A Divide-and-Conquer Parallel Pattern
Implementation for Multicores

Marco Danelutto, Tiziano De Matteis, Gabriele Mencagli, and Massimo Torquati

Department of Computer Science, University of Pisa, Italy

{marcod, dematteis, mencagli, torquati}@di.unipi.it

Abstract

Divide-and-Conquer (DaC) is a sequential programming
paradigm which models a large class of algorithms used
in real-life applications. Although suitable to extract paral-
lelism in a straightforward way, the parallel implementation
of DaC algorithms still requires some expertise in parallel
programming tools by the programmer.

In this paper we aim at providing to non-expert program-
mers a high-level solution for fast prototyping parallel DaC
programs on multicores with minimal programming effort.

Following the rationale of parallel design pattern method-
ology, we design a C++11-compliant template interface for
developing parallel DaC programs. The interface is imple-
mented using different back-end frameworks (i.e. OpenMP,
Intel TBB and FastFlow) supporting source code reuse and
a certain amount of performance portability.

Experiments on a 24-core Intel server show the effective-
ness of our approach: with a reduced programming effort the
programmer easily prototypes parallel versions with perfor-
mance comparable with hand-made parallelizations.

Categories and Subject Descriptors D.1.3 [Programming
techniques]: Concurrent Programming

Keywords High-level parallel patterns, Divide and Con-
quer

1. Introduction

Divide and conquer (or divide et impera) (briefly DaC in
the sequel) is a well-known problem solving strategy that di-
vides the original problem into smaller sub-problems each
one recursively solved. Sub-problems solutions are prop-
erly combined in order to obtain the solution of the orig-
inal problem. The fundamental idea is that the solution of

sub-problems and the combination of their results is much
more easier than finding the solution of the initial problem
directly. The strategy consists in three steps applied at each
level of recursion [7]:

¢ a divide phase in which the problem is subdivided into a
number of smaller and easier to solve sub-problems;

® a conquer phase where the sub-problems are solved re-
cursively, while simple problems (not large enough) can
be solved directly without further recursion;

® acombine step in which the solutions of the sub-problems
are merged to obtain the solution of a bigger problem.

A vast set of problems in different application domains
can be solved with this method: typical examples are sorting
algorithms (e.g., merge- and quick-sort), numerical prob-
lems (e.g., matrix multiplication, Fast Fourier Transform),
computational geometry (e.g., convex hull calculation),
computational biology (e.g., block alignment of sequences),
preference queries (e.g., skyline queries) and many others.
From the parallel computing standpoint, DaC algorithms
have been widely investigated in the past owing to their in-
trinsic nature to be suitable for parallel computations. In
fact, the executions on different sub-problems are usually
independent and can be performed by different processors
in parallel. Furthermore, DaC algorithms tends to be cache
oblivious [3]], i.e. they are able to take advantage of both
shared and private caches for any cache size available on
the target machine. Despite their pronounced tendency for
parallelism, parallel implementations of DaC algorithms re-
quire a certain expertise in parallel programming and a good
knowledge of parallel programming tools and frameworks
to obtain the desired level of performance on today’s multi-
/many-core architectures.

The aim of this work is to provide to non-expert par-
allel programmers a high-level tool for fast prototyping of
parallel DaC algorithms implementations with a reduced
time-to-solution and, thus, a minimal programming effort.
To achieve this goal, we will rely on the basic parallel pat-
tern definition as provided by Mattson et al. in [19]. In this
way the programmer is only involved in identifying the key
components of the algorithms, and “forced” to reason di-

rectly in terms of the sequential problem instance (which is
naturally the one closer to the programmer’s thinking). On
the underlying parallel implementation level, our high-level
parallel pattern exploits different runtime systems (notably
OpenMP [23]], Intel TBB [25] and FastFlow [8]]) in a way
that is completely transparent to the programmer. The final
outcome is that our parallel pattern supports the non-expert
parallel programmer in the development, with a reduced ef-
fort, of good parallel implementations of DaC problems hav-
ing performance at least comparable to the ones that can be
produced by an expert programmer with a hand-made paral-
lelization.
The paper contributions can be summarized as follows:

e we propose a high-level definition of a parallel template
for DaC problems. The pattern is written using the C++11
syntax and code style. The interface is intentionally sim-
ple, straightforward to use, and does not require any par-
ticular parallel expertise;

e the proposed pattern can be implemented in various back-
end environments (or runtimes) to target different ex-
ecution scenarios. We propose its implementation for
shared-memory architectures only (multicores) using the
OpenMP compiler directives, the Intel TBB framework
and the FastFlow parallel programming library;

e the experimental section will analyze the implementa-
tions with different runtimes and will compare the ob-
tained performance against those obtained from more op-
timized hand-made parallel versions of the same code.

The rest of this paper is organized as follows. Sect. [I]
shows the interface of the high-level parallel pattern for
DaC. Sect. [3|describes the different implementations of the
pattern with various runtimes. Sect. 4] shows a large set of
experimental evaluations. Finally, Sect. [5| shows the related
work and Sect. [0l states the conclusion of this work.

2. The Divide-and-Conquer Pattern

The starting point of our work is inspired by the parallel
design patterns proposed in [19]. They describe solutions
to exploit parallelism in recurrent problems. Authors recog-
nized that the divide and conquer strategy is employed in
many sequential algorithms, and they motivated the need of
a high-level parallel pattern for DaC problems by observing
that while parallelism in these algorithms is obvious, the im-
plementation techniques required to efficiently exploit it are
not always straightforward.

Our proposed C++11 implementation provides to the pro-
grammer a simple and effective interface (called DAC in the
following) to easily derive a parallel implementation from
a divide-and-conquer algorithm. The same interface can be
implemented in different parallel programming frameworks
(we will study OpenMP, Intel TBB and FastFlow; see Sec-
tion [3)). This allows the exploitation of different frameworks
and target architectures while maintaining the same source

code. Unlike [9,22]] we do not consider the possibility to au-
tomatically detect parallelizable regions and automatically
produce code for the pattern instantiation under particular
conditions.

To instantiate the pattern the programmer needs to pro-
vide the data type of the input problem and the type of the
output result as template arguments. In the following we will
refer to them as ProblemType and ResultType respec-
tively; in the description we consider them different types,
although in specific cases they can coincide. To be utilized
in the interface, the types must provide a default constructor.
In addition, the programmer must provide the input object
and the output object where the final result will be stored.
These parameters are easily identifiable from the sequential
code and, as indicated by Mattson et al. [19]], they are suffi-
cient to fully characterize the algorithm behavior:

e a divide function takes as input a problem and produces
a set of sub-problems. It has the following interface:

void divide(const ProblemType &p,
std: :vector<ProblemType> &subps)

The function must fill the subps vector passed by refer-
ence. The use of the vector container enables the divide
function to generate a set of sub-problems with different
cardinality, i.e. not only two, at each recursion level;

® a baseCase solution for the base case problem. It takes
as input a problem and produces the corresponding result.
Both of them are passed by reference:

void base(const ProblemType &p,
ResultType &res);

® a combine function that builds the result of a problem
starting from the solution of its sub-problems:

void combine(std::vector<ResultType>& subres

>

ResultType &res);

® a condition to test whether a problem is a base case
problem:

bool cond(const ProblemType &p);

In the sequential algorithm the recursion continues until the
sub-problems can be solved directly. In a parallel program
it could be more convenient to stop recursion at an optimal
level of computation granularity, and solve the problem se-
quentially. This may result in a better use of the memory hi-
erarchy. However, it may also limit the number of concurrent
activities. The optimal cutoff size depends both on the spe-
cific problem and on target architecture as studied in recent
research work [[13]. As a future extension of this work, we
planned to add at the pattern interface level a flag that allows

to relieve the user from the burden of manually set the opti-
mal cutoff value, and at the same time, to tell the lower-level
runtime to automatically derive the cutoff technique that is
best suited for the application as proposed in [11].

The different functional parameters must be provided as
std::function i.e. they can be any callable C++ object
such as function pointer, lambda expression or function ob-
jects. An example of instantiation of the DAC interface is
shown in Listing|T]

// functions aliases
using divide_f_t =
std: :function<void(const ProblemType&,
std: :vector<ProblemType>&)
>;
using combine_f_t =
std: :function<void(std: :vector<ResultType>&,
ResultType&)>;
using base_f_t =
std: :function<void(const ProblemType&,
ResultType&)>;
using cond_f_t =
std: :function<bool(const ProblemType&)>;

// DE&C pattern constructor
template <typename ProblemType,
typename ResultType>
DAC(const divide_f_t& divide,
const combine_f_t& combine,
const base_f_t& base, const cond_f_t& cond,
const ProblemType& p, ResultType& res,
int par_degree = available_cores())

Listing 1: The DAC interface.

The programmer provides the reference to the starting
problem (p), i.e. the input of the original algorithm, and a
reference to the final result (res) where the result will be
stored at the end of the parallel processing. Furthermore, the
programmer may indicate also the desired number of parallel
executors (par_degree) that by default is set to the number
of available CPU cores. The call to the compute () method
on the DAC object will start the computation. Once returned,
the result will be found in the res variable.

2.1 Usage Examples

The advantage of using a high-level pattern-based approach
is that all the parameters required to instantiate the pattern
can be easily derived from the sequential algorithm. In ad-
dition, all the details concerning the parallel implementation
are completely hidden to the programmer. As an exempli-
fication, in the following we will show how to express two
common DaC problems: the computation of the Fibonacci
numbers and the standard Mergesort algorithm.

Fibonacci numbers. As a first example we consider the
naive computation of the n'” number of the Fibonacci se-

quence (with n > 0). Based to its definition, this can be
computed using a DaC approach as shown in Listing 2|

| unsigned int Fib(unsigned int n) {

2 if (n <= 2) return 1;
3 return Fib(n-1) + Fib(n-2);
4}

Listing 2: Sequential Fibonacci.

To instantiate the DAC pattern we have to specify the
Problem and Result types, which are in this case just
unsigned integers. The aforementioned functional pa-
rameters are immediately derived by the sequential algo-
rithm definition. The divide function simply splits the
problem of computing the n‘" Fibonacci number in the prob-
lems of computing the (n — 1) and (n — 2)** (line 3 in
Listing[2). The base case (line 2) regards the computation of
the first two numbers of the sequence. Finally, the combine
function sums up the partial results to generate the desired
Fibonacci number (line 3). The code to instantiate the pat-
tern is reported in Listing [3} all the functions are expressed
as C++11 lambda expressions.

| using uint = unsigned int;
2 DAC<uint, uint> dac(

3 // divide

4 [1(const uint &p,std::vector<uint> &subps) {
5 subps.push_back(p-1);

6 subps.push_back(p-2);},

7 // combine

8 [](std::vector<uint>& res,

9 uint &ret) { ret=res[0]+res[1];},

10 // sequential base case

11 [1(const uint &p, uint &res) { res=1;},
12 // condition

13 [1(const uint &p) { return (p<=2); I},
14 n, res);

15 dac.compute(); //starting the computation

Listing 3: DAC Fibonacci number computation.

Once executed the result will be available in the res
variable.

Mergesort. Listing [4] shows a sequential implementation
of the Mergesort algorithm.

| void merge_sort(std::vector<int>::iterator left,

2 std::vector<int>::iterator right
)

3 if(right-left>1) {

4 std::vector<int>::iterator m=

5 left+(right-left)/2;

6 merge_sort(left, m);

7 merge_sort(m,right);

8 merge (left,right,m);

9 }

10}

Il void merge(std::vector<int>::iterator left,
12 std::vector<int>::iterator right,

13 std::vector<int>::iterator mid) {
14 int size=right-left;

15 std::vector<int> tmp(size);

16 std::vector<int>::iterator i=left, j=mid;
17 //merge in order

18 for(int k=0;k<size;k++) {

19 if (i<mid && (j>=right || *i<=%j)) {
20 tmp [k]=*1i; i++;

21 } else {

22 tmp [k]=*j; j++;

23 }

24}

25 //copy back
26 std: :copy(tmp.begin() ,tmp.end(),left);

Listing 4: Sequential Mergesort algorithm

To use the DAC interface the programmer defines a Problem
type that encapsulates the information needed to describe the
problem: in this case the two iterators indicating the vector
portion to be sorted are sufficient.

struct Problem {
vector<int>::iterator left;
vector<int>::iterator right;

};

The same definition can be used as the Result type.

In the divide phase the problem of sorting an n-element
sequence is divided into the problem of sorting two sub-
sequences of n/2 elements (line 4 of Listing E]) The com-
bine phase is essentially managed by the merge function
(defined in lines 11-27). In this case the programmer has
to properly build the problem and the result data structures.
Furthermore, in the parallel implementation we have to con-
sider the case that eventually the sub-problems generated by
the divide function become small enough that they can be
computed sequentially. Therefore, it could be more conve-
nient to stop the recursion before reaching the base case of
the sequential algorithm. This is captured in the cond func-
tion: the sequential version is used when the remaining size
of the vector to be sorted has length smaller than a given cut-
off parameter, e.g., 1000 or 2000 elements. The code of the
DAC version of the mergesort is reported in Listing[5}

| void divide(const Problem &p,

2 std: :vector<Problem> &subps) {
3 std::vector<int>::iterator mid=p.left+(p.

right-p.left)/2;

4 Problem a;

5 a.left=p.left;

6 a.right=mid;

7 subps.push_back(a) ;

8 Problem b;

9 b.left=mid;

10 b.right=p.right;

11 subps . push_back(b) ;

3 void seq(const Problem &p, Result &ret) {
14 ret=p;
15 std::sort(ret.left,ret.right);;

16 }

17 void merge(std::vector<Result>& res,Result& ret)
{

18 int size=res[1].right-res[0].left;

19 std::vector<int> tmp(size);

20 std::vector<int>::iterator i=res[0].left;

21 std: :vector<int>::iterator mid=res[0].right;

22 std::vector<int>::iterator j=mid;

23 //merge in order

24 for(int k=0;k<size;k++) {

25 if (i<mid && (j>=res([1].right || *i<=%j)) {

26 tmp [k]=*i; i++;

27 } else {

28 tmp [k]=*j; j++;

29 }

300}

31 //copy back
32 std::copy(tmp.begin(),tmp.end () ,res[0] .left);
//build the result

[SSIN]
[USI

4 ret.left =res[0].left;

35 ret.right=res[1] .right;
36 }

37 bool cond(const Problem &p) {

38 return (p.right-p.left<=CUT_OFF);
39 }

Listing 5: DAC for the Mergesort algorithm.

f After that, the programmer can istantiate a DAC object as
shown in the previous example.

3. Pattern Implementations

The proposed pattern interface can be implemented using
different back-end frameworks for parallel programming on
multicores. This allows the programmer to exploit the dif-
ferent frameworks and, more in general, different target ar-
chitectures without requiring code rewriting and by having a
reasonable expectation of the actual performance of the par-
allel code, i.e. the so-called performance portability.

A generic divide and conquer algorithm can be defined as
shown in Listing [6}

| void DACAlgo(const ProblemType &p,

2 ResultType &ret) {

3 if(!'cond(op)) { //not the base case
4 //divide

5 std::vector<ProblemType> ps;

6 divide(p,ps);

7 std: :vector<ResultType> res(ps.size());
8 //conquer recursive phase

9 for(size_t i=0;i<ps.size();i++)

10 DACAlgo(ps[il,res[il);
11 //combine results

12 combine(res,ret);

13 return;

15 seq(p,ret); //base case
16 }

Listing 6: DAC algorithm.

We provide three different implementations of the DAC
pattern:

e DAC_OPENMP: an implementation of the pattern that uses
the OpenMP framework based on pragma-based pre-
processor directives;

e DAC_TBB: an implementation based on the Intel Thread-
ing Building Block (TBB) library;

e DAC_FF: an implementation entirely based on the Fast-
Flow framework.

In the following we will describe in detail the specific im-
plementation strategies used in developing the different ver-
sions of the pattern.

3.1 OpenMP

OpenMP is a specification for a set of compiler direc-
tives, library routines, and environment variables for shared-
memory parallelism in C, C++ and Fortran programs [23]].

Starting from version 3.0, OpenMP has introduced a sup-
port for task parallelism as a way to express units of work
with dependencies. Tasks found immediate application in re-
cursive algorithms that were traditionally difficult or ineffi-
cient to express using classical OpenMP constructs [2]]. The
programmer has to specify where the tasks are defined, their
code, if they share context and when they synchronize with
each other. Since OpenMP is based on compiler directives,
this is done by using proper pragmas in the source code.

In the case of DaC algorithms it is relatively easy to
recognize where these pragmas should be placed. Owing
to the wide OpenMP diffusion, we decided to provide a
ready-to-use implementation of our pattern. Internally, we
adopted the basic algorithm of Listing [6] by creating tasks
at each recursive call: independent calls can go through the
recursion tree in parallel but they have to be synchronized
before performing the combine phase, in order to be sure
that all the partial results have been computed. Therefore, the
recursive calls to DACAlgo (line 10 in Listing [6) are defined
as tasks using the proper pragma, and, before performing the
combine phase, a synchronization is placed to wait for their
completion.

How tasks will be scheduled and executed by the dif-
ferent thread of a parallel region will depend on the par-
ticular OpenMP implementation. As pointed out in [12], in
OpenMP the use of cutoff thresholds is important to limit the
overhead of task creation and management. For this reason
this parameter plays a fundamental role in achieving good
performance when using the OpenMP back-end.

3.2 TBB

The Intel Thread Building Blocks (TBB) library [25] aims
at supporting programmers in developing parallel programs
for multicore without having to specify directly thread cre-
ation and management. TBB provides the implementation
of a set of parallelism design patterns useful for defining
parallel programs. When these patterns do not match the
programmer needs, TBB provides proper interfaces for ac-
cessing its tasking abstraction which allows the definition of
arbitrary parallel programs. A Divide and Conquer pattern
does not appear among the ready-to-use TBB high-level pat-
terns, therefore we rely on generic task graphs to express this
kind of problems in TBB.

As pointed out by the official documentation [17], if per-
formance is a major concern it is more convenient to use the
low-level interface (i.e. the tbb: :task class) for express-
ing parallel programs. This interface represents a non-user
friendly approach and requires a certain level of expertise in
using the TBB features. For this reason, we decided to pro-
vide an implementation for the TBB library that internally
exploits the task feature through this interface. The rationale
followed in the development is very similar to the one used
for OpenMP: recursive calls spawn independent tasks that
are synchronized before the combine phase.

Tasks are scheduled to a set of threads for execution.
To achieve better load balancing among worker threads,
TBB uses a non-preemptive cooperative scheduling based on
work stealing, inspired by the task scheduler of Cilk5 [14].
This enables efficiently handling of very irregular divide and
conquer problems, i.e. computations that generate highly
variable sub-problem sizes such as in the quick-sort and
quick hull problems.

3.3 FastFlow

FastFlow [} i8] is a structured parallel programming envi-
ronment for multicore implemented in C++ on top of POSIX
threads. The framework presents a layered design: it pro-
vides high-level parallel patterns to the programmers, im-
plemented on top of core skeletons (pipeline and farm), eas-
ily composable and nestable to obtain complex computa-
tions. FastFlow does not natively offer a divide and con-
quer skeleton. To implement it we exploit the macro-data
flow pattern (£ £MDF) [4]. This pattern implements a dynamic
macro-dataflow interpreter processing direct acyclic graphs
(DAG) of tasks generated at run-time. Its runtime is in charge
of scheduling tasks to the processing units as they become
available (fireable), i.e. all input data-dependencies are sat-
isfied.

The definition of tasks and of their dependencies requires
a certain level of knowledge of the algorithm and the frame-
work itself. The proposed implementation handles this work
in a transparent way, relieving the programmer from this
burden. For divide and conquer algorithms the DAG can
be identified by considering the recursion tree. As already

pointed out in the previous sections, the recursive calls and
combine phases can be represented as tasks. Differently than
OpenMP and TBB, the ££MDF pattern does not offer primi-
tives for task synchronization. To guarantee the correctness,
proper DAG dependencies are enforced among the graph
nodes representing the sub-problems and the ones represent-
ing the partial results.

4. Experiments

In this section we describe a set of experiments of the DAC
pattern implemented with the three different parallel frame-
works. We have chosen three different and classic divide and
conquer algorithms: the merge- and quick-sort algorithms
and the Strassen algorithm for matrix multiplication. Besides
being very well-known, these problems fully characterize
the variety of possible situations that may occur in divide
and conquer algorithms, thus they represent a minimal yet
representative set of benchmark applications useful to test
the pattern. Specifically:

e merge-sort is characterized by a divide phase with a neg-
ligible computation cost, while most of the running time
is spent in the combine phase (i.e. the merge of two or-
dered sub-arrays);

e the quick-sort algorithm is symmetric with respect to
merge-sort. In fact, here the combine phase is totally
absent and the entire work is essentially performed in the
divide phase;

¢ in the Strassen algorithm both the divide and combine
phases represent relatively coarse-grain computations. In
addition, differently from the previous two cases, at each
recursion step the problem is divided into seven sub prob-
lems, rather than two.

As a first evaluation, we will show how the different
backend implementations perform with these problems. The
programs are tested with different sizes of the input data:
merge- and quick-sort are tested with arrays having size
equal to 10M, 20M, 50M and 100M (integer elements).
Strassen is tested using square dense matrices of double
elements having sizes equal to 1K x 1K, 2K x2K,4K x4K
and 8K x 8K.

These experiments are aimed at highlighting an impor-
tant result of this paper: the use of our high-level pattern
interface by a non-expert programmer in parallel program-
ming allows an easy development of parallel DaC programs
with performance comparable to the one achieved by a ex-
pert programmer using directly the low-level mechanisms of-
fered by the underlying framework. To show this result, we
compare the pattern-based parallelizations with hand-made
or third-party OpenMP and TBB parallelizations written us-
ing the low-level mechanisms (i.e. explicit task creation and
synchronization) provided by those frameworks. The source

code of all the implementations discussed in this section are
freely available. [ﬂ

The target platform used for the experiments is a dual
socket Intel Xeon Ivy Bridge running at 2.40GHz with 24
cores (12 per socket) and 64GB of RAM. Each core has
32KB private L1d, 256KB private L2 and 30MB shared
L3. The Turboboost and Hyperthreading facilities have been
disabled. For the compilation we use gcc 4.8.3 with the
-03 optimization flag.

Concerning the libraries, for OpenMP we use the gcc im-
plementation (interface v. 3.1), for the Intel TBB and Fast-
Flow library we use the version 4.1 and 2. 1. 2 respectively.
All the measurements are performed multiple times and av-
erage values are shown: in general, the difference between
the standard deviation and the average values reported is less
than 3.5%.

4.1 Comparison between Various Back-Ends

In this first evaluation we compare the behavior of the dif-
ferent backends. Figure [1| shows the completion time of the
three applications with the biggest input data instances using
different parallelism degrees. With parallelism degree equal
to one, the FastFlow back-end usually has a completion time
higher with respect to the OpenMP and TBB versions, how-
ever it approaches the other two solutions as long as the par-
allelism degree increases.

In general, all the implementations behave similarly, with
OpenMP slightly slower when low values of the parallelism
degree are used. The merge- and quick-sort plots show a
plateau when we use a parallelism degree equal or greater
to 12 — 14, which means that the performance does not
steadily increase if we use more cores. For Strassen we are
able to reduce the completion time using higher degrees
of parallelism. The main reason for this different behavior
is due to the fact that the sorting problems are essentially
memory-bound, hence the overall scalability of the parallel
implementation using many cores is bounded by the memory
bandwidth provided by the machine; the Strassen algorithm
is a more compute-bound application and better scalability
can be achieved.

Figure 2] compares the best time achieved by the different
implementations for different problem sizes. In the merge-
sort case FastFlow obtains the best time, while OpenMP ob-
tains the worst one. The TBB implementation results the best
option for the quick-sort problem: we argue that this is due
to the TBB task scheduler, which is known to be able to ef-
ficiently handle situations of unbalanced computations. This
is exactly the situation characterizing quick-sort, where the
divide phases can produce sub-problems with substantially
different sizes. Finally, for Strassen TBB exhibits the best
completion time, while OpenMP and FastFlow perform sim-
ilarly and slightly slower than TBB.

'The source code can be downloaded at: https://github.com/
ParaGroup/DAC

https://github.com/ParaGroup/DAC
https://github.com/ParaGroup/DAC

Merge-sort 100M

Quick-sort 100M

Strassen 8K

. ! oy Ea——
TBB —e—
) FF

e
o
T

Time (secs)
Time (secs)

PN WA OO N ®©
T

| oMP ——
88 —o— 400 ,1\ TBB —&—
1 ssop | k¥
lg 30k
18 250 |
(] L i
g 200 \
|F 150} \
&
100 - o
tibﬁi}ﬁ““\mﬂmgx‘
e 50 - i Han o = =
il & A A o ol L TTveeetessesy

"oMPp —+—

A S S S ool s i
12 4 6 8 10 12 14 16 18 20 22 24
Pardegree

12 4 6

(a) Merge-sort

8 10 12 14 16 18 20 22 24
Pardegree

(b) Quick-sort

10 12 14 16 18 20 22 24
Pardegree

12 4 6 8

(c) Strassen

Figure 1: Behavior of the different back-end implementations of the DAC pattern for the merge-sort, quick-sort and Strassen

problems with the biggest tested problem size. The plots show the completion time

with different parallelism degrees

(Pardegree).
Merge-sort Quick-sort Strassen
2400 : : 1600 : :
OmMP FF o OMP FF o !
TBB =3 TBB =3 20000 A

2000
1200 -

1600

@®

=)

S
T

1200

Time (msecs)
Time (msecs)

©
o
s}
N
o
s}
T

a
=}
s}

o

]
10M M
(a) Merge-sort

20M

(b) Quick-sort

e

%
o200

2ot

10000 ~
5000 -

Sese

X
5

%
5

O]
]

%
5

RS

XX
oo%

—
K

%
fote?
>
oot

oo
]
el

7%
20202

o)
0
fol

TR

2%
ot

1000 ~

R

2

i
Time (msecs)

%

R

e
fotes

DR
325

XX

%
oot

2
Setotets

X

o

R

o
<

3
oetet

00
3

2%

>
e
%
et

=
29

100

4K

8K
(c) Strassen

Figure 2: Comparison of the different backends with different problem sizes. The Strassen plot is shown in logarithmic scale.

All in all, these experiments show that the three back-
ends provide similar performance figures for the DAC pat-
tern.

4.2 Comparison with Hand-Made Versions

In this section we show the comparison between the pattern-
based and hand-made/third party parallelizations of the con-
sidered applications. For the quick-sort and the Strassen
problems we use a hand-made parallelization developed by
ourselves. For merge-sort we use the stable-sort version pro-
vided by Intel ﬂ for this evaluation, the same algorithm has
been implemented using the DAC pattern maintaining the
same interfaces and data types.

Figure [3] shows the ratio of the completion time of the
pattern-based implementation to the completion time of the
hand-made version for the considered applications. A value
greater than 1 indicates a performance loss, while a value
lower than 1 shows that the pattern-based version is faster
than the hand-made counterpart.

For the stable-sort and quick-sort problems, the im-
plementation written with the high-level pattern interface
achieves better performance for any input data size. This is

2 https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-
for-tbb-cilk-plus-and-openmp,

especially true for the stable-sort problem using the OpenMP
back-end. This may be due to the compiler optimizations
and would require a complete profiling of the applications
to be fully explained. We left this analysis in our future in-
vestigations in order to confirm our intuition. In Strassen,
we experience a performance loss especially using the TBB
back-end. The main reason of this difference derives from
the parallelization of the matrix multiplication base case
(through a parallel for) in the hand-made implementa-
tion version, while in the pattern-based implementations the
base case is handled sequentially. In all the considered sce-
narios, the experienced performance loss is less than 17%,
and the performance benefit, when present, is about 7% for
the considered problems on average.

5. Related Work

Over the years divide-and-conquer algorithms have attracted
the attention of the parallel community, due to their wide
diffusion in different domains and their attractive proper-
ties in terms of parallelism and memory hierarchy exploita-
tion 24].

Authors in [[13] observe that parallel-for and paral-
lel-reduce algorithmic templates offered by the Intel
TBB library could be used to parallelize this kind of prob-

https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp
https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp

Stable-sort

Quick-sort

Strassen

OMP TBB ===

12 12

11 11

Ratio DAC/HM
-

Ratio DAC/HM
=

o
%
olets

09

——

0.9

2
3555
3
4o

%
o5
ofe

%

%
<

5%

2
XL
RS

08 - 0.8 -

10M 20M 50M 100M 10M
(a) Stable-sort

OMP TBB =3

12 OomMP TBB ==

%
otesate]
o2ttt

s

X

03008
255

KK

fetetet

11

225
5

2
!

ote%!]

2

4%

XK
S5
2

o
5
<S5

e %

%
ot

XX
25

55

Ratio DAC/HM
=

23
28

0.9

5

2
5%
%
<
ptete

XX
28

X
25
o8

2
2%

2%

etete

o

o0
%
XX
et

s

0.8 -

os0s0m
X

o

R

5557
3558

%528
20%S

235
5

pe%4

1K 2K 4K 8K

50M
(b) Quick-sort

(c) Strassen

Figure 3: The plots show the ratio of the completion time of the pattern implementations over the time of the corresponding

hand-made parallelization of the same problem.

lems. However, this needs an important code restyling and
refactoring phase and it is actually limited to the pos-
sibility of having only binary divisions of the problem
and associative reductions. To overcome this limitation
they propose an additional algorithm template for TBB
(parallel recursion). Its implementation relies on the
parallel-for but in a more pragmatic way. The program-
mer has to define two objects (Info and Body), which en-
capsulate the information needed for the parallel execution.
The execution is based on the parallel-for, while the
combine phase is performed by a sequential call instead of
using the parallel-reduce.

The performance achieved by this implementation is sim-
ilar to, and in some cases better than, the one obtained with
the native parallel-for implementation. This solution is
strictly bounded to the use of the Intel TBB framework and
still requires an important code refactoring. Moreover, the
authors do not consider other methods that Intel suggests to
parallelize divide-and-conquer problems using its TBB li-
brary [17]], which are based on the more general and pow-
erful concept of task parallelism [[19]. According to these
methods, recursive calls are managed as different tasks and
a fork-join approach is used to handle their life-cycle. As
stated in the documentation [17], to obtain the best perfor-
mance it is suggested to use the low-level interface to the
tasking capabilities of TBB, which requires a certain level
of expertise to be used efficiently. In our TBB implementa-
tion (Sect. [3) this solution has been adopted for the backend
implementation of our high-level pattern template, hiding all
the low-level programming aspects to the user.

Another approch, which follows the high-level patt-
ernized view of parallel code, consists in using parallel pat-
terns to express parallelism. In these frameworks the pat-
terns for recurrent problems are provided to programmers as
algorithmic skeletons, i.e. pre-defined programming build-
ing blocks with an efficient implementation for the given
platform. Algorithmic skeletons were firstly introduced by
Cole [5]. He proposed four basic skeletons including the
Fixed Degree Divide & Conquer. The fixed degree require-

ment imposes that every divide phase produces a constant
number of sub-problems. This practically holds in many
real-life problems. Hovewer, to be more general and flexi-
ble, we removed this constraint in our parallel pattern.

Starting from Cole’s proposal, various skeleton frame-
works have introduced their own implementation of the
divide-and-conquer skeleton. Examples can be found in the
eSkel [6] and Skandium [[18]]. In [[10] authors show in detail
the implementation of a divide-and-conquer skeleton for the
MaLLBa framework, while in [24] the detailed implemen-
tation on the Muesli library is presented. In both the cases
the programmer specifies four different operators, which are
essentially equivalent to the ones of our template.

Abstracting from their interface details, our proposed pat-
tern template shares many common principles with these
previous works. However, while these proposals consider a
different skeleton for each particular framework, in this pa-
per we propose a more general pattern template which can
be easily implemented in different back-end frameworks by
maintaining the same interface and, almost, the same level
of performance. This makes it possible to achieve high code
(re-)usability and portability.

6. Conclusions and Future Work

In this paper we proposed a parallel template for divide-
and-conquer problems which represent a notable class of
recurrent algorithms. The pattern aims at simplifying the
parallel implementation on multi-core platforms providing
a ready- and easy-to-use solution to the user that does not
require any particular parallel expertise.

The parallel pattern has been implemented in various
backend environments: in this way, by maintaining the same
source code, the programmer can exploit the potential of
different frameworks and target architectures. We proposed
three different implementations for multi-core architectures
based on OpenMP compiler annotations, Intel TBB and
FastFlow parallel programming libraries. The experimen-
tal analysis, performed on a 24-cores Intel server, showed
that the reduced effort in programming does not come at

the expense of significant performance penalties. The ex-
perimental study has been done by comparing the pattern-
based solution with hand-made parallelizations using the
same backend runtime.

These results pave the way to further development of
this work. First, the set of backend implementations can
be further extended, including a MPI implementation for
targeting distributed systems, and a CUDA/OpenCL-based
implementation for GPUs. Second, we recognize that an
important role in achieving good level of performance is
played by the cutoff value, i.e. the point at which we stop
the recursion and solve the problem sequentially to better
exploit the cache hierarchy and/or limit the runtime support
overhead. This value depends on the structure of the specific
parallelized application and on the kind of platform used.
As proposed in [[L1]], using information from the application
collected at runtime (without relying on any user hints),
it is possible to automatically derive the cutoff technique
that is best suited for the application. This technique can
be performed automatically, by regulating the optimal cut-
off value based on updated measurements while the code is
running. Therefore, this approach can be studied integrately
with autonomic supports like the ones previously studied in
(20} 2211

Acknowledgments

This work has been partially supported by the EU H2020-
ICT-2014-1 project RePhrase (No. 644235).

References

[1] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin,
and M. Torquati. An efficient unbounded lock-free
queue for multi-core systems. In Proc. of [8th Intl
Euro-Par 2012 Parallel Processing, volume 7484 of
LNCS, pages 662-673, Rhodes Island, Greece, Aug.
2012. Springer. doi: 10.1007/978-3-642-32820-6_65.
URL http://calvados.di.unipi.it/storage/paper_
files/2012_spsc_europar.pdf|

[2] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, E. Su, P. Unnikrishnan, and G. Zhang. A Proposal
for Task Parallelism in OpenMP, pages 1-12. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-
540-69303-1. doi: 10.1007/978-3-540-69303-1_1.

[3] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ra-
machandran, S. Chen, and M. Kozuch. Provably good mul-
ticore cache performance for divide-and-conquer algorithms.
In Proceedings of the Nineteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’08, pages 501-510,
Philadelphia, PA, USA, 2008. Society for Industrial and Ap-
plied Mathematics.

[4] D. Buono, M. Danelutto, T. D. Matteis, G. Mencagli, and
M. Torquati. A lightweight run-time support for fast dense
linear algebra on multi-core. In Proc. of the 12th Interna-
tional Conference on Parallel and Distributed Computing and
Networks (PDCN 2014). IASTED, ACTA press, Feb. 2014.

[5] M. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. MIT Press, Cambridge, MA, USA,
1988. ISBN 0-262-53086-4.

[6] M. Cole. Bringing skeletons out of the closet: A pragmatic
manifesto for skeletal parallel programming. Parallel Com-
put., 30(3):389-406, Mar. 2004. ISSN 0167-8191. doi:
10.1016/j.parco.2003.12.002. URL http://dx.doi.org/
10.1016/j .parco.2003.12.002

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001. ISBN 0070131511.

[8] M. Danelutto and M. Torquati. ~ Structured parallel pro-
gramming with “core” fastflow. In V. Zsdk, Z. Horvith,
and L. Csatd, editors, Central European Functional Pro-
gramming School, volume 8606 of LNCS, pages 29-75.
Springer, 2015. ISBN 978-3-319-15939-3. doi: 10.1007/
978-3-319-15940-9.2. URL http://dx.doi.org/10.
1007/978-3-319-15940-9_2.

[9] D. del Rio Astorga, M. F. Dolz, L. M. Sanchez, and J. D.
Garcia. Discovering Pipeline Parallel Patterns in Sequential
Legacy C++ Codes. In Procs of the 7th Int’l Workshop on
Progr. Models and Applications for Multicores and Many-
cores, PMAM’ 16, pages 11-19, NY, USA, 2016. ACM. ISBN
978-1-4503-4196-7. doi: 10.1145/2883404.2883411. URL
http://doi.acm.org/10.1145/2883404.2883411,

[10] I. Dorta, C. Leon, C. Rodriguez, and A. Rojas. Parallel
skeletons for divide-and-conquer and branch-and-bound tech-
niques. In Parallel, Distributed and Network-Based Pro-
cessing, 2003. Proceedings. Eleventh Euromicro Conference
on, pages 292-298, Feb 2003. doi: 10.1109/EMPDP.2003.
1183602.

[11] A. Duran, J. Corbaldn, and E. Ayguadé. An adaptive cut-off
for task parallelism. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC 08, pages 36:1-36:11,
Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-
2835-9.

[12] A. Duran, J. Corbaldn, and E. Ayguadé. Evaluation of
openmp task scheduling strategies. In Proceedings of the
4th International Conference on OpenMP in a New Era of
Parallelism, IWOMP’08, pages 100-110, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 3-540-79560-X, 978-3-540-
79560-5. URL http://dl.acm.org/citation.cfm?id=
1789826.1789838.

[13] A. Fonseca and B. Cabral. Evaluation of runtime cut-off
approaches for parallel programs. In Proceedings of the 12th
International Meeting on High Performance Computing for
Computational Science (VECPAR 2016). Springer, 2016. to
appear.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the cilk-5 multithreaded language. SIGPLAN
Not., 33(5):212-223, May 1998. ISSN 0362-1340. doi:
10.1145/277652.277725. URL http://doi.acm.org/10.
1145/277652.277725.

[15] C. H. Gonzalez and B. B. Fraguela. @~ A generic algo-
rithm template for divide-and-conquer in multicore systems.
In Proceedings of the 2010 IEEE 12th International Con-
ference on High Performance Computing and Communica-

http://calvados.di.unipi.it/storage/paper_files/2012_spsc_europar.pdf
http://calvados.di.unipi.it/storage/paper_files/2012_spsc_europar.pdf
http://dx.doi.org/10.1016/j.parco.2003.12.002
http://dx.doi.org/10.1016/j.parco.2003.12.002
http://dx.doi.org/10.1007/978-3-319-15940-9_2
http://dx.doi.org/10.1007/978-3-319-15940-9_2
http://doi.acm.org/10.1145/2883404.2883411
http://dl.acm.org/citation.cfm?id=1789826.1789838
http://dl.acm.org/citation.cfm?id=1789826.1789838
http://doi.acm.org/10.1145/277652.277725
http://doi.acm.org/10.1145/277652.277725

tions, HPCC ’10, pages 79-88, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-0-7695-4214-0. doi:
10.1109/HPCC.2010.24. URL http://dx.doi.org/10.
1109/HPCC.2010.24.

[16] C. A. Herrmann and C. Lengauer. A higher-order language for
divide-and-conquer. Parallel Processing Letters, 10(02n03):
239-250, 2000.

[17] Intel®Threading Building Blocks (Intel @ TBB) De-
veloper Guide. Intel ®, 2016. Available at:
https://www.threadingbuildingblocks.org/docs/
help/tbb_userguide/Design_Patterns/Divide_and_
Conquer.html,

[18] M. Leyton and J. Piquer. Skandium: Multi-core program-
ming with algorithmic skeletons. In Parallel, Distributed and
Network-Based Processing (PDP), 2010 18th Euromicro In-
ternational Conference on, pages 289-296, Feb 2010. doi:
10.1109/PDP.2010.26.

[19] T. Mattson, B. Sanders, and B. Massingill. Patterns for Paral-
lel Programming. Addison-Wesley Professional, first edition,
2004. ISBN 0321228111.

[20] G. Mencagli, M. Vanneschi, and E. Vespa. Control-theoretic
adaptation strategies for autonomic reconfigurable parallel ap-
plications on cloud environments. In High Performance Com-
puting and Simulation (HPCS), 2013 International Confer-
ence on, pages 11-18, July 2013. doi: 10.1109/HPCSim.2013.
6641387.

[21] G. Mencagli, M. Vanneschi, and E. Vespa. A cooperative
predictive control approach to improve the reconfiguration
stability of adaptive distributed parallel applications. ACM
Trans. Auton. Adapt. Syst., 9(1):2:1-2:27, Mar. 2014. ISSN
1556-4665. doi: 10.1145/2567929. URL http://doi.acm.
org/10.1145/2567929,

[22] K. Molitorisz, T. Miiller, and W. F. Tichy. Patty: A pattern-
based parallelization tool for the multicore age. In Pro-
ceedings of the Sixth International Workshop on Program-
ming Models and Applications for Multicores and Manycores,
PMAM °’15, pages 153-163, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3404-4. doi: 10.1145/2712386.
2712392. URLhttp://doi.acm.org/10.1145/2712386.
2712392,

[23] OpenMP Architecture Review Board. Openmp application
program interface, 2011. URL http://www.openmp.org/
mp-documents/0OpenMP3.1.pdf.

[24] M. Poldner and H. Kuchen. Task parallel skeletons for divide
and conquer. In Proceedings of the Workshop of the Work-
ing Group Programming Languages and Computing Con-
cepts of the German Computer Science Association GI, Bad
Honnef, 2008. URL http://danae.uni-muenster.de/
lehre/kuchen/PUBLICATIONS/Honnef08.pdf. Publica-
tion status: Published.

[25] J. Reinders. Intel Threading Building Blocks. O’Reilly &

Associates, Inc., Sebastopol, CA, USA, first edition, 2007.
ISBN 9780596514808.

http://dx.doi.org/10.1109/HPCC.2010.24
http://dx.doi.org/10.1109/HPCC.2010.24
https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Design_Patterns/Divide_and_Conquer.html
https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Design_Patterns/Divide_and_Conquer.html
https://www.threadingbuildingblocks.org/docs/help/tbb_userguide/Design_Patterns/Divide_and_Conquer.html
http://doi.acm.org/10.1145/2567929
http://doi.acm.org/10.1145/2567929
http://doi.acm.org/10.1145/2712386.2712392
http://doi.acm.org/10.1145/2712386.2712392
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://danae.uni-muenster.de/lehre/kuchen/PUBLICATIONS/Honnef08.pdf
http://danae.uni-muenster.de/lehre/kuchen/PUBLICATIONS/Honnef08.pdf

	Introduction
	The Divide-and-Conquer Pattern
	Usage Examples

	Pattern Implementations
	OpenMP
	TBB
	FastFlow

	Experiments
	Comparison between Various Back-Ends
	Comparison with Hand-Made Versions

	Related Work
	Conclusions and Future Work

