reconfiguration activities;

— control messages, exchanged between controllers, are aimed at making the local
controller of a ParMod aware of the decisions taken by the other controllers.

ParMod,

structured parallelism

[o1 H
-emitter,
-workers,
-collector.

data stream

A
reconf.
comm.

reconf.
comm.

l control messages

Fig. 1: Internal structure of adaptive parallel modules and their interconnections.

In our approach the passage of time is discretized in periods of fixed length, i.e.
Control Parts are time-driven controllers. We call control step the time period of length
T between two successive evaluations of the adaptation strategy.

In the next section we will describe in more detail our control approach based on a
well-known control-theoretic technique.

3.2. Distributed Model-based Predictive Control

The problem of controlling large-scale systems can be decomposed into a set of sub-
problems corresponding to distinct parts of the system. Each sub-problem consists in:
(i) a local model, which states how local QoS metrics change in response to specific
reconfigurations; (ii) a local objective, e.g. formulated as a cost function taking into
account future QoS levels and the cost of local control actions. Each model involves the
following set of variables:

— QoS variables (x;(k) € R™) of the sub-system i for a given control step k;

— control variables (u;(k) € U;) which identify the sub-system configuration used
during control step k;

—disturbances (d;(k) € R™) model exogenous uncontrollable events that affect the
relationship between control and QoS variables.

A general representation of the local model can be described by the following
discrete-time expression:

xi(h+1) = @ (xi(k), di(k), wilk), wiz(k)) (1)

QoS variables of sub-system ¢ are expressed as a function of local control inputs, dis-
turbances and present values of QoS variables. In this case we speak about a dynamic
model described by a set of difference equations. Otherwise, if future QoS values do not
depend on the present values, we speak about a static model. Furthermore, the next
QoS of each sub-system is also related to the remaining control variables of the other

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:6 G. Mencagli et al.

sub-systems (or a sub-set of them). Therefore, the control problem of the whole system
can be viewed as a set of coupled sub-problems (as sketched in Figure 2).

sub-problem, sub-problem,

di(k)
—-—1

L P2 Jo

local local
model cost

Qo Jy 4w,

local local local

disturbances

local
disturbances

model cost

i\ll(k) iuz(lc)

local local
control inputs control inputs

Fig. 2: Two interconnected sub-problems and their model variables.

In our approach distributed parallel applications are decomposed into a set of cou-
pled sub-systems each one corresponding to a ParMod. Reconfigurations are taken by
solving a finite-horizon distributed optimization problem. All Control Parts share the
same notion of control step and prediction horizon (formed by a set of A consecutive
control steps). At the beginning of each step, controllers predict the future values of
disturbances over the horizon by applying history-based statistical filters. Each local
cost is defined as a function of the future sequence of QoS variables achieved applying
a trajectory of local control inputs (reconfiguration plan):

k+h—1

Tk = Y L(xi+ 1,) @)
j=k

Due to the presence of coupling relationships between sub-problems, controllers ex-
change information (control messages) several times at each control step. The goal is
to achieve the desired degree of coordination such that shared variables converge to
the same value for all the controllers. We are interested in cooperative formulations
in which controllers account for the effects of their actions on the objectives of the
other controllers. Accordingly, the individual solutions of each sub-problem have to be
equivalent to the optimal solution of the following plant-wide optimization problem:

N
argmin Jg = Z w; J; (k) (3)
Ui(k),....Un (k) i=1

s.t.
u,(k) cel; 1=12,....N

where U; (k) is the reconfiguration plan of the i-th sub-system, J; is a weighted sum of
local cost functions (w; is a positive weight) and N is the number of sub-systems.
Instead of applying the optimal reconfiguration plans in an open-loop fashion, it is
more effective to adapt them in response to current disturbances. Model-based Predic-
tive Control [Garcia et al. 1989] is a technique following this rationale. Of the optimal
reconfiguration plan calculated at control step k, only the first control decision is ef-
fectively applied to the sub-system while the rest is discarded. Then, the procedure
is repeated at the next control step using new measurements from the system. The

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:7

result is to move the prediction horizon towards the future step-by-step following the
so-called receding horizon principle [Garcia et al. 1989].

In the following section we will describe a concrete example and the method used to
enact the coordination between controllers.

4. APPLICATION OF THE METHODOLOGY

In modern Grid and Cloud environments with seemingly unlimited resources, users
are tempted to speed up their computations by continuously increasing their applica-
tions parallelism degree. However, if the wrong parts of a distributed application re-
ceive more computing resources, the additional resources may remain mostly idle and
unnecessarily increase the processing cost. In this scenario the goal of the control prob-
lem is to reach desired trade-offs between performance and resource consumption, e.g.
avoiding use of unnecessary resources without real benefits in terms of performance.

4.1. Formal Statement of the Control Problem

Each ParMod M; of a distributed parallel application corresponds to a sub-system
featuring its local strategy. The configuration parameters (control variables) are the
parallelism degrees n;(k) € U;, where U; is the closed interval [1, n[***] of integer val-
ues (for the sake of simplicity computing resources are assumed to be homogeneous).
Disturbances are parameters that may change unexpectedly and uncontrollably. Ex-
amples are the mean calculation time per task T..;.-;(k), and the transmission prob-
abilities between modules. We denote with p; ;(k) the probability of transmitting a
task from M, to A; during control step k. Figure 3a shows an example of computation
graph.

bottleneck

T=[20) T

(a) Ideal graph. (b) Steady-state graph.

Fig. 3: The ideal graph is labeled with the service times (¢ is a standardized time unit),
the steady-state graph expresses the effective inter-departure times.

Computation graphs can be modeled as networks of queueing stations, each one rep-
resenting in an abstract form a parallel module with an input buffer, an inter-arrival
time of tasks from a set of sources, and a mean service time Tg, (k).

As stated in Section 3, our methodology assumes that parallelizations inside Par-
Mods follow structured parallelism paradigms. We initially consider a perfect scalabil-
ity relation between parallelism degree and service time:

Tcalc-i (k)

4)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:8 G. Mencagli et al.

Even if this assumption could seem rather strong, we will see in the sequel that it is
of little impact on our adaptation strategies, as possible non-ideal behaviors can be
addressed with very few constraints.

In distributed computing the interaction between components usually follows the
message-passing paradigm. Communications rely on blocking mechanisms to address
the finiteness of input buffers. If a message attempts to enter a full capacity destina-
tion queue upon the completion of a service at node M,, it is forced to wait in that node
until the destination has a free position!. Therefore, we need a model to predict the
effective behavior of ParMods based on the knowledge of the graph structure and the
mean service times. We call the mean inter-departure time from a module the steady-
state average time between two successive result departures from that module. We
denote with T, (k) the QoS variable representing the inter-departure time of M, at
the beginning of control step % (it refers to the behavior measured at the end of the
last control step k& — 1).

Modeling the steady-state performance of a queueing network is a complex prob-
lem [Balsamo 2011]. The existing results take important assumptions on the probabil-
ity distributions [Lee et al. ; Lee and Pollock 1991] which are often restrictive hypothe-
ses in real-world scenarios. In this paper we adopt a simplified modeling approach
already discussed in [Mencagli 2012]. This method, valid for a large class of compu-
tation graphs - i.e. acyclic graphs with a single source module - makes it possible to
evaluate the steady-state behavior without any assumption on the service times dis-
tribution and in the case of large enough buffers. The main result is summarized by
the following theorem (the proof can be found in [Mencagli 2012] at page 213):

THEOREM 4.1 (STEADY-STATE ANALYSIS). Given a single-source acyclic graph G
composed of N modules, the inter-departure time Tp, from each module M; is given by:

Tp, (k + 1) = max{ fi1 (T, (k) fi2 (Tso (k) -, fin (Tsy () } (5)

Each term f; ; with j = 1,2,..., N expresses the inter-departure time of M; if module
Mj is the bottleneck of the graph. f; ; is defined as a function of M; service time:

[I pu,v(k)>

VreP(M,—M,) <V(“7’U)€”

> (V(I1 pu,v(k)>

VreP(Ms—M;)

where M, denotes the source of G, P(Mys — M,) is the set of all the paths in the graph
starting from M, and reaching M;, and (u,v) is a directed edge of the given path .
Since we do not know which module will be the bottleneck, the inter-departure time of
M; is calculated by taking the maximum between functions f; ;.

fii(Ts,; (k) = Ts, (k) (6)

Figure 3b shows the application of the theorem to the graph in Figure 3a. Module
M5 is detected as the bottleneck, i.e. the inter-departure times of all the other modules
are influenced by the service time of Mj5. This concept is formalized as follows:

Definition 4.1 (Bottleneck). ParMod M, is the bottleneck of the graph iff for each
module M; its inter-departure time at steady-state is equal to f; (T, (k)).

The accuracy of the method has been evaluated in [Mencagli 2012] (Chapter 3 from
page 70) using a queue network simulator. The results (not described in this paper for

lin the Queueing Networks literature this kind of blocking is called Blocking-After-Service (BAS).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:9

space reasons) confirm that it is valid for any service time distribution (exponential,
uniform and normal) and when the buffer queues are sufficiently sized (few tens of
elements are sufficient to get an error smaller than 2%). For multiple-source graphs
the analysis is much more complicated, and can not be performed without assuming
the service time distribution (usually exponential [Lee et al. ; Lee and Pollock 1991]).
However, we can redesign multiple-source computation graphs as graphs with a single
fictitious source, in order to apply the previous method without limitations.

In addition to the performance model, the distributed MPC strategy requires the
definition of local objective functions for each sub-problem. In this paper we study two
different formulations of the MPC strategy. In the first one we do not model any ab-
stract term related to the reconfiguration cost (we refer to this case as Non-Switching
Cost formulation for brevity):

Definition 4.2 (Non-Switching Cost Formulation). Each parallel module has a local
cost function defined over a horizon of one future step:

Ji(k) = a; Tp, (k+ 1) + Bini(k) (7
performance cost resource cost

The first part is related to the effective performance achieved by ParMod M; (i.e. its
mean inter-departure time of results): the higher the inter-departure time (the slower
M) the greater the values assumed by this part of the cost function. The second part
expresses a cost proportional to the number of used nodes. «; and 3; are user-defined
coefficients establishing the desired trade-off between the two contrasting aspects of
the cost function.

In order not to compromise the consistency and the correctness of computations,
reconfigurations must be implemented in a careful way, e.g. avoiding loss of tasks or
to provide result duplication (see [Bertolli et al. 2011; Vanneschi and Veraldi 2007] for
further considerations of this problem). The consequence is that reconfigurations may
have significant effects on the computation performance. For instance the Operating
Part can be interrupted for an amount of time representing a performance degradation
from the user’s viewpoint [Vanneschi and Veraldi 2007; Arshad et al. 2007; Wang et al.
2008]. Given this consideration, in the second formulation of the MPC strategy we
account for an abstract switching cost term in the definition of local cost functions:

Definition 4.3 (Switching Cost Formulation). The local cost function of each Par-
Mod M; is defined over a prediction horizon of h control steps (with h > 1):

k+h k+h—1 k+h—1

Jik)= Y ai-Tpg)+ D Bi-nila)+ Y 7-Ani(g)’ (8)
q=k+1 q=k q=k
performance cost resource cost switching cost

where «;, 5; and 7; are positive weights and An;(k) is defined as the difference between
consecutive control decisions, i.e. An;(k) = n;(k) — n;(k — 1). Compared to the cost
function (7), performance and resource costs are spread over a horizon of h future
steps by taking the sum of the inter-departure times and the parallelism degrees for
each step of the horizon. The intent of the Switching Cost is to bind control decisions
of consecutive steps. In this way the reconfiguration plan calculated at step k is not
independent from what happened at step & — 1.

The formulation with the Switching Cost can be useful in scenarios characterized by
disturbances having high variance. In that case it is possible that parallelism degree

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:10 G. Mencagli et al.

variations calculated without using the Switching Cost would have been big in ampli-
tude and prone to some kind of up and down fluctuations. In that case the Switching
Cost acts as a brake, mitigating this undesired effect by improving the reconfiguration
stability. On the other hand, if disturbances exhibit nonstationarities such as trends
and seasonal patterns, sufficiently long horizons can help in modifying the ParMod
configuration in advance. This leads to the possibility to reduce the number of recon-
figurations and adapt the parallelism degrees directly to the optimal values.
To complete the description, we introduce the following definitions:

Definition 4.4 (Strategy Profile Matrix). We denote with S(k) € R"*Y a matrix in
which the i-th column represents the reconfiguration plan of ParMod M; and row j
consists of the parallel degrees chosen by ParMods for the j-th step of the horizon:

S(H) = ny (.Jr) ng(‘+) oo nn('Jr)

mik+h—1) no(k+h—1) ... ny(k+h—1)

The goal of the cooperative MPC approach is to solve the plant-wide optimization
problem defined in (3). To do that, controllers need to cooperate in order to reach the
optimal set of reconfiguration plans:

Definition 4.5 (Social Optimum). The social optimum is the strategy profile matrix
S©) (k) such that the weighted sum .J; of local objectives is optimized.

Once the social optimum has been calculated, each Control Part applies the first
control input (parallelism degree) of its optimal trajectory for the current control step
k while the rest is discarded. Then, the adaptation strategy is re-evaluated at the next
step k + 1, using the updated measurements to find the new social optimum.

4.2. Cooperative MPC based on the Distributed Subgradient Method

The cooperative control is enforced using the Distributed Subgradient Method [Nedic
and Ozdaglar 2009; Ram et al. 2009] and by making a continuous relaxation of the
problem (i.e. parallelism degrees are considered real-valued variables). This assump-
tion is justified by the current tendency of distributed parallel platforms, equipped
with hundreds of computing entities, that allows us to sacrifice a little in the optimal-
ity for the sake of feasibility. This method has the following important features:

— each Control Part knows its local cost function and the model to predict the steady-
state performance of its Operating Part;

— each local cost function of a controller must be convex;

— the method works without any assumption on the differentiability of local cost func-
tions. This is an important property since our formulations (Definition 4.2 and 4.3)
are characterized by non-differentiable convex functions (the inter-departure time is
modeled as the point-wise maximum of a set of convex functions f; ;);

— Control Parts can be completely or partially interconnected with each other.

This method is used to minimize the sum of individual cost functions J; = > J; and
it is based on the following principle: each controller maintains a local estimate of the
social optimum. By exchanging their estimates controllers reach consensus on a value
that approximates the global optimum point (see Figure 4).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:11

The method proceeds iteratively from a starting local estimate. The estimate® at
iteration ¢ + 1 is calculated by applying the following update rule:

S[(;]Iﬂ)(k) = Pu, Z (W[i,j] 3[(;1]>(k)) —d9g; 9)
JEN;U{i}

N; is the set of neighbors of i-th controllers, a(? > 0 is the step-size and G; is a sub-
gradient of J; at the current estimate. 7, is the Euclidean projection onto the convex

set of admissible strategy profile matrices defined as: U; = U x U} x ... x UL, where
each U; is the interval of reals [1, n***]. The update rule calculates the next estimate
as a combination of the actual value and the received estimates (averaged according
to properly assigned weights) and a movement on the direction of a subgradient of J;.
The first part serves to align the local estimate with the decisions of the neighbors, the
second part is taken to minimize the local cost J;.

JU— ParMod M; Strategy Profile

of neighbor iy
(estimate)

{
data streams ~ } data streams

Operating
Part

hor o
length length

Strategy Profile
of Controller i
(estimate)

reconf.

E monitored
commands

data

output input

control - i Control . control

messages . H — Part . messages .
Snsnsansnsasansnsasansnsasansasasant’
Strategy Profile
of neighbor i
h (estimate)

0
} horizon length

length

Strategy Profile ————— i

of Gontrollor | numberof Partiods number of
neighbors

(estimate) 9 number of ParMods

S
number of ParMods

Fig. 4: Control messages between Control Parts of different ParMods.

To reach consensus this method requires a minimal connectivity assumption. We can
distinguish between the directed graph formed by Operating Parts and the undirected
graph of Control Parts. In principle the two graphs can have a completely different
structure. However, a practical approach adopts the following rule:

PROPOSITION 4.6 (NEIGHBORING CONTROL PARTS). Two Control Parts are inter-
connected iff there exists a data stream that interconnects their Operating Parts.

As demonstrated in [Nedic and Ozdaglar 2009; Lobel and Ozdaglar 2011], the mini-
mal connectivity assumption is related to the structure of the controller graph:

ASSUMPTION 4.1 (CONNECTIVITY). To reach consensus the controller graph must
be connected, i.e. there must exist a path (a sequence of Control Parts interconnected in
the sense of Proposition 4.6) connecting any pair of controllers.

To prove convergence to the social optimum, in [Nedic and Ozdaglar 2009; Lobel and
Ozdaglar 2011] the authors state a further condition about how weights are assigned
to the neighbors: the matrix W € RV*Y must be doubly stochastic, i.e. all the columns
and rows sum to 1. An admissible weight assignment is given by the following rule:

2855) (k) is the strategy profile matrix estimate of controller ¢ after ¢ iterations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:12 G. Mencagli et al.

Definition 4.7 (Symmetric Weights Rule). Each controller CP; (Control Part of M;)
applies the following weights:

g1 1 o
W[z,]]fnnn{‘M|+1,|M‘+1}V]€M
JEN;

(10)

The local estimates converge to an approximation of the social optimum if: (i) the
connectivity assumption holds; (ii) the weight matrix is doubly stochastic; (iii) each
local cost function J; is convex. Our formulations satisfy the convexity property, since:

—each U; is a closed interval of reals, therefore also U/, is convex by definition;
—each f; ; is a convex function of the parallelism degree n;(k);
— the piece-wise maximum of convex functions is also a convex function.

It is worth noting that this approach is also capable of modeling non-ideal behaviors
of ParMods (e.g. when the service time stops to decrease or even increases after a
specific parallelism degree), provided that the service time of each ParMod is expressed
as any convex function of the corresponding parallelism degree.

4.2.1. Subgradient calculus and cooperative protocol. The distributed subgradient method
requires to find a subgradient at each iteration. Since J; is not differentiable, there can
exist more than one subgradient at a given point. The set of all subgradients at a point
x is called subdifferential denoted by 9J;(z). To calculate a subgradient of a convex
function F', we exploit the following rules:

—if F is differentiable at z, the unique subgradient is the gradient at that point, i.e.
OF (z) = {VF(z)};

—for § > 0,9(6 F(x)) =6 (0F(x));

—let F(x) = Fi(z) + ...+ F,(x) where each F; is convex, then 0F(z) = 0F;(x) + ... +
OF, (z) where + is the Minkowski addition between two sets;

—let F(z) = max;—1,....» F;(x) where each F} is convex, then GF() = Co{0F;(z)| F;(z) =
F(z)}, i.e. the subdifferential is the convex hull of the subdifferentials at = of each
active function (a function that gives the maximum at that point).

Figure 5 outlines the pseudo-code of the cooperative protocol. The procedure con-
sists of two phases. In the first one, Control Parts disseminate predicted values of local
disturbances to the other controllers (this can be easily done using the controller in-
terconnections and a fixed number of information exchanges). In the second phase the
distributed subgradient method is executed for 7 iterations. At the end, each controller

CP; uses its final control trajectory, i.e. the i-th column of S[(ﬁ) (k). Next, only the first

element of that trajectory is applied and the rest of the sequence is discarded.

At each iteration controllers receive estimates from their neighbors, update their
local estimates and transmit them. The number of exchanged messages is given by the
following expression (N is the number of modules):

N

Since the sum of the vertex degrees of an undirected graph is two times the number
of arcs |E|, the total number of messages is proportional to the square of the number of
controllers for dense graphs or linear with the number of controllers for sparse graphs.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:13

Fig. 5: Cooperative interaction protocol.

foreach control step k each CP; do
acquisition of last measured disturbances from OP;;
statistical prediction of disturbances for control step k;
disturbances dissemination between controllers;
S[(Z.(])) (k) = initial_point;
forg=0toZ — 1do do

send_to_neighbors (S[(i‘]]) (K));

receive_from neighbors(S @ k) vj e Ni);

[4]
S[(ﬁﬂ) (k) using the subgradient rule;

calculate
end
use an integer rounding of the component (1, 7) of S[(Z.‘]Z) (k) as the new

parallelism degree for step k;
end

5. SIMULATION ENVIRONMENT AND EXPERIMENTS

To provide a first evaluation of our approach, we have developed a simulation envi-
ronment based on the OmNeT++ discrete event simulator®. The simulation goal is to
analyze from a qualitative and quantitative viewpoint the reconfiguration decisions
taken by parallel components involved in general graph computations.

5.1. Simulation Environment

The ParMod logic has been simulated by two OmNeT components implementing the
Operating and Control Parts. Components can be programmed using an event-driven
programming style. The handlemessage () routine is called every time a new message
is received. Components exchange messages through communication ports (Figure 6).

| Simulated ParMod {

[o] ting Part
tasks from _l_>j perating Par E_|_> results to

other » other
Operating Operating

Parts j task queue E Parts
] [l [1 |
1 PR
y reconf. monitoring
| messages messages |
| i
! U U |
control _:_>j Control Part E—‘—> control

messages from
other Control

Parts —] j

messages to

other Control

—T—> Parts
self-messages E

Fig. 6: OmNeT++ simulation of a ParMod.

The Operating Part implements a queue logic. To reproduce a blocking semantics,
we have implemented a communication protocol based on the transmission of send and
ack messages. If there is a free position in the queue, the Operating Part transmits an
ack message to the sender. Otherwise, the received task and the sender identifier are
stored in a special data-structure and the ack transmission is delayed until a posi-
tion in the queue is freed. Result messages are transmitted onto output ports selected
according to a discrete probability distribution.

3visit http:/www.omnetpp.org/ for further details about this open-source discrete-event simulator.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:14 G. Mencagli et al.

When a new task is extracted from the queue, the Operating Part simulates the
execution of structured parallel computation with a parametric parallelism degree.
We have implemented two different working logics:

— a task-farm scheme, in which the Operating Part can start the execution of multiple
tasks in parallel, with a maximum number given by the current parallelism degree.
Each task has a calculation time given by the value of a random variable following a
given probability distribution (e.g. exponential, uniform or normal);

— a data-parallel scheme, in which the parallelism degree influences both the service
time and the computation latency (perfect scalability or non-ideal behaviors can be
modeled). In this case the Operating Part works on a single task at a time.

The Control Part has an internal notion of control step emulated by the reception of
a self-message generated by an internal timer. Reconfigurations are implemented as
simple modifications of the parallelism degree attribute of the Operating Part.

As stated in Section 4.1, reconfigurations can cause performance overhead. To pro-
vide a simulation of this fact, we introduce a reconfiguration delay. At every change of
parallelism degree, the Operating Part suspends receipt of tasks for an amount of time
modeled by a random variable with a given distribution, mean and variance.

5.2. A Distributed Streaming Application

Distributed streaming applications have become increasingly important and spread
from small to large-scale systems (e.g. surveillance, traffic control and manufacturing
processes) potentially executable on Cloud infrastructures applying complex billing
models. To exemplify our methodology, we instantiate our technique to the benchmark
graph depicted in Figure 7. In this application an initial stream of data produced by
the first module is split into two sub-streams received by modules M, and Mj. This
structure is representative of a large class of applications:

— video streaming computations, in which the source stream is demultiplexed by a pre-
processing phase to generate separated video sequences [Lisani et al. 2005]. Each
sub-stream can be processed independently, applying algorithms (e.g. object recogni-
tion and motion detection) with different execution times;

—real-time signal processing applications (e.g. speech recognition, radars, audio com-
pression), in which heterogeneous input samples from different sources are retrieved
and split into homogeneous sub-streams (e.g. as in [Valente 2010]) which are pro-
cessed and results combined by a post-processing phase.

ParMod 2

p—— ParMod 1

[post-
. processing

{\-fh\as_e//”

. sources “—pi ¥ 1 3

! original |

{ i
stream |
\/\// —

Fig. 7: Benchmark computation graph.

The application adjusts itself to the current splitting probability p(k), by adding or
removing nodes in order to optimize throughput and avoid wasting resources. A similar

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:15

problem has been studied in [Loesing et al. 2012] for the Cloud domain, by changing
the number of nodes assigned to application components executing continuous query
processing (this technique is called “cloud bursting”). Also in this case we highlight
that such work does not address the properties which we are interested in: reconfigu-
ration stability and amplitude.

In the experiment we reproduce the behavior of a cloud-based image processing
application able to recover noisy images. The source component produces a stream
of noisy images retrieved from cameras and performs a pre-processing phase (paral-
lelized as a task-farm) aimed at finding correlations with a data-set of images. Each
task, composed of a noisy image and a proper feature description, is transmitted to
either component M; or M3 able to apply data-parallel versions of two different filters
(M3 computation is 20% slower than the one of the M3, see Table I).

ParMod1 ParMod2 ParMod 3

Teale 15 sec. 48 sec. 38 sec.
nner 20 128 32

2

Table I: Mean calculation times and maximum number of nodes per ParMod.

5.2.1. Dynamic workload scenario. In order to analyze different scenarios, we take two
different probability time-series simulating an execution composed of 600 steps of 120
seconds. Figure 8a (hereinafter referred to as Irregular-Workload) shows a time-series
exhibiting an irregular behavior alternating trend phases (e.g. from step 200 to 350)
and level-shifts (e.g. from step 100 to 200 and near step 500). Figure 8b (Seasonal-
Workload) depicts a periodic behavior, with phases during which M, receives tasks
more frequently and phases in which most of the tasks are transmitted to M3. These
time-series are meaningful to our evaluation, since seasonal patterns and trends
are important non-stationarities characterizing the workload of Cloud and Grid sys-
tems [Khan et al. 2012; Quiroz et al. 2009].

Probability of task transmission to Parmod 2. Probability of task transmission to Parmod 2.
1 T T T T T 1 T T T T T
> 08r 5 > 08r 1
3 06 5 3 06 1
g 2
g 04 1§ o4y
. 02t 4 & o2} 4
0 i i i ; f 0 i i i i i
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(a) Irregular-Workload. (b) Seasonal-Workload.

Fig. 8: Time-series of probability p(k).

To predict future values of p(k), we use the Holt-Winters techniques [Gelper et al.
2010] already applied in [Kusic et al. 2011] to control the allocation/deallocation of
virtual resources in Cloud environments. For the first time-series we apply a filter
able to capture trend component. h-step ahead predictions are calculated as follows:

p(k + h) = p*(k) + hp' (k) (11a)
(k) = ap(k) + (1 —a) (p*(k — 1) + p'(k — 1)) (11b)
p'(k)=b((p°(k) —p°(k— 1)) + (1 = b) p*(k — 1) (11c)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:16 G. Mencagli et al.

where 11b expresses the smoothing component (mean level) and 11c the trend com-
ponent. Expression 11a makes h-step ahead predictions by extending the time-series
into the future w.r.t the trend. Parameters a and b (ranging between 0 and 1) have
been estimated using a fitting initial period of observations, by minimizing the sum of
the squared one-step ahead forecast errors. For the second time-series we use a vari-
ant which exploits an additional exponential (EWMA) filter for estimating an additive
seasonal component (further details can be found in [Gelper et al. 2010]).

Since we consider horizons of length h > 1, we are interested in evaluating the
percentage error between the real and the predicted trajectories at each control step.
The Mean Absolute Percentage Error (denoted by MAPE) is defined as follows:

k+h—1 . e
€(k)=$~ 3 W (12)
i=k

Figure 9 shows the histograms relative to the errors for the two time-series using up
to 4-step ahead predictions. As we can note the largest errors occur at the end of the
trend phase in the first time-series, and after each decreasing and increasing phase in
the seasonal workload. This is due to two main factors. Firstly, the Holt-Winter filter
needs some time to react to sudden changes. Secondly, the two time-series expose a
certain amount of variance that affects the predictions. We can observe that as we
exploit longer horizons, the number of error peaks decreases. This is an effect of the

Time Series - MAPE per step - Horizon 1. Time Series - MAPE per step - Horizon 2.
g 80 . . . — g 80 . . . ——
> 64 Horizon 1. —— b 64 L Horizon 2. ——
1] 1]
Q Q
w w
o o
E: E
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control Step Control Step
(a) Irregular-Workload h=1. (b) Irregular-Workload h=2.
Time Series - MAPE per step - Horizon 3. Time Series - MAPE per step - Horizon 4.
Q Q
3 80 . . , , — g 80 , . . , —
> 64 Horizon 3. —— ® 64 . . Horizon 4. ——
@ 4]
a o
w w
o Q
S E
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control Step Control Step
(c) Irregular-Workload h=3. (d) Irregular-Workload h=4.
Time Series - MAPE per step - Horizon 1. Time Series - MAPE per step - Horizon 2.
g 80 , , , , — g 80 , , , , —
> 64 . Horizon 1. —— | > 64 H i Horizon 2. ——
o} o}
o o
w w
o o
E: E
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control Step Control Step
(e) Seasonal-Workload h=1. (f) Seasonal-Workload h=2.
Time Series - MAPE per step - Horizon 3. Time Series - MAPE per step - Horizon 4.
g 80 — g 80 —
D 64l Horizon 3. —— | b 64 Horizon 4. ——
& 48 - 4 o}
Q Q
w5]
< 16 <
= 0 =
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control Step Control Step
(g) Seasonal-Workload h=3. (h) Seasonal-Workload h=4.

Fig. 9: Mean-Absolute Percentage Errors.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:17

averaging, since even if peaks are still in that phase they are smoothed by the average
of the errors over the entire horizon. Table II shows that the global MAPE slightly grows
as we increase the horizon. This behavior can be graphically observed in Figure 9,
where the error lines become denser using longer horizons.

Of course this section does not exhaustively cover the problem of time-series fore-
casting, which is in general complex. However for our examples the Holt-Winters fil-
ters will be sufficient to provide a first validation of our predictive control strategies.

Horizon 1 | Horizon 2 | Horizon 3 | Horizon 4
Irregular-Workload 7.88% 8.11% 8.26% 8.38%
Seasonal-Workload 7.71% 7.82% 8.05% 8.32%

Table II: Global MAPE over the entire execution.

5.2.2. Comparison between control strategies. In order to show the potential of our ap-
proach, we compare the Non-Switching Cost formulation with a rule-based strategy
inspired to the work presented in [Aldinucci et al. 2008; Weigold et al. 2012]. To con-
trol performance and resource utilization using event-condition-action rules, a solution
is to observe the ParMod utilization factor calculated as the ratio between its ideal ser-
vice time and the last measured inter-departure time. The utilization factor gives an
idea of the efficiency of resource utilization: the smaller the factor is the more the par-
allelism degree is over-sized, resulting in a waste of computing resources. Values closed
to 1 indicate an optimal resource utilization (we can note that the inter-departure time
can not be smaller than the ideal service time).

In rule-based frameworks the control logic is usually designed in a decentralized
manner by equipping each control entity with its own set of logic rules. Figure 10 shows
an example. If the actual utilization factor is lower than a minimum threshold 7,;,,
the logic decreases the parallelism degree since resources are currently under-utilized.
On the contrary, if utilization factor is greater than a upper threshold 7,,,.,, ParMod
might likely be the actual application bottleneck. In this case the strategy tries to
speculatively increase the parallelism degree to improve the application performance.

if (utilization_factor > Tmax) then parDegree := min (MAX_DEGREE, parDegree + 1);

if (utilization_ factor < Tmin) then parDegree := max (1, parDegree - 1);

Fig. 10: Rule-based strategy for parallelism degree adaptation.

When the thresholds are too close, ParMods tend to produce oscillating reconfigu-
rations. Contrarily, if they are too much spaced the strategy performs fewer reconfig-
urations at the expense of the performance goal (if T}, is too high) or the resource
consumption (if 7},,;,, is too low). To show that behavior, we have executed a simulation
with a fixed probability p = 0.5. Figure 11 depicts the reconfigurations of M; and M3
using the rule-based strategy and our Non-Switching Cost formulation with o = 100
and 8 = 0.5 (performance cost is dominant).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:18 G. Mencagli et al.

Reconfigurations of Parmod 2 - Fixed probability. Reconfigurations of Parmod 3 - Fixed probability.
2 36 . . @ 45 . .
=4 Rule-based. --------- > 42 Rule-based. --------- |
g 33 Non-Switching Cost. g o Non-Switching Cost.
é 30 B8 A LEME 2L s 21 ﬁfii':-h«: E
2 o MR il sha Bhuas oy @ A Raite B 2
= H LB T L < g =
g 2L i i i i i 8
a o

0 100 200 300 400 500 600
Control step Control step
(a) ParMod 2. (b) ParMod 3.

Fig. 11: Rule-based (7},,,,=0.95 - T;,,:;,=0.90) and Non-Switching Cost strategy.

The Non-Switching Cost strategy provides more stable reconfigurations: parallel
modules stabilize to their optimal parallelism degrees. The rule-based strategy per-
forms fluctuating reconfigurations near the optimal values. This behavior can also be
observed by considering a more dynamic scenario as the one of the Irregular-Workload
depicted in Figure 8a. The series of parallelism degrees (Figure 12) exhibits a specular
behavior between M, and M;: phases where the second ParMod acquires computing
resources correspond to time periods in which M3 releases resources (and vice-versa).
From step 100 to 200 the source ParMod moves its parallelism degree from the max-
imum one (20 nodes). This is because M; becomes the application bottleneck (it uses
its maximum number of nodes) and the source reduces its parallelism degree to avoid
wasting resources. We can note that this phase is delayed in the rule-based case. This
is due to the reactive behavior of policy rules: no disturbance prediction is performed
and reconfigurations are issued only in response to the measured utilization factor.

The rule-based strategy performs more reconfigurations. This is evident in the last
part of the execution (from step 400 to 600) where the reconfigurations of M, and M3
are much more variable compared with the Non-Switching Cost case.

Table III reports the performance results, the number of reconfigurations and the
average efficiency (the mean of utilization factors over the entire execution). We con-
sider a variable reconfiguration overhead implemented as a waiting time after each
parallelism degree variation. It is modeled as a normal random variable with mean
25 seconds (almost 10% of the control step length). A similar delay has been consid-
ered in [Wang et al. 2008] to model the reconfiguration delay in Cloud environments
(time-to-deploy on a virtual machine using a different number of computing entities).

Reconf. Completed Tasks Efficiency

Rule-based (0.95 - 0.85) 734 165,308 0.893
Rule-based (0.95 - 0.88) 1,043 163,642 0.911
Rule-based (0.95 - 0.90) 1,293 156,584 0.934
Rule-based (0.95 - 0.92) 1,486 152,261 0.959
Non-Switching Cost 745 167,939 0.985

Table III: Reconfigurations, completed tasks and efficiency (Irregular-Workload).

We evaluate different configurations of the rule-based strategy. By using smaller
values of T,,;, we make the resource release less aggressive resulting in a smaller
number of reconfigurations at the expense of a lower efficiency. With a higher 7,,,;,
more reconfigurations are performed and the efficiency improves. 7)., has been fixed
to 0.95, which is the best value to achieve highest number of completed tasks. The Non-
Switching Cost strategy performs fewer reconfigurations in general, reaching a near
optimal efficiency. The efficiency is 2.6% greater than the best rule-based strategy, with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:19

Reconfigurations of Parmod 1 - Rule-based Strategy. Reconfigurations of Parmod 1 - Non-Switching Cost Formulation.
g 'Rule-based g Non-Switching Cost
;5; 2l ule-based. ;é; 2l on-Switching Cost.
k=l =
E %0 1oE L J
z 16 WWMW 2 P — ke P -
= 8 i : 1 = s8f 4
g o g o
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(a) ParMod 1. (b) ParMod 1.
Reconfigurations of Parmod 2 - Rule-based Strategy. Reconfigurations of Parmod 2 - Non-Switching Cost Formulation.
g = 'Rule-based g % Non-Switching Cost
;.; 20| ule-based. :.; 20| lon-Switching Cost. |
k=l =]
% 30 E 30 8
2 20 2 20 1
T 10 T 10t |
g o . . . h { g o f
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(c) ParMod 2. (d) ParMod 2.
Reconfigurations of Parmod 3 - Rule-based Strategy. Reconfigurations of Parmod 3 - Non-Switching Cost Formulation.
g 100 'Rule-based g 10 Non-Switching Cost
:‘,’ 50 | ule-based. :')’ 50 | on-Switching Cost. |
=] =]
E 60 E 60 =
5 40r 5 40[1
T 20 T 20F 4
s 0 s 0 . 1 . . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(e) ParMod 3. (f) ParMod 3.

Fig. 12: Reconfigurations with Irregular-Workload.

a reduction in reconfigurations of 49%. The configuration 7,,;,, = 0.95 and T},,,,, = 0.85
performs a similar number of reconfigurations but losing 9% in efficiency.

Due to reconfiguration overhead, more reconfigurations do not always correspond to
a higher number of completed tasks. By increasing T,,;, we are able to improve the
resource utilization but with many more reconfigurations (passing from 0.85 to 0.92
the number for reconfigurations doubles). The Non-Switching Cost strategy directly
adapts the parallelism degrees to the optimal values using a steady-state performance
model instead of unitary reconfigurations as in the rule-based approach.

A similar behavior has been obtained using the Seasonal-Workload. Table IV out-
lines the main results that qualitatively follows what we have seen before.

Reconf. Completed Tasks Efficiency

Rule-based (0.95 - 0.85) 1,032 143,612 0.904
Rule-based (0.95 - 0.88) 1,244 140,046 0.923
Rule-based (0.95 - 0.90) 1,411 133,162 0.934
Rule-based (0.95 - 0.92) 1,558 116,677 0.948
Non-Switching Cost 932 158,650 0.960

Table IV: Reconfigurations, completed tasks and efficiency (Seasonal-Workload).

In conclusion our strategy reaches near optimal performance and efficiency by per-
forming fewer reconfigurations than the rule-based approach. We note that Figure 10
shows only a reasonable example of strategy based on policy rules, and optimizations

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:20 G. Mencagli et al.

and heuristics could have been introduced to improve it. Nevertheless, it has been
sufficient to provide a meaningful comparison between the two approaches.

5.2.3. Using the switching cost to improve the reconfiguration stability. An important topic is
the definition of strategies able to improve the stability of control decisions with a
negligible impact on efficiency and performance. In this section we discuss the effects
on stability of the Switching Cost formulation presented in Definition 4.3. Figure 13
and 14 show the sequence of parallelism degrees using the Irregular-Workload pattern.

Reconfigurations of Parmod 2 - Switching Cost Formulation.

Reconfigurations of Parmod 2 - Switching Cost Formulation.

Control step

(¢) Horizon h = 3.

Control step

(d) Horizon h = 4.

2 50 : : . — : 2 50 : : — .
5 Non-Switching Cost. 5 Non-Switching Cost, =-=-==-
g 40r Switching Cost h = 1. 7 g 40r Switching Costh =2, —— 7
° °
£ 30 1 30 pewsiun 1
Q@ 4 Q@ |- A 4
5 20 - 3 20 Ry
£ N e o ot Nt E S B B -

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Control step Control step
(a) Horizon h = 1. (b) Horizon h = 2.
Reconfigurations of Parmod 2 - Switching Cost Formulation. Reconfigurations of Parmod 2 - Switching Cost Formulation.

@ 50 : : . — : @ 50 : : — .
=S Non-Switching Cost. ===--=--- =S Non-Switching Cost. ===--=---
g 4or Switching Costh=3. —— 1 8 407 Switching Cost h = 4, ——]
£ 30 fmsdny 1 £ 30 s 1
Q8 Lo A 4 Q2 | 4
3 20 3 20
T 10f T 10f
g o . . . il f S o . . . i f

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Fig. 13: Switching Cost Formulation: reconfigurations of M (o« = 10, 8 = 0.5, v = 4.2).

We consider four horizon lengths from 1 to 4 control steps. Reconfigurations with
the Switching Cost are smoother compared to the Non-Switching Cost case. In other
words, the Switching Cost acts as a disincentive to parallelism degree variations. Dur-
ing phases in which the workload is lighter, it slows down the release of computing

Reconfigurations of Parmod 3 - Switching Cost Formulation.

Reconfigurations of Parmod 3 - Switching Cost Formulation.

Control step

(c) Horizon h = 3.

Control step

(d) Horizon h = 4.

@ 100 . . . — . @ 100 . . — :
5 Non-Switching Cost. =--=----- 5 Non-Switching Cost. =--=----
o 80 Switching Costh=1. —— o 80 - Switching Costh =2. ——
60 |

£ £ -
2 2 4| e 1
2 ° .) o
< g 20 o]
I I
3 2 0

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Control step Control step
(a) Horizon h = 1. (b) Horizon h = 2.
Reconfigurations of Parmod 3 - Switching Cost Formulation. Reconfigurations of Parmod 3 - Switching Cost Formulation.

2 100 : : : —— ; 2 100 : : — .
=S Non-Switching Cost. ------- =S Non-Switching Cost. ==
o) 80 Switching Costh =3, —— o) 80 - Switching Costh =4, ——
° o
= 60 e i g 60f R E
2 40 1 2 40 4
° [P, ° P,
T o 7 12 5 p]
s 0 . 1 . . . s 0 . 1 . . .

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Fig. 14: Switching Cost Formulation: reconfigurations of M3 (o = 10, § = 0.5, v = 4.2).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:21

resources, while in phases of heavy workload it slows down the allocation of new re-
sources. As we consider longer horizons, the sequence of parallelism degrees is nearer
to the Non-Switching Cost case (reconfigurations increases using longer horizons).

The reason of this behavior is that our multiple-step ahead forecasts are able to
capture future trends in the observed time-series. To understand better the effect of
trend predictions let us consider an example. Figure 15 shows the control trajectories
of ParMod M, when an increasing trend is detected. Since the probability is expected
to increase, the parallelism degree of M; will assume greater values in the future.

FUTURE

p=065 i p=070 p=080
L 'l

15

-
(&
[S S

Horizon 1
15 15 : 17
Horizon 2 ++
_ 15 % 16 i 18 21
HOMZON 3 e + <
step k-1 k k+1 k+2

Fig. 15: Example of control trajectories of M, using different horizon lengths.

Up to a horizon of two steps the parallelism degree remains stable even if the proba-
bility is expected to have a higher value in the future (from 0.65 to 0.80 in three steps).
Using a three step horizon, the parallelism degree changes passing from 15 to 16. This
happens because the Control Part is able to recognize that in three steps the required
resources will augment considerably. Thanks to the Switching Cost, the resource ac-
quisition is distributed among the steps of the horizon and reconfigurations are taken
in advance. The opposite behavior is observed during decreasing trends.

The horizon length has important consequences in terms of efficiency of resource
utilization. Figure 16 shows the utilization factor of ParMod Ms over the execution.
This ParMod is the most interesting one since it performs a severe release of resources
from step 220 to step 350 (Irregular-Workload). As we have seen in Section 5.2.2, the
Non-Switching Cost strategy optimizes the efficiency reaching nearer optimal results
compared with the the rule-based approach. Figures 16¢, 16d, 16e and 16f show the
efficiency using the Switching Cost formulation. Using a one-step horizon the release
of resource is extremely slow, producing a severe efficiency degradation after control
step 200. As we consider longer horizons, controllers have a better degree of foresight
and can more precisely evaluate if the release of a certain set of resources is effectively
useful (e.g. we enter into a trend phase). This fact leads to an evident benefit: using
sufficiently long horizons the utilization factor envelope tends to the optimal one.

The utilization factor is at most close to 1. An ideally optimal efficiency is not pos-
sible due to: (i) disturbance forecasting errors, that produce non-exact performance
predictions; (ii) we apply an integer rounding of continuous parallelism degrees. Nev-
ertheless the results show a minor efficiency loss in favor of the approach feasibility
(1.5% and 3.6% with the Non-Switching Cost and Switching Cost h=4 strategy).

Another metric is related to the reconfiguration amplitude. There are several cases
in which keeping the reconfiguration amplitude as small as possible could be impor-
tant. A notable example is on Cloud environments, in which finding a large amount of
additional resources can be a time-consuming and costly operation [Warneke and Kao
2011; Meilander et al. 2012]. This concept is stated by the following definition:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:22 G. Mencagli et al.

N Utilization Factor - Non-Switching Cost Formulation. = Utilization Factor - Rule-based Strategy.
2 2 , , , — , g 2 , , , , ,
S 15 Non-Switching Cost. S 15 Rule-based.
g 1 § 1 ~
g os g os
= 0 = 0
B 0 100 200 300 400 500 600 - 0 100 200 300 400 500 600
Control step Control step
(a) Non-Switching Cost. (b) Rule-based Strategy.
N Utilization Factor - Switching Cost Formulation. _ Utilization Factor - Switching Cost Formulation.
g 2 g 2
§ 15 ___Switching Cost h=1, —— § 15 Switching Cost h=2. ——
c c
k=] E=]
® ®
£ £
5 0 100 200 300 400 500 600 - 0 100 200 300 400 500 600
Control step Control step
(c¢) Switching Cost h = 1. (d) Switching Cost h = 2.
N Utilization Factor - Switching Cost Formulation. = Utilization Factor - Switching Cost Formulation.
2 2 , , , — — 2 2 , , , — —
S 15 Switching Cost h=3. —— S 15 Switching Cost h=4. ——
s 1 ~ s 1
g os g os
= 0 = 0
= 0 100 200 300 400 500 600 - 0 100 200 300 400 500 600
Control step Control step
(e) Switching Cost h = 3. (f) Switching Cost h = 4.

Fig. 16: Utilization factor of ParMod M.

Definition 5.1 (MRA). The Maximum Reconfiguration Amplitude (shortly MRA) is
the largest parallelism degree variation performed by ParMods during the execution.

Figure 17 shows the histograms of the amplitude for the second and the third Par-
Mod in the Irregular-Workload case. The Non-Switching Cost strategy performs large
reconfigurations reaching peaks of amplitude 4 and 6 for the second and the third mod-
ule. The amplitude can be reduced using the Switching Cost. With a one step horizon
all reconfigurations become unitary variations of parallelism degree. As we use longer
horizons the MRA slightly increases, reaching a MRA of 2 for the second ParMod.

Table V shows the simulation results. Using the Switching Cost and a prediction
horizon of one step, ParMods lose 3.50% of completed tasks and save 80% of reconfigu-
rations. Using a three-step horizon we reach a better number of tasks but keeping the
reconfiguration number significantly small. With a horizon h = 4 we achieve the best
performance and good efficiency by decreasing the reconfigurations of 55% compared
with the Non-Switching Cost strategy. In conclusion, longer prediction horizons (until
predictions are sufficiently accurate) mitigate the smoothing effect of Switching Cost by
achieving better performance and still saving a great number of reconfigurations.

Reconf. Com. Tasks Efficiency MRA MSI

Rule-based (0.95 - 0.85) 734 165,308 0.893 1 1.42
Non-Switch. Cost 745 167,939 0.985 6 2.69
Switch. Cost h =1 149 162,038 0.894 1 10.66
Switch. Cost h = 2 251 167,178 0.939 2 6.62
Switch. Cost h = 3 297 169,599 0.959 2 5.47
Switch. Cost h = 4 335 170,827 0.964 2 4.4

Table V: Simulation results using the Irregular-Workload time-series.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:23

Reconfiguration Amplitude ParMod 2 - Non-Switching Cost Formulation. Reconfiguration Amplitude ParMod 2 - Switching Cost Formulation.
o 6 T T T — T o 6 T T T — T
3 4 Non-Switching Cost. ——— 3 4| Switching Costh=1. —— |
s 5 s 5l 1
£ £
< 9 < ol munInme cLP gy
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(a) Non-Switching Cost - ParMod M. (b) Switching Cost h = 1 - ParMod Ms.
Reconfiguration Amplitude ParMod 2 - Switching Cost Formulation. Reconfiguration Amplitude ParMod 2 - Switching Cost Formulation.
6 T T T T T 6 T T T T T
-qc; 4 Switching Costh=2. C—— | § 4l Switching Costh=3. 1 |
g 2 . g 2r .
< 0 < 0 Lm0 g o o o
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(c) Switching Cost h = 2 - ParMod M. (d) Switching Cost h = 3 - ParMod Ms.
Reconfiguration Amplitude ParMod 2 - Switching Cost Formulation. Reconfiguration Amplitude ParMod 3 - Non-Switching Cost Formulation.
6 T T T T T 8 T T T T T
-qc; 2 Switching Costh=4. —— § 6 Non-Switching Cost. ——
2 = 4
g 2 g 2
< 0 < 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(e) Switching Cost h = 4 - ParMod Mo. (f) Non-Switching Cost - ParMod Ms3.
Reconfiguration Amplitude ParMod 3 - Switching Cost Formulation. Reconfiguration Amplitude ParMod 3 - Switching Cost Formulation.
8 T T T T T 8 T T T T T
8 6 | Switching Costh=1. —— | 8 6 - Switching Costh=2. —— |
2 2
s 4r 1 & 4r 1
E 2 1 E 2 1
< (TR | I U W T 1T TR RRRRRT T T TN TTR AT B S B W V1 < I TRNR TN WAL TTANRNRE i T TR T TN FANETE |
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(g) Switching Cost h = 1 - ParMod Ms3. (h) Switching Cost h = 2 - ParMod M3.
Reconfiguration Amplitude ParMod 3 - Switching Cost Formulation. Reconfiguration Amplitude ParMod 3 - Switching Cost Formulation.
8 T T T T T 8 T T T T T
g 5 Switching Cost h = 3. —— g 5 Switching Cost h = 4. ——
2 2
3 4 3 4
E 2 g 2
< 0 < 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Control step Control step
(i) Switching Cost h = 3 - ParMod Ms3. (j) Switching Cost h = 4 - ParMod M3.

Fig. 17: Reconfiguration amplitude of ParMods M and Ms5.

To quantitatively compare different strategies in terms of reconfiguration stability,
we introduce the following metric:

Definition 5.2 (MSI). The Mean Stability Index (shortly MSI) is the average number
of control steps for which ParMod configuration is not modified.

Table V shows the global MSI (mean of the MSIs of each module). The rule-based strat-
egy (with the thresholds achieving the best performance) has the lowest MSI: in the
average case ParMods apply a reconfiguration less than every two control steps. Using
the Switching Cost the MSI improves significantly. As we have seen before, the MSI is
slightly worse using longer horizons, because reconfigurations are more frequent.

The results using the Seasonal-Workload are briefly summarized in Table VI. Qual-
itatively we can observe results similar as the previous case. Using long horizons we
reduce the reconfiguration numbers and achieve better efficiency w.r.t the best rule-
based configuration. Differently from the Irregular-Workload scenario, the Switching

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:24 G. Mencagli et al.

Cost strategy with A = 3 completes a slightly smaller number of tasks compared with
the Non-Switching Cost formulation, but still saving 63% of reconfigurations.

Reconf. Com. Tasks Efficiency MRA MSI

Rule-based (0.95 - 0.85) 1,032 143,612 0.904 1 1.66
Non-Switch. Cost 932 158,650 0.960 10 3.08
Switch. Cost h =1 147 154,524 0.874 1 12.30
Switch. Cost h = 2 264 157,433 0.894 1 6.90
Switch. Cost h = 3 339 158,196 0.907 1 5.17
Switch. Cost h =4 407 157,789 0.914 2 4.38

Table VI: Simulation results using the Seasonal-Workload time-series.

5.2.4. Feasibility of the approach. As stated in the literature [Nedic and Ozdaglar 20091,
the subgradient method can be rather slow, i.e. a high number of iterations could be
needed to reach a sufficiently accurate approximation of the social optimum. Two im-
portant aspects justify the exploitation of this method in our approach:

—each Control Part applies an integer rounding of the final real-valued parallelism
degree. Therefore, a high level of precision is not actually required;

—instead of starting the cooperative algorithm from a fixed initial point, we use a
warm-start approach: the starting point at each step is equal to the social optimum
calculated at the previous step.

The warm-start technique makes it possible to greatly reduce the number of itera-
tions, since it is highly likely that between consecutive control steps social optima are
close. To demonstrate this, we have performed simulations using a different number of
iterations Z. A smaller number of iterations needs to be balanced by a suitable selec-
tion of a bigger step-size a, in order to increase the convergence speed at the expense of
lower precision. Figure 18 shows the relative error compared with the optimal recon-
figuration sequences calculated using a mathematics software tool*. We consider the
warm-start approach and the sequences obtained using a fixed initial point.

Using a fixed starting point the accuracy rapidly decreases as it becomes far from
the next social optimum. In this case few iterations are not sufficient to reach a good
approximation. With the warm start we achieve an important result: the accuracy
remains good (lower than 2%) also using few iterations. Qualitatively we can appreciate
the same behavior for the Switching Cost formulation (the errors increase more slowly
since the number of reconfigurations is smaller than the Non-Switching Cost case).

Furthermore, Figure 18f outlines the total number of control messages exchanged
during the entire execution. Since this number is proportional to Z, we can observe a
fast decrease reaching 360,000 messages using 150 iterations, equal to 600 messages
per step.

In conclusion the feasibility is enacted by: (i) reducing the number of iterations with
a negligible optimality loss using the warm-start approach; (ii) using partially inter-
connected controllers (keeping the number of neighbors of each Control Part small).
In this way it is possible to greatly reduce the number of exchanged messages which
has a direct relationship with the real applicability of the method in real distributed
environments.

4Mathematica, see more details at http:/http://www.wolfram.com/mathematica

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:25

Non-Switching Cost - Accuracy. Switching Cost Horizon 1 - Accuracy.
40 T T T 50 T T T
Warm-Start. Xxxxi Fixed-Start., s | Warm-Start. EXXXx3 Fixed-Start. sz |
32 g 40 + g
S 24t 1 & 30t ‘ . |
g g
o 16 1 & 20t 1
8 g 10 g
<1% <2%
0 el e iEss] 0
1=1500 1=750 1=375 1=150 1=1500 1=750 1=375 1=150
(a) Accuracy Non-Switching Cost. (b) Accuracy Switching Cost h=1.
Switching Cost Horizon 2 - Accuracy. Switching Cost Horizon 3 - Accuracy.
50 50
Warm-Start. 2z’ Fixed-Start, e | Warm-Start, &xxxx1 Fixed-Start. ez |
40 + g 40 +
S 30+ q S 30+
8 8
m 20 4 @& 20¢} E
10 8 10 b
<1% <2% <1%
0 oo 5 zezexlbasa 0 b 1035, %
1=750 1=375 1=150 1=1500 =75 1=375 1=150
(¢) Accuracy Switching Cost h=2. (d) Accuracy Switching Cost h=3.
Switching Cost Horizon 4 - Accuracy. Total number of control messages.
50 T T T T 5e+06 T
Warm-Start. xxxx1 Fixed-Start. ezeses Messages. EzzzEa
40 s 4e+06 b
X 30+ 8 3e+06 - b
8
o 20| 1 2e+06 | ,
10 b 1e+06 [B
<1% <2%
0 B < 0 ;
1=1500 1=750 1=375 1=150 1=1500 1=750 1=375 1=150
(e) Accuracy Switching Cost h=4. (f) Control messages.

Fig. 18: Feasibility of the Distributed Subgradient Method.

6. CONCLUSIONS AND FUTURE WORK

The aim of this paper is to apply an optimal control methodology able to achieve trade-
offs between reconfiguration stability and amplitude, and the optimality of the decision
process. We used the Model-based Predictive Control technique, in which multiple-step
ahead predictions are exploited to calculate optimal long-term reconfiguration plans.
In Section 4 we proposed two different formulations of the MPC strategy. In the first
one, the adaptation is driven by the performance and resource utilization of application
components. In the second formulation we introduced a term that discourages recon-
figurations of large amplitude. Cooperation between controllers was enabled using the
distributed subgradient method. Finally, we tested the effectiveness of the approach
by simulations, and we compared our approach with rule-based strategies already ap-
plied for similar problems in the literature. According to our results, the Switching
Cost formulation and a careful selection of the horizon length makes it possible to:

— achieve the desired control optimality, in terms of performance (accounting reconfigu-
ration overhead) and efficiency (avoiding oversized/undersized parallelism degrees);

—regulate the reconfiguration amplitude (nodes involved in a reconfiguration);

— improve the reconfiguration stability, in terms of number of reconfigurations and the
average time between subsequent modifications of the same component.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:26 G. Mencagli et al.

In contrast to other research work [Abdelwahed et al. 2009], the computational cost
of our approach does not depend on the horizon length, and feasibility has been enacted
using a proper configuration of the distributed subgradient method and by supporting
partial interconnections between controllers.

Our research leads to potential extensions in the future. Adaptive Control is one
of the possible directions, by using steps of variable lengths or alternating different
formulations of the MPC strategy during the execution. The effects of multiple-step
ahead predictions using non-linear filters can be investigated in order to study the be-
havior of our strategies under more complex situations featuring the strong variability
of multiple disturbances. Kalman filters and Neural Networks are notable candidates.
This work can be improved by extending the concept of reconfiguration. As an ex-
ample it could be interesting to consider the switching between alternative parallel
versions of the same module, based on different parallelism paradigms (e.g. task-farm
and data parallelism are notable examples) characterized by a different speed-up and
service time using the same parallelism degree. This extends the space of admissible
solutions and can be modeled using convex functions that still admit to be solved co-
operatively using the method discussed in this paper. Furthermore, choosing the right
parallel version and parallelism degree is critical for other non-functional properties of
parallel computations, notably power consumption and memory utilization. Therefore,
future extensions of this work can take into account these parameters in addition to
the performance metrics studied in this paper.

At present our approach still needs to be validated in real-world applications. How to
concretely integrate our methodology in Cloud/Grid environments and how to provide
programming constructs to express predictive control strategies are critical and open
issues that deserve further investigations in the future.

Part of this work has been recently accepted to presentation in two international
conferences [Mencagli et al. 2013a; 2013b].

REFERENCES

ABDELWAHED, S., BAI, J., SU, R., AND KANDASAMY, N. 2009. On the application of predictive control tech-
niques for adaptive performance management of computing systems. Network and Service Management,
IEEE Transactions on 6, 4, 212-225.

ABDELWAHED, S., KANDASAMY, N., AND NEEMA, S. 2004. Online control for self-management in comput-
ing systems. In Real-Time and Embedded Technology and Applications Symposium, 2004. Proceedings.
RTAS 2004. 10th IEEE. 368 — 375.

ALDINUCCI, M., CAMPA, S., DANELUTTO, M., AND VANNESCHI, M. 2008. Behavioural skeletons in gem:
Autonomic management of grid components. In Parallel, Distributed and Network-Based Processing,
2008. PDP 2008. 54-63.

ALDINUCCI, M., DANELUTTO, M., AND KILPATRICK, P. 2009. Towards hierarchical management of au-
tonomic components: A case study. In Parallel, Distributed and Network-based Processing, 2009 17th
Euromicro International Conference on. 3—10.

ALDINUCCI, M., DANELUTTO, M., AND VANNESCHI, M. 2006. Autonomic qos in assist grid-aware compo-
nents. In PDP “06: Proceedings of the 14th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. IEEE Computer Society, Washington, DC, USA, 221-230.

ARSHAD, N., HEIMBIGNER, D., AND WOLF, A. L. 2007. Deployment and dynamic reconfiguration planning
for distributed software systems. Software Quality Control 15, 3, 265-281.

BALSAMO, S. 2011. Network performance engineering. Springer-Verlag, Berlin, Heidelberg, Chapter Queue-
ing networks with blocking: analysis, solution algorithms and properties, 233—-257.

BERTOLLI, C., MENCAGLI, G., AND VANNESCHI, M. 2011. Consistent reconfiguration protocols for adap-
tive high-performance applications. In Wireless Communications and Mobile Computing Conference
(IWCMC), 2011 7th International. 2121 —2126.

COLE, M. 2004. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel program-
ming. Parallel Comput. 30, 3, 389—406.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

Distributed Cooperative Model-based Predictive Control 39:27

CoprPOLA, M., DANELUTTO, M., TONELLOTTO, N., VANNESCHI, M., AND Z0OCCOLO, C. 2007. Execution
support of high performance heterogeneous component-based applications on the grid. In Euro-Par’06:
Proceedings of the CoreGRID 2006, UNICORE Summit 2006, Petascale Computational Biology and
Bioinformatics conference on Parallel processing. Springer-Verlag, Berlin, Heidelberg, 171-185.

CosTA, R., BRASILEIRO, F., LEMOS, G., AND SOUSA, D. 2013. Analyzing the impact of elasticity on the
profit of cloud computing providers. Future Generation Computer Systems 0.

GARCIA, C. E., PRETT, D. M., AND MORARI, M. 1989. Model predictive control: theory and practice a survey.
Automatica 25, 335-348.

GELPER, S., FRIED, R., AND CROUZX, C. 2010. Robust forecasting with exponential and holtwinters smooth-
ing. Journal of Forecasting 29, 3, 285-300.

GHANBARI, H., SIMMONS, B., LiTOI1U, M., AND ISZLAI, G. 2011. Exploring alternative approaches to im-
plement an elasticity policy. In Cloud Computing (CLOUD), 2011 IEEE International Conference on.
716-723.

GOMES, A. T. A., BATISTA, T. V., JOOLIA, A., AND COULSON, G. 2007. Architecting dynamic reconfiguration
in dependable systems. 237-261.

HELLERSTEIN, J. L., D1AO, Y., PAREKH, S., AND TILBURY, D. M. 2004. Feedback Control of Computing
Systems. John Wiley & Sons.

HORVATH, T., ABDELZAHER, T., SKADRON, K., AND LIU, X. 2007. Dynamic voltage scaling in multitier web
servers with end-to-end delay control. IEEE Trans. Comput. 56, 4, 444-458.

KANDASAMY, N., ABDELWAHED, S., AND KHANDEKAR, M. 2006. A hierarchical optimization framework
for autonomic performance management of distributed computing systems. In Distributed Computing
Systems, 2006. ICDCS 2006. 26th IEEE International Conference on. 9.

KEPHART, J. AND WALSH, W. 2004. An artificial intelligence perspective on autonomic computing policies.
In Policies for Distributed Systems and Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE Inter-
national Workshop on. 3-12.

KHAN, A., YAN, X., TAO, S., AND ANEROUSIS, N. 2012. Workload characterization and prediction in the
cloud: A multiple time series approach. In Network Operations and Management Symposium (NOMS),
2012 IEEE. 1287-1294.

KHARGHARIA, B., HARIRI, S., AND YOUSIF, M. S. 2008. Autonomic power and performance management
for computing systems. Cluster Computing 11, 2, 167-181.

Kusic, D. AND KANDASAMY, N. 2007. Risk-aware limited lookahead control for dynamic resource provi-
sioning in enterprise computing systems. Cluster Computing 10, 4, 395—408.

Kusic, D., KANDASAMY, N., AND JIANG, G. 2011. Combined power and performance management of vir-
tualized computing environments serving session-based workloads. Network and Service Management,
IEEE Transactions on 8, 3, 245-258.

LEE, H., BOUHCHOUCH, A., DALLERY, Y., AND FREIN, Y. Performance evaluation of open queueing net-
works with arbitrary configuration and finite buffers. Annals of Operations Research 79, 181-206.

LEE, H.-S. AND POLLOCK, S. M. 1991. Approximation analysis of open acyclic exponential queueing net-
works with blocking. Oper. Res. 38, 6, 1123-1134.

L1sANI1, J.-L., RUDIN, L., MONASSE, P., MOREL, J. M., AND YU, P. 2005. Meaningful automatic video
demultiplexing with unknown number of cameras, contrast changes, and motion. In Advanced Video
and Signal Based Surveillance, 2005. AVSS 2005. IEEE Conference on. 604—608.

L1U, H. AND PARASHAR, M. 2006. Accord: a programming framework for autonomic applications. Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 36, 3, 341 — 352.

LOBEL, I. AND OZDAGLAR, A. 2011. Distributed subgradient methods for convex optimization over random
networks. Automatic Control, IEEE Transactions on 56, 6, 1291 —1306.

LOESING, S., HENTSCHEL, M., KRASKA, T., AND KOSSMANN, D. 2012. Stormy: an elastic and highly avail-
able streaming service in the cloud. In Proceedings of the 2012 Joint EDBT /ICDT Workshops. EDBT-
ICDT ’12. ACM, New York, NY, USA, 55-60.

LOUREIRO, E., NIXON, P., AND DOBSON, S. 2012. Decentralized and optimal control of shared resource
pools. ACM Trans. Auton. Adapt. Syst. 7, 1, 14:1-14:31.

MAGGIO, M., HOFFMANN, H., PAPADOPOULOS, A. V., PANERATI, J., SANTAMBROGIO, M. D., AGARWAL,
A., AND LEVA, A. 2012. Comparison of decision-making strategies for self-optimization in autonomic
computing systems. ACM Trans. Auton. Adapt. Syst. 7, 4, 36:1-36:32.

MEILANDER, D., PLOSS, A., GLINKA, F., AND GORLATCH, S. 2012. A dynamic resource management sys-
tem for real-time online applications on clouds. In Proceedings of the 2011 international conference on
Parallel Processing. Euro-Par’11. Springer-Verlag, Berlin, Heidelberg, 149-158.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

39:28 G. Mencagli et al.

MENCAGLI, G. 2012. A Control-Theoretic Methodology for Controlling Adaptive Structured Parallel Compu-
tations. Ph.D Thesis, Department of Computer Science, University of Pisa, Italy.

MENCAGLI, G. AND VANNESCHI, M. 2011. Qos-control of structured parallel computations: A predictive
control approach. In Proceedings of the 2011 IEEE Third International Conference on Cloud Computing
Technology and Science. CLOUDCOM ’11. IEEE Computer Society, Washington, DC, USA, 296-303.

MENCAGLI, G. AND VANNESCHI, M. 2013. Analysis of control-theoretic predictive strategies for the adap-
tation of distributed parallel computations. In Proceedings of the First ACM Workshop on Optimization
Techniques for Resources Management in Clouds. ORMaCloud '13. ACM, New York, NY, USA, 33-40.

MENCAGLI, G., VANNESCHI, M., AND VESPA, E. 2013a. Control-theoretic adaptation strategies for auto-
nomic reconfigurable parallel applications on cloud environments. In High Performance Computing and
Simulation (HPCS), 2013 International Conference on. 11-18. Won the outstanding paper award.

MENCAGLI, G., VANNESCHI, M., AND VESPA, E. 2013b. Reconfiguration stability of adaptive distributed
parallel applications through a cooperative predictive control approach. In Proceedings of the 19th inter-
national conference on Parallel Processing. Euro-Par’13. Springer-Verlag, Berlin, Heidelberg, 329-340.

NEDIC, A. AND OZDAGLAR, A. 2009. Distributed subgradient methods for multi-agent optimization. Auto-
matic Control, IEEE Transactions on 54, 1, 48 —61.

PARK, S.-M. AND HUMPHREY, M. 2011. Predictable high-performance computing using feedback control
and admission control. Parallel and Distributed Systems, IEEE Transactions on 22, 3, 396-411.

QUIROZ, A., KIM, H., PARASHAR, M., GNANASAMBANDAM, N., AND SHARMA, N. 2009. Towards autonomic
workload provisioning for enterprise grids and clouds. In Grid Computing, 2009 10th IEEE | ACM Inter-
national Conference on. 50-57.

RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG, Z., AND ZHU, X. 2008. No "power” struggles:
coordinated multi-level power management for the data center. SIGOPS Oper. Syst. Rev. 42, 2, 48-59.

RAM, S. S., NEDIC, A., AND VEERAVALLI, V. V. 2009. Distributed subgradient projection algorithm for
convex optimization. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech
and Signal Processing. ICASSP ’09. IEEE Computer Society, Washington, DC, USA, 3653-3656.

REIFF-MARGANIEC, S. AND TURNER, K. J. 2004. Feature interaction in policies. Comput. Netw. 45, 569—
584.

Tsa1l, W. T., SONG, W., CHEN, Y., AND PAUL, R. 2007. Dynamic system reconfiguration via service compo-
sition for dependable computing. In Proceedings of the 12th Monterey conference on Reliable systems on
unreliable networked platforms. Springer-Verlag, Berlin, Heidelberg, 203—-224.

VALENTE, F. 2010. Multi-stream speech recognition based on dempstershafer combination rule. Speech
Commaunication 52, 3, 213 — 222.

VANNESCHI, M. AND VERALDI, L. 2007. Dynamicity in distributed applications: issues, problems and the
assist approach. Parallel Comput. 33, 12, 822-845.

WANG, X., Dy, Z., CHEN, Y., L1, S., LAN, D., WANG, G., AND CHEN, Y. 2008. An autonomic provisioning
framework for outsourcing data center based on virtual appliances. Cluster Computing 11, 3, 229-245.

WARNEKE, D. AND KAO, O. 2011. Exploiting dynamic resource allocation for efficient parallel data process-
ing in the cloud. IEEE Trans. Parallel Distrib. Syst. 22, 6.

WEIGOLD, T., ALDINUCCI, M., DANELUTTO, M., AND GETOV, V. 2012. Process-driven biometric identifica-
tion by means of autonomic grid components. Int. J. Auton. Adapt. Commun. Syst. 5, 3, 274-291.

YUAN, Q., L1y, Z., PENG, J., WU, X., L1, J., HAN, F., L1, Q., ZHANG, W., FAN, X., AND KONG, S. 2011.
A leasing instances based billing model for cloud computing. In Proceedings of the 6th international
conference on Advances in grid and pervasive computing. GPC’11. Springer-Verlag, Berlin, Heidelberg,
33-41.

ZHANG, R., LU, C., ABDELZAHER, T. F., AND STANKOVIC, J. A. 2002. Controlware: A middleware architec-
ture for feedback control of software performance. In Proceedings of the 22 nd International Conference
on Distributed Computing Systems (ICDCS’02). ICDCS ’02. IEEE Computer Society, Washington, DC,
USA, 301—.

Received June 2013; revised June 2013; accepted June 2013

ACM Transactions on Autonomous and Adaptive Systems, Vol. 9, No. 4, Article 39, Publication date: June 2013.

