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Abstract—Data Stream Processing is a paradigm enabling the
real-time processing of live data streams coming from sources
like sensors, financial tickers and social media. The history of
the stream is often maintained in sliding windows and analyzed
to produce timely notifications to the users. A challenging issue
in the development of parallel implementations of such com-
putations is efficient dynamic memory allocation. In this paper
we study two parallel patterns for sliding-window computations
and we discuss different implementation variants related to how
dynamic memory is managed. The results show that the combined
use of an efficient general-purpose memory allocator, and of a
custom allocator for the pattern considered, results in significant
performance optimizations.

Index Terms—Data Stream Processing, Dynamic Memory
Allocation

I. INTRODUCTION

Dynamic memory allocation is one of the most basic
features in standard sequential programming. In parallel pro-
gramming it may become a critical issue when looking for
high scalability and performance, because the bookkeeping
of standard allocation/deallocation procedures (e.g., libc
malloc/free) introduces global synchronization [1]. This paved
the way to general-purpose allocators optimized for concur-
rency such as Hoard [2] and TBB scalable allocator [3].
Complementary, there is a widespread tendency to develop
custom allocators built on top of general-purpose ones, with
the goal to take further advantage of the application-specific
allocation pattern to increase performance.

This work shows how to provide an efficient dynamic
memory management in the design of a parallel runtime for
Data Stream Processing programs (DaSP) [4] on multicores.
The DaSP paradigm is characterized by the online processing
of data streams that convey tuples of attributes (records, sensor
readings) representing numerical or categorical information.
Typical DaSP computations inspect the recent stream history
to detect critical patterns and trigger notifications/alerts to the
users. Instead of buffering the entire stream, which is often
impractical, tuples are temporarily buffered in sliding win-
dows [5] defined as a fixed period of time (time-based) or as
a fixed number of tuples (count-based), e.g., the computation
is applied on the tuples received in the last 5 seconds and the
results updated every 0.1 seconds.

To target performance- and memory-efficient parallel
DaSP computations, the use of dynamic memory alloca-
tion/deallocation operations is a critical task for various rea-

sons: i) windows are dynamic structures whose size can arbi-
trarily grow or shrink at run-time, thus they need sophisticated
dynamic memory mechanisms; ii) no realistic assumption on
the stream length and speed can be made, and iii) each input
tuple has a different lifetime and may be used by a different set
of threads according to the parallel semantics of the pattern.

In this work our standpoint is that of the runtime system
developer, i.e. our goal is to offer to the high-level programmer
a framework in which parallel patterns for sliding-window
streaming computations can be easily instantiated by hiding
a set of important low-level details like tuple distribution and
window management policies, and dynamic memory man-
agement. The latter is critical for performance, because each
input tuple can be used concurrently by a different subset of
threads. Therefore, the pattern implementation must be able
to efficiently detect when the allocated areas for tuples can be
safely released or recycled to increase performance and reduce
synchronization. Our goal is to relieve the programmer from
this burden by solving it within the runtime, leveraging the
detailed knowledge of the specific allocation scheme directly
available from the pattern.

To the best of our knowledge, no similar work exists in the
domain of Data Stream Processing. Our specific contributions
are the following:

• we describe two parallel patterns developed in Fast-
Flow [6]1, a C++ parallel framework for multi-/many-
cores. The description focuses on the differences between
patterns and how the programmer can instantiate them;

• we go on the details of memory allocation by describing
optimizations within the patterns and the use of the
custom FastFlow allocator, specialized for the producer-
consumer allocation scheme;

• we evaluate our implementation choices in a real-world
high-frequency trading application fed by synthetic and
real datasets.

The results confirm our intuitions and show that the use of
the custom allocator on top of a scalable general-purpose
allocator actually improves performance without increasing
memory occupancy.

The rest of the paper is organized as follows. Sect. II
provides an overview of similar works. Sect. III describes
the parallel patterns. Sect. IV introduces the dynamic memory

1http://mc-fastflow.sourceforge.net.



allocation issues and presents optimizations. Sect. V evaluates
the implementations on a real-world application, and Sect. VI
concludes the paper.

II. RELATED WORK

Over the years, several dynamic memory allocators have
been written to speedup performance of parallel programs,
especially in those cases where frequent requests for small
objects are generated by the application threads, i.e. when
the standard allocation calls are notoriously inefficient. Widely
used allocators are Hoard [2] and TBB scalable allocator [3].
Others are LFMalloc [7], Streamflow [8], TCMalloc [9]
and XMalloc [10]. Their rationale is to enable better scal-
ability by using thread-private heaps and free lists in order
to significantly cut down synchronization costs. Only when
a request cannot be served by accessing private data, global
data structures are inspected by using fine-grained locks. All
of them are general-purpose allocators aimed at intercepting
the use of standard allocation routines in the code by replacing
them without needing to recompile the program.

In addition, the programmer can develop custom allocators
optimized for a special use. Notable examples are the ones
used in standard benchmarks for parallel architectures, like
the 197.parser application of the SPEC suite. Interesting
is the work published in [11], in which the authors give a
brief review about custom allocators developed for ad hoc
purposes, and present and optimization methodology based on
genetic algorithms to optimize allocator policies in order to
accommodate the needs of each specific application.

No paper before this one has tried to understand the
performance issues of dynamic memory allocation in DaSP
programs. To the best of our knowledge, the closest work to
ours is [12], where task scheduling strategies in DaSP have
been studied and their performance analyzed in highly NUMA
machines, to allocate tasks optimizing memory bandwidth.
Although this aspect can be studied in a future extension of our
work, here we focus more on pattern-oriented optimizations,
which are independent from the underlying architecture used.

III. PARALLEL PATTERNS

Data stream processing applications [4] are represented as
data-flow graphs of operators receiving input streams and
producing output sequences. Non-trivial parallelism is often
needed by stateful operators that maintain an internal knowl-
edge updated each time a new tuple is received and processed.
Usually, the notion of internal state consists in a temporary
sliding window of the most recent tuples. In this paper we
will focus on two parallel patterns for window-based streaming
computations: the Key Partitioning (KP) and Window Farming
patterns (WF) introduced in [5].

The first pattern is used to parallelize partitioned-stateful
operators [4], i.e. operators that work on input streams that
convey tuples logically belonging to different substreams ac-
cording to the value of a partitioning attribute of the tuples
(as in a group-by relational operator). The operator maintains
an independent state for each substream, updated each time

we receive a new tuple belonging to such substream. For
simplicity, we use the term group as a synonym of sub-
stream. Parallelism can be easily exploited for such class of
operators, because the computation on tuples belonging to
different groups is independent and can be executed in parallel.
Therefore, the parallel pattern consists in nw ≥ 1 replicas
(denoted by R1, . . . Rn) also called workers that perform the
internal processing logic (window update, and triggering of a
user function). An emitter entity (E) distributes tuples to the
replicas in such a way as to exploit the parallel semantics of
the pattern. In the KP pattern, windows belonging to different
groups can be executed in parallel, while all the windows in
the same group are processed sequentially by the same replica.
Therefore, the emitter is responsible to schedule all the tuples
within the same group to the same replica, i.e. by assigning
to each group a worker using a hash function, see Fig. 1a.

The second pattern is based on the observation that con-
secutive windows in the same group may have some tuples
in common. It is possible to identify the windows (numbered
starting from 1) to which a tuple belongs. Let w ≥ 1 and
s ≥ 1 be the window length and the slide parameters both
expressed in number of tuples. As stated in [13], a tuple with
identifier i ≥ 1 belongs to all the windows with identifier
j such that j ≥ d(i + w)/se + 1 and j ≤ di/se. This can
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Fig. 1: Scheduling behavior of the patterns with count-based
windows, w = 4 and s = 1. The tuples of the first group are
identified with a sequence identifier inside a square box, the
ones in the second group with circles.



be generalized to time-based windows, where the identifier is
a timestamp attribute. Therefore, by finding a way to assign
windows to replicas (e.g., in a round-robin fashion), it is
possible to distribute tuples to the replicas in order to execute
in parallel also windows belonging to the same group. The
emitter now multicasts each tuple to a specifically identified
subset of the replicas, i.e. the ones assigned to the windows
to which the tuple belongs (see Fig. 1b). Each replica uses an
inner slide parameter equal to nw× s.

The WF pattern has a wider applicability than KP. In fact, its
scalability is independent from the frequency distribution of
the groups, while KP is unable to achieve good performance
if we have few groups (e.g., less than the number of workers)
or when some groups are much more frequent than the
others (the replicas assigned to the most frequent groups
receive more tuples than the other replicas). However, the WF
implementation is more challenging due to the more complex
distribution (multicast). Moreover, while KP produces results
in the same group in order, this is not generally true for WF.
If the ordering of results in the same group is needed, the WF
implementation must take care of it.

In this paper we will study specific solutions for the issues
that arise in the implementation of the two patterns, with
special attention to WF which, as studied in our past work [5],
[14], is potentially able to achieve good performance in a
broader range of application configurations than KP (e.g.,
number of groups and their frequency distributions).

A. FastFlow Implementation

The two patterns have been implemented in FastFlow [6] as
high-level parallel patterns. High-level parallel patterns solve
specific yet recurrent problems in an application domain, and
their implementation in FastFlow is usually developed on top
of more general core patterns like farm and pipeline, or their
compositions. The C++ interface of the patterns allows the
programmer to:

• indicate as template parameters the type of the input tuple
(input_t), the output result (output_t), and the type
of the window (window_t);

• provide the user function to be applied at each window
activation as an input parameter of the pattern constructor.
Let Fusr be the function provided by the user;

• provide two other functions: Fin takes a reference to an
input tuple and returns a pair of values in which the first
one is the unique identifier of the tuple (or its timestamp)
and the second is the identifier of the group; the second
Fout does the same for an output result. Essentially,
these functions are in charge of extracting specific fields
from tuples/results whose types are specified as template
parameters of the pattern.

Fig. 2 exemplifies the instantiation of the WF pattern, which
has been used inside a pipeline pattern of three stages. The
first and the last stages (Generator and Consumer) are objects
extending the ff_node_t class, i.e. the FastFlow single-
threaded node abstraction. The Generator receives the input
tuples from a TCP/IP socket and forwards them to the second

stage. The Consumer writes the results into a file. The second
stage is the WF pattern, which internally has an emitter and a
collector thread and nw ≥ 1 worker threads for the replicas.

This example instantiates the pattern with a count-based
sliding-window data type (CB_Win) based on a circular buffer.
This type has to define a set of pure virtual methods declared
in the I_Window class: i) an insert method to add a tuple
to the window container; ii) an expire method to evict all the
expired tuples; iii) a reset method to empty the window.

The Win_WF class implements the pattern. The emitter and
collector threads are defined by two inner classes that extend
ff_node_t. The emitter implements the distribution logic
shown in Fig. 1b by calling the Fin function to extract the
group and the identifier of each input tuple. The collector can
be executed in two modes: 1) by preserving the ordering of
results in the same group; 2) by producing results as soon as
they arrive at the collector. The workers are implemented by
the Win_Seq class which extends ff_node_t. Its logic is
the following: each tuple received by the emitter is inserted
into the corresponding window; if the window is triggered, the
worker allocates the result data structure, calls the function
Fusr and passes the result pointer to the collector.

IV. ISSUES AND SOLUTIONS

The implementation of our parallel patterns has been de-
signed in order to deal with two aspects:

• the implementation must encapsulate and abstract the
way in which tuples and results are internally allocated.
The same tuple can be used by more than one worker,
and it must be safely deallocated when it is no longer
necessary without hampering performance by introducing
rigid synchronization points;

• the user provides the functions Fusr, Fin and Fout. He can
also use a customized window implementation, e.g., that
exploits some indexes like trees.

Input tuples are inserted into the corresponding window
by calling the insert method, which takes the tuple as an
input argument passed by a constant reference. Therefore, the
designer of the window data structure (he can be the user
himself) can copy the input tuple into the window container
without knowing how it has been originally allocated by the
previous stages of the application, thus without dealing with
its deallocation. In contrast, the programmer has a complete
visibility of the window data structure used (it can be a user-
defined implementation or a more general one provided by
our pattern library), where any sort of allocator can be used
to manage the internal container according to the window
specifications (e.g., time-based and count-based windows have
different memory requirements). Similarly, the user function
Fusr takes the result as an input argument passed by reference.
Therefore, the user is unaware of how the result data structure
has been allocated, and his function code only fills the content
by reading the actual window container passed as input
parameter.

In conclusion, the runtime system of parallel patterns is
responsible to deal with the allocation/deallocation of input



…
bool ordering=true;
Win_WF<input_t, output_t, CB_Win<input_t>> wf(F_in, F_out, F_usr, nw, win_length,
                                                 win_slide, …, ordering);
// creation of the pipeline
Generator generator(stream_length, num_groups, …);
Consumer consumer(num_groups, …);
ff_Pipe<input_t, output_t> pipe(&generator, &wf, &consumer);
// execute the pipeline and wait its completion
pipe.run_and_wait_end();

template<typename in_tuple_t>
class CB_Win: public I_Win<in_tuple_t,
              c_buffer<in_tuple_t> {
public:
  unsigned long expire(){…}
  bool insert(const in_tuple_t& tuple) {…}
  unsigned long get_size() const {…}
  win_container_t& get_content(){…}
  unsigned long reset(){…}
};

template<typename in_tuple_t, typename 
         out_result_t, typename win_t, ...>
class Win_WF: public ff_farm<> {
  class WF_Emitter: public ff_node_t<…> {};
  class WF_Collector: public ff_node_t<…> {};
  Win_WF(f_in_t F_in, f_out_t F_out, f_t F_usr,
         int _nw, long _wlen, long _wslide, …,
         bool _ordering=true):ff_farm<>(…){};
  …
};

Fig. 2: Example of pattern instantiation in FastFlow using C++ objects.

tuples and output results using strategies suitable for paral-
lelism. To this end, we use an intra-pattern allocation scheme
transparent to the user, exemplified in Fig. 3. In this example
the tuples are received from the network by a Generator
stage, where other parts of the application may have used any
allocator to dynamically create the memory space for the input
tuples. Typically, since a stream is a sequence of elements,
tuples are stored in contiguous memory areas and allocated in
batches of several tuples. Similarly, the user expects that the
results produced by the pattern are allocated using a desired
allocator instance, which will be used to free the memory
space in the afterward stages (the Consumer in the figure).
We call these allocators input/output external allocators from
the pattern viewpoint (they are provided as input parameters
of the pattern constructor).

As outlined in Fig. 3, the emitter thread (both in the
KP and WF patterns) is in charge of: i) receiving the input
tuples, ii) distributing them (by passing a pointer according
to the FastFlow model) to a subset of workers according to
the pattern semantics, and iii) deallocating the memory of
the original tuples when they can safely deallocated. This
task is not straightforward because a tuple can be destroyed
only when all the receiving workers have used it for their
processing. Then, the memory area can be released when
all the tuples in the same batch have been destroyed. We
perform this task in a very efficient way by using proper
internal input/output allocators optimized to manage small
objects like single tuples. Once a tuple is received, the emitter
thread copies it by requesting a memory area to the internal
allocator, and passes a pointer to the worker(s). The original
tuples are released by the emitter (using the external input
allocator) when a consecutive batch has been received and all
the tuples have been distributed to the workers.

Symmetrically, after a window triggering, the worker re-
quests a memory area for a new result to the internal output

allocator, executes the Fusr function and passes the result
object (through a pointer) to the collector thread, which in
turn transmits it to the backward stage by eventually copying
it using the external allocator that the user expects to use.

This scheme allows the patterns to exploit internal and
possibly lock-free allocators specialized for the specific inter-
thread interaction scheme. This is a typical producer-consumer
paradigm, in which one thread allocates memory areas for
data structures of the same size (tuples and results), and one
or more threads deallocate them. In the next section we will
describe the FastFlow special-purpose allocator that targets
this use case.

A. The FastFlow Allocator

The FastFlow framework provides a custom allocator opti-
mized for the allocation of small objects used in a producer-
consumer way. It is based on the idea of slab allocator [15].
A slab is a contiguous region of memory split into equal-size
chunks plus a header containing information about how many
of those chunks are in use. Virtual memory is acquired and
released per slab using a general-purpose allocator (by default
libc malloc/free calls). The allocator is implemented as a
C++ class that provides malloc-like and free-like methods.

A set of slabs, for a given object size, are pre-allocated
in a local cache, so that when a request to allocate memory
for an object of that size is received, it can be immediately
served by using a free chunk. A request to release an object
just produces a new item in the free chunk list without really
releasing virtual memory. Only when all the chunks of a
slab have been released, the slab memory is returned to the
general-purpose allocator. This simple process eliminates the
need to search for suitable memory space thus increasing
the performance, reduces memory fragmentation and increases
memory re-use [15].

The base FastFlow allocator has been implemented with
the idea that only one thread can allocate memory (mem-
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Fig. 3: Allocation scheme of a parallel pattern for sliding-window streaming operators.

producer) and one or more threads can release memory (mem-
consumer(s)). This is the typical scenario of task-farm and
pipeline computations. For implementing these simple scenar-
ios, the FastFlow allocator internally uses lock-free Single-
Producer Single-Consumer queues [16] (i.e. the same data
structure used in FastFlow to implement the memory channels
between pipeline stages). In particular, there is a queue for
each mem-consumer, where the mem-consumer is actually
the only producer for the queue. The generic mem-consumer
thread notifies the presence of a new free object to the mem-
producer thread by inserting the memory pointer to be released
into its own queue. When the mem-producer threads needs a
chunk of memory, the allocator first checks the presence of
a free chunk in its internal cache, if no chunk is available it
tries to pop a new chunk from its input queues, otherwise it
allocates a new slab for that object size and initializes it. The
cost of initializing a new slab is the most expensive operation
for the allocator, fortunately, this cost may be paid only until
the system reaches the steady state. After that point, no new
virtual memory is allocated or reclaimed by the system.

In FastFlow, this implementation has been used as a building
block for a more general allocator that has no constraint in
the number of producers/consumers. This notwithstanding, in
this work we considered the base version which is the most
efficient although it is the less user-friendly. This last point is
not a real issue in our case because the base FastFlow allocator
can be easily adapted to our KP and WF patterns, and most of
all, the memory management of tuples/results is completely
transparent to the end-user.

B. Alternative Design Choices
Several optimizations can be designed for enhancing the

patterns. They focus on: a) the way in which the emitter
distributes input tuples; b) which internal allocators are used
and how. Concerning point a), we study two ways to distribute
the tuples that also affect the allocation scheme: (CPY) the
emitter makes several copies of the input tuple, one for each
worker that needs it; (WRAP) the emitter distributes a pointer
to the same tuple to all the workers that require it.

These approaches coincide in the KP pattern because each
tuple is always transmitted to one worker. In contrast, in
the WF pattern each tuple can be transmitted to more than
one destination. While in the CPY version each worker can

safely deallocate the received tuples once inserted into the
corresponding window (they are private copies), in the WRAP
version each input tuple must be deallocated by the last
worker that operates on it. Without assumptions on the relative
speeds of the workers it is impossible to know statically
that worker. Our solution consists in wrapping each tuple in
a wrapper_t<input_t> structure with three fields: i) a
pointer to the input tuple; ii) a pointer to the allocator that has
been used to allocate the tuple (and its wrapper); iii) an atomic
counter initialized to the number of workers that receive that
tuple (reference counter).

This solution allows to make the worker threads independent
from which internal allocators are used by the emitter. For a
similar reason this solution is adopted also to wrap the output
results transmitted to the collector. The wrapper contains the
counter to free the tuple’s space. While in the KP pattern this
field is not really important, in the WF pattern each worker
atomically decreases the counter, and the worker that finds the
counter equal to 1 deallocates the tuple/wrapper pair using the
allocator whose pointer is in the wrapper itself.

Furthermore, the distribution in the WF pattern can be
optimized. As originally presented in [13], [5], workers can be
assigned to a set of consecutive windows grouped in a bundle,
i.e. each tuple is transmitted to all the workers assigned to
the bundles that the tuple belongs. The goal is to reduce the
number of workers than need the same tuple. Let b ≥ 1 be
the bundle size in terms of windows, each tuple belongs to at
most dnbe bundles, where nb = (w + (b − 1) × s)/(b × s).
As expected, the bigger the bundle the smaller the number
of bundles that contain the same tuple. This option can be
enabled by passing a proper flag to the pattern constructor,
and the potential benefits will be discussed in Sect. V.

Point b) is related to how the internal allocators are used.
Two opposite possibilities can be identified: (STD) all the allo-
cation/deallocation operations are calls to libc++ new/delete
primitives; (FF) the implementation uses several instances of
the FastFlow allocator. For the inputs, the emitter can use a
single FastFlow allocator instance to allocate the input tuples;
alternatively, a different instance can be used for each pair
emitter-worker. For the output results, each worker has its
own allocator that will be used by the collector to free the
corresponding memory. In the rest of this paper we will



evaluate these design choices with a real-world data stream
processing application.

V. EXPERIMENTS

The architecture used for the experiments is a dual-socket
Intel Xeon Ivy Bridge running at 2.40GHz with 24 cores
(12 per socket). Each core has 32KB private L1, 256KB
private L2 and 30MB shared L3. The OS is Linux 3.14.49
x86 64 shipped with CentOS 7.1. We use gcc 4.8.3 with
the optimization flag -O3.

We study the high-frequency trading application described
in [17]. The generator receives a stream of financial quotes
represented as a tuple of 64 bytes, which are processed by a
parallel operator algotrader. The operator maintains a window
of size w = 1, 000 and slide s = 25 for each stock symbol2.
At each window activation the user function aggregates quotes
with a resolution interval of 1 ms and applies a model
aimed at estimating the future price of the stock symbol.
The kernel uses the Levenberg-Marquardt regression algorithm
implemented by the C++ library lmfit3. This application
is fine-grained (the fitting procedure takes about 300 µsec),
therefore it is suited to bring out the differences between the
implementation variants. The experiments have been repeated
20 times. They exhibit a small variance, therefore error bars
are not reported.

A. Evaluating the Implementation Variants

We measure the maximum input rate that a pattern imple-
mentation sustains without being a bottleneck. Input tuples
belong to 2, 836 uniformly distributed stock symbols. This
scenario allows a fair comparison, otherwise the KP suffers
from load unbalance with skewed distributions. Fig. 4 shows
the highest input rate sustained with a different number of
workers. We pin each thread on a dedicated core. Hyper-
threading is not effective in this application, i.e. the maximum
number of workers is 19 (the application uses other 5 threads).

Fig. 4a compares three variants of the KP pattern: KP-ff
uses the internal allocation scheme depicted in Fig. 3; KP-std
uses libc++ new/delete; KP-static is a hand-made ver-
sion in which we have statically preallocated memory space
to avoid dynamic allocations. The latter assumes to know the
length of the input stream, which is unrealistic in general. It
will be used as a baseline for the comparison. The results
show that the KP pattern has a near ideal behavior in all the
versions, with KP-std slightly worse than the others. The
scalability with 19 workers is 18.8 with KP-static and
17.5 with KP-std. The gain derived from usage of internal
FastFlow allocators is about 7%.

The results with the WF pattern are lower (Fig. 4b). The
reason is that WF stresses more the memory hierarchy. With
the used window length and slide, each tuple is transmitted to
all the workers on average, and all of them perform simulta-
neously a copy in the corresponding window. With an input

2These parameters can be changed, the values used are typical ones [17].
3http://apps.jcns.fz-juelich.de/lmfit.
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Fig. 4: Maximum input rate sustained by different variants of
the parallel patterns.

rate of λ tuples/sec, WF performs on average nλ copies per
second while KP requires only λ copies. Furthermore, the WF
pattern requires an order preserving collector implementation,
which is not needed in KP. This introduces extra overhead
to maintain the priority queues with additional results copies.
This justifies why, also with the static version, the scalability
is not optimal (15.35 with 19 workers).

The worst variants use the CPY emitter that executes a copy
of each tuple to the destination workers. While this keeps the
deallocation easier, it makes the emitter service time propor-
tional to the number of copies. This is the reason why the
curve in the figure drops for parallelism degrees greater than
4 (8) in the WF-cpy-std (WF-cpy-ff) version. The use of
FastFlow allocators alleviates the problem. The WRAP solution,
used with internal allocators, provides the best results. The
distance with the static version is about 20%. From now on,
the WRAP solution will be our default one.

Fig. 5a shows the effect of the bundle-based distribution
described in Sect. IV-B. This optimization allows to reduce the
threads synchronizing on the atomic counters for deallocating



tuples. Furthermore, the emitter service time is lower since the
pointer to the input tuple must be forwarded to a smaller set of
workers. We show the maximum rate sustained with different
bundle sizes (in terms of consecutive windows). Between
parenthesis in the legend we report the average number of
workers operating on the same tuple. As expected, the greater
the bundle the better the performance. However, too large
bundles can be not always acceptable because they increase
the latency between results [5].
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Fig. 5: Effect of the bundle-based distribution in the WF
pattern, and impact of different allocators in the WF imple-
mentation (without bundling, i.e. b = 1).

B. Use of Existing Allocators

The idea to use custom allocators for the producer-consumer
scheme is effective in optimizing the scheduling/release of
input tuples and output results, and in recycling their memory
areas. In contrast, general-purpose allocators are application-
wise and can further speedup the execution of dynamic
memory allocations everywhere in the application code (e.g.,
inside the function Fusr). To cover the possible optimization of
dynamic memory allocations in all the parts of the application,

we study the combined used of the custom allocator on
top of general-purpose ones specifically targeted for parallel
processing. In particular, we focus on the use of Hoard [2]
and the TBB scalable allocator [3], which are widely used in
multicore-based parallel programming.
Hoard is used to reduce the heap contention in multi-

threaded applications. It is a drop-in replacement for stan-
dard allocation calls 4. Fig. 5b shows the results only for
the WF pattern for space reasons. By enabling Hoard we
achieve a performance increase of 13% with respect to using
standard libc++ new/delete. This result is lower than the
one using internal FastFlow allocators, which are specialized
for the inter-thread interaction scheme of the pattern. How-
ever, Hoard intercepts and replaces all the dynamic memory
allocation calls, i.e. also the ones in the lmfit function
called by the workers. Thus, an idea is to use both the
allocators in conjunction. The outcome of this solution is a
47% improvement with respect to the standard version, and
only a 18% loss of performance than the static one. The
reason for this is twofold: first Hoard takes advantage of
the NUMA management of memory areas to exploit better
memory bandwidth, second without the FastFlow allocator
Hoard manages a large set of small allocation/deallocation
requests (tuples, results) introducing more overhead; in the
FF+Hoard case instead, Hoard manages only requests from
the FastFlow allocator, which are less and for bigger memory
chunks.

We have also evaluated the use of the TBB scalable allo-
cator [3] (version 4.4 release 2). We obtain a performance
benefit of 18% compared with the standard new/delete. The
performance is 3.7% better than using Hoard, however lower
than using Hoard combined with the FastFlow allocator.
We have tried to combine TBB with FastFlow on top of it.
Nevertheless, no performance improvement has been achieved.
This aspect needs further investigations in our future work.

In the KP pattern the difference between allocators is
marginal. By using the bundling optimization (b = 40) and the
configuration FF+Hoard, the performance of the WF pattern
is close to the best results of KP (only 11% lower). This result
is valuable because WF can be efficiently used also in cases
with very skewed distributions of groups (stock symbols in
this case), where KP fails.

Finally, we have evaluated the different versions in terms
of memory occupancy. Fig. 6 shows an experiment in which
the application is fed by a real financial dataset from the
NASDAQ market5, composed of 50M of quotes generated with
an accelerated (50×) variable rate. We study the WF pattern
in different variants, executed with 8 workers (the minimum
to sustain the peak rate).

The virtual memory in use (VmSize) increases over time
because the workers allocate a new window each time they
encounter a stock symbol for the first time, and in the dataset

4By setting the LD_PRELOAD environment variable to force loading the
Hoard library before libc++.

5Daily trades and quotes of 30 Oct 2014 downloadable at http://www.
nyxdata.com.
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new stock symbols are received over the entire execution.
The VmSize is almost equal using the general-purpose TBB
allocator and the custom FastFlow allocator. The version with
libc++ new/delete (STD) exhibits a step behavior. Interesting
is the case of Hoard, which is more conservative in terms of
memory use, and the memory footprint grows more slowly
and remains lower with respect to the other solutions. This
behavior is inherited by using FastFlow custom allocators on
top of Hoard, though the VmSize becomes almost equal with
the others at the end. The VmSize of the static version is one
order of magnitude greater. In conclusion, this test confirms
that the performance benefits of our optimizations are achieved
without increasing memory consumption.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes how dynamic memory management
affects the implementation complexity of DaSP programs. We
implement our design choices and optimizations using parallel
patterns and the FastFlow runtime. The overhead of dynamic
memory management has been reduced by using a custom al-
locator tailored for the patterns. The experiments show that the
combined use of it with a scalable general-purpose allocator
allows to achieve up to 47% performance improvement with
respect to the version using standard malloc/free or new/delete.
In our future work we plan to extend our approach to other
patterns for DaSP as well as to evaluate the potential advantage
of using other lock-free allocators.
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