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Abstract— Parallel programmers mandate high-level parallel
programming tools allowing to reduce the effort of the efficient
parallelization of their applications. Parallel programming
leveraging parallel patterns has recently received renovated
attention thanks to their clear functional and parallel semantics.
In this work, we propose a synergy between the well-known
Actors-based programming model and the pattern-based par-
allelization methodology. We present our preliminary results
in that direction, discussing and assessing the implementation
of the Map parallel pattern by using an Actor-based software
accelerator abstraction that seamlessly integrates within the
C++ Actor Framework (CAF). The results obtained on the
Intel Xeon Phi KNL platform demonstrate good performance
figures achieved with negligible programming efforts.

I. INTRODUCTION
The proliferation of multi/many-core systems, especially

in the consumer hardware, has produced a game-changing
for the computing industry, which today is relying on par-
allel processing to improve applications performances [1].
Parallel programs are far more challenging to design, write,
debug, and tune than sequential ones, and it is common for
parallel programmers to face deadlock, starvation and data-
race issues.

Over the years, multiple programming models have been
proposed to cope with the parallel programming issues. One
of these is the Actor model formulated by Hewitt, Bishop,
and Steige in 1973 [2]. Recently, it has gained renewed atten-
tion as a powerful approach to the problems of concurrency
not only from the theoretical viewpoint. This is mainly due
to the development of Cloud Computing and other dynamic
and heterogeneous distributed environments [3] and also to
the success of programming languages such as Erlang [4]
and Scala [5], two implementations inspired to the Actor
model.

The Actor model formulation describes entities called
Actors that execute independently and concurrently. Actors
do not explicitly share states and communicate only via
asynchronous message-passing through unbounded commu-
nication channels. Since Actors are self-contained concurrent
entities, they avoid race conditions by design. Moreover,
Actors do not explicitly support synchronization mechanisms
relying only on asynchronous messages, thus preventing
deadlock situations. The lack of shared states makes the
Actor model particularly attractive for distributed and het-
erogeneous platforms.
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Nevertheless, the Actor model, like other similar models
(e.g., the task-based model) follows a non-structured ap-
proach to parallel programming, which leaves the users free
to build their concurrent system, without any performance
guarantee. This aspect, from the one hand, allows great
flexibility in the software development process, on the other
hand, it does not offer to the programmer any methodology
for solving performance related issues. It is common to
encounter, in Actor-based applications, Actors that, under
particular conditions, become bottlenecks thus reducing the
overall system performance. These situations are not easy to
discover and to eliminate. Usually, the programmer has to
manually try to split the computation over multiple Actors
to mitigate the bottleneck issue.

A different approach for dealing with issues related to par-
allelism exploitations is to use parallel patterns [6]. Parallel
patterns such as Map, Ruduce and Pipeline add semantics
information about the way parallelism has to be exploited,
offering a clear functional and parallel semantics. The par-
allelization methodology based on parallel patterns arises
from the attempts of capturing the best practices through
which parallel software can be organized, designed, and
implemented. Parallel patterns are becoming an increasingly
popular programming approach for writing high-level and
efficient parallel applications targeting multiple platforms,
from multi-cores [7], to distributed systems [8], to hardware
accelerators such as GPUs [9] and FPGAs [10].

Our research aim is to study how to combine the Actor-
based programming model with the structured parallel pro-
gramming methodology based on parallel patterns to take
the best of the two worlds. In this paper, we propose a
first attempt of integrating the two approaches by using the
CAF framework [11], [12] as an implementation of the Actor
model in modern C++.

The contribution of this work is twofold:
• we propose an Actor-based software accelerator that

implements a Map parallel pattern that may be instanced
and used by multiple CAF Actors to speed up map-like
computations.

• we introduce the thread-to-core affinity feature in the
CAF run-time system to enable the possibility to sepa-
rate the threads used to implement the accelerator from
the threads used in the CAF run-time to execute the
Actors.

The rest of the paper is organized as follows. Section II
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provides the background materials related to the Actor
model, the parallel pattern methodology and the CAF frame-
work. Section III describes the design and implementation of
the Map accelerator proposed in this work, and the thread-
to-core affinity implementation in the CAF run-time system.
Section IV shows the preliminary performance evaluation of
the Map accelerator. Finally, Section V contains the related
works and Section VI outlines the conclusions and possible
future work.

II. BACKGROUND

A. The Actor model

The Actor model was proposed by Hewitt, Bishop and
Steiger in their seminal work on 1973 [2]. It was initially
developed to be used for artificial intelligence research
purposes to modelling system with thousands of indepen-
dent processors each having a local memory and connected
through some high-performance network. More recently the
Actor model gained new interest and started to be adopted
in the contest of multi/many-core architectures [13].

The Actor model is centered around the Actor concept.
An Actor is a concurrent entity that:

• interacts with other Actors through messages.
• may create a finite number of new Actors,
• may dynamically change its internal behavior.

Every Actor has an input channel (called mailbox) where it
receives messages from other Actors. For each message, it
performs a local computation based on its private internal
state and on the message just received; it may generate new
messages toward on or more Actors (included itself).

The interactions among Actors are based on asynchronous,
unordered, fully distributed, address-based messaging. To
achieve full asynchronicity, and thus preventing deadlock,
each Actor has an input mailbox of unbounded capacity.
However, no guarantee is given about the ordering in which
the messages are processed by an Actor. There is no upper-
bound guarantee on the time needed by the system to reach
a stable state, i.e. a state where all the messages have been
processed and no other messages have to be delivered. The
Actor model only guarantees that all messages will be even-
tually processed. One fundamental aspect of the Actor model
is that there is no global state and no central entity managing
the whole system. The computation is a partial ordering of
a sequence of transitions from one local state to another.
Unordered events may be executed in parallel, therefore the
run-time system can compute the new local state of multiple
Actors concurrently. The flow of events in an Actors system
forms an activation sub-ordered tree expressing, for every
event, a causality order with a finite path back to the initial
event. Different branches of the activation sub-ordered tree
represent chains of parallel events. The Actor model enforces
strict locality by allowing Actors to build their knowledge
about the rest of the system only through messages, including
addresses of other Actors. Indeed, every Actor maintains a
dynamic list of acquaintance Actors, representing its partial
view of the system. An Actor enlarges the acquaintance list

if it spawns a new Actor, if it receives a message from an
unknown Actor, or if it receives the address of other Actors
via incoming messages.

B. C++ Actor Framework (CAF)

The C++ Actor Framework (CAF) [11], [12] allows the
development of concurrent programs based on the Actor
model leveraging modern C++ features. Differently from
other well-known implementations of the Actor model, such
as Erlang [4] and Akka [14], which use virtual machine
abstractions, CAF is entirely implemented in modern C++
thus compiling directly into native machine code.

CAF applications are built decomposing the computation
in small independent work items that are spawned as Actors
and executed cooperatively by the CAF run-time. Actors are
modeled as lightweight state machines that are mapped onto
a pre-dimensioned set of run-time threads called Workers.
Instead of assigning dedicated threads to Actors, the CAF
runtime includes a scheduler that dynamically allocates ready
Actors to Workers. Whenever a waiting actor receives a
message, it changes its internal state and the scheduler
assigns the Actor to one of the Worker threads for its
execution. As a result, the creation and destruction of actors
is a lightweight operation.

Actors that use blocking system calls (e.g., I/O functions)
can suspend run-time threads creating either imbalance in
the workload of system threads or their starvation. The
CAF programmer can explicitly detach Actors so that the
Actor will be associated with a dedicated system thread.
A particular kind of detached actor is the blocking actor.
Detached and blocking Actors are not as lightweight as
default event-based CAF Actors.

In CAF, Actors are created using the spawn function,
which creates an Actor from functions, C++ lambdas, and
class instances. It returns a network-transparent Actor handle
corresponding to the Actor address. Communication happens
via explicit message-passing by using the send command.
Messages are buffered into the mailbox of the receiver Actor
in arrival order. The response to an input message can be
implemented by defining behaviors. The handler function
signature is used to identify different behaviors.

C. Parallel patterns

Parallel patterns [6] are schemas of parallel computations
that recur in the realization of many algorithms and appli-
cations for which parametric implementations are available
Such well-known parallel structures have a rigorous seman-
tics with an associated cost model that allows evaluating
their profitability. Some notable examples of parallel patters
are Map, reduce, pipeline, task-farm, divide-and-conquer,
stencil, and parallel-for. The programming approach based
on parallel patterns is called structured parallel program-
ming [15]. This approach provides the parallel application
programmer with a set of predefined, ready-to-use parallel
abstractions that may be directly instantiated, alone or in
composition with, to model the complete parallel behav-
ior of the application. This raises the level of abstrac-
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tion by ensuring that the application programmer does not
need to deal with parallelism exploitation issues and low-
level architectural details during application development.
Instead, these issues are efficiently managed using state-of-
art techniques by the system programmer while designing
the development framework and its associated run-time. The
use of parallel patterns in the development of applications
provides several advantages both concerning time-to-solution
and the automatic or semiautomatic applicability of different
optimization strategies. This last aspect is usually manually
enforced in programming models that do not use a pattern-
based approach, such as the Actor model.

Combinations of parallel design patterns and their con-
crete implementations called also algorithmic skeletons are
used in different parallel programming frameworks such as
SkePU [9], Muesli [16], FastFlow [17], Delite [18] and
GrPPI [19], just to mention few of them. Other frameworks
such as Google MapReduce [8] are instead built around a
single powerful parallel pattern.

III. PATTERN-BASED SOFTWARE ACCELERATOR

A. Design

The Actor model promotes an unstructured approach to
parallel programming. A high number of concurrent activities
embedded into Actors cooperate by exchanging messages
to solve a given problem. Actors are dynamic entities,
whose behavior may evolve over time and new connections
between Actors may be dynamically activated. The high
degree of freedom and flexibility offered by the Actor model
may easily lead to building complex Actor-based topologies
which are difficult to modify, debug and optimize.

To deal with these issues, we envision a synergy between
the Actor model and the structured parallel programming
approach based on parallel patterns. We propose to design
and implement some essential parallel patterns as fundamen-
tal components that can be used as ”Actors’ accelerator”.
Parallel patterns (and possibly their compositions) offer a
clear functional and parallel semantics that simplifies parallel
programming. Moreover, it relieves the application program-
mers from the responsibility of designing and implementing
efficient and well-known parallel components, allowing them
to concentrate on the business logic of the application
considered.

Actor Model

Hardware

Parallel patterns

Parallel applications

Fig. 1: Layered design of the synergy between the Actor
model and the parallel patterns approach.

As shown in Fig. 1, our proposal leverages a software
layer providing a set of parallel patterns implemented by
using Actors that seamlessly coexist with the Actors used to
implement applications. The user may use parallel patterns
together with Actors to take advantage of both the flexibility
of the Actor model and the performance offered by the
specific parallel pattern implementation.

In the following, we will show the design and the imple-
mentation of a software accelerator for Map pattern.

The Map pattern is a data-parallel paradigm that applies
the same function to every element of an input collection.
The Map is defined as (map f) : α collection →
β collection and computes a function f : α → β over
all items of an input collection whose elements have type α.
The output produced is a collection of items of type β where
yi : β, yi = f(xi) for each itemi xi of the input collection.
The precondition is that all items of the input collection are
independent and can be computed in parallel.

If we consider the case of an Actor that has to execute a
Map computation on a large input collection, its service time
is given by the time needed to compute the single element
of the collection multiplied by the number of elements. If
this Actor offloads the computation it has to execute to a
parallel implementation of the Map pattern, its service time
could be reduced ideally to the time needed to compute a
single element.

We designed the Map accelerator as a set of Actors with
a predefined communications topology. It can be instantiated
by any Actor and its address can be shared with other
Actors via messages. Once spawned, the accelerator waits
for incoming requests. Multiple Actors may send a request
containing both the input data collection and the function
to compute in parallel. The accelerator will send back the
result as soon as it is available. The Map accelerator can
also be used in streaming computations where the generic
Actor needs to speed up its local data-parallel computation
on the incoming input data.

An important point to consider is the potential conflicts
that the threads implementing the software accelerators may
have with the run-time threads used for executing the appli-
cation Actors. To minimize the interference introduced by the
software accelerator, we modified the run-time of the CAF
framework to control the placement of system threads on
different cores of the target platform. We call this new feature
thread-to-core affinity. By using this new low-level feature,
we can confine the run-time threads used to implement the
Actors of the Map accelerator to a restricted set of machine
cores.

B. Implementation

The implementation of the Map accelerator has been done
at two different level. At the bottom level, we modified the
CAF run-time to introduce the possibility to manage the
thread-to-core affinity for the run-time system threads. This
allows to control the mapping of different CAF threads used
to execute Actors, for example to confine the threads used for
implementing the Map accelerator on a subset of the machine
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cores. At the top level, we designed and implemented the
software accelerator and its API by using the Actor model
implemented by CAF.

Affinity control implementation. With the terms thread-
to-core affinity (or simply thread affinity) we refer to the
possibility to control on which logical core(s) a given thread
can be executed by the OS. This prevents the OS to move
the thread on a different set of cores thus reducing potential
noise introduced by the OS scheduler.

The CAF framework defines different types of threads:
the ones used for implementing the thread-pool in charge of
executing the event-based Actors, the ones used to execute
detached Actors and those used for executing the blocking
Actors. We defined a new system configuration parameter
that allows to statically specify on which cores the different
kinds of CAF run-time threads have to be executed by the
OS. The set of cores can be selected by using an affinity
string (affinitystr ), i.e. a string whose format respect the
following grammar (coreid is a valid core identifier):

range ::= coreid | coreid − coreid

rangelist ::= range | range, rangelist

group ::= < rangelist >

grouplist ::= group | group grouplist

affinitystr ::= grouplist

The affinitystr is composed by a set of groups enclose
in angle brackets (< >). A group hosts a collection of cores
separated by commas ( ,) or a range of them delimited with a
single dash (-). The CAF run-time has been modified in such
a way to read the affinity string and to execute the proper
system calls for setting the thread affinity. For example, the
affinitystr "<0> <2-4> <1,5>" allows placing the first
thread spawned by CAF on the core with id 0, the second
thread on cores 2, 3 and 4, and the third thread on cores 1
and 5. The next thread spawned will be placed again on the
first group, i.e. core 0.

This new feature permits to separates CPU resources
among different kinds of CAF threads, and particularly
allows avoiding overlap between the CAF run-time thread
used for event-based Actors from other threads.

1 2 3 4 5 6

7 8 9 10 11 12

CPU cores
CAF runtime
threads
Map accelerator
threads

Fig. 2: Example of thread-to-core affinity in CAF.

Figure 2 shows a simple example where CPU cores have
been partitioned between the CAF run-time threads and the
threads used for running the Actors implementing the Map
accelerator.

Map implementation. We implemented the Map accelerator
by using two different Actors: the scatter/gather and the
Worker, the latter replicated a number of times. They are

connected according to a predefined communication schema
(see the right-hand side of Fig. 3). The scatter/gather Actor
manages both incoming requests coming from “external”
Actors and the partial results coming from the pool of
“internal” Worker Actors. The n Workers of the pool, apply
the Map function on disjoint portions of the input data
collection producing n partial results that are then assembled
by the manager scatter/gather Actor.

The generic Worker Actor, wait for an incoming chunk of
data elements and the function to apply to each item of the
collection. Thanks to the zero-copy feature of the CAF run-
time, all Workers read from the same data collection and then
each of them creates an internal copy of the collection storing
only the computed results. The manager Actor receives the
computed chunks and creates a new data collection with the
results that will be eventually sent back to the sender.

Figure 3 shows a code snippet in which the Map acceler-
ator is instanced and used by a single Actor. The logical
Actor schema produced by the code snipped is sketched
in the right-hand side of the figure. The Actor creates a
new Map accelerator instance and starts to offload data read
from a file. Then the Actor asynchronously sends the result
obtained from the accelerator to another Actor (next actor in
the figure).

In particular, in the line 2 a new instance of the Map
accelerator is created by using the CAF spawn function
passing the number of Workers to be used. Line 7 sends
the request to the accelerator by using the request CAF
function. A vector of integers and the lambda function
defined at line 4 is provided as input arguments. The sender
Actor creates an asynchronous handler for the promise of the
result. When the Map accelerator completes the execution,
it sends back to the Actor the result that is then used in the
callback function defined at line 9.

It is worth noting that the Map accelerator seamlessly
integrates with the Actor model implementation provided by
the CAF framework. CAF’s Actors can spawn and interact
with the accelerator in the same way they communicate with
each other.

To use the thread-to-core affinity feature with the aim of
separating the resources used for the accelerator from the
ones used for the CAF run-time, the Map accelerator spawns
its internal Workers as detached Actors. The scatter/gather
Actor is instead executed as event-based Actor since its
associated computational cost is low.

IV. EXPERIMENTAL RESULTS

In this Section, we test the CAF implementation of the
Map accelerator discussing both a simple synthetic Map
benchmark and also a modified version of the CAF Latency
Benchmark described in [20].

All tests were executed on a Intel Xeon Phi 7210 many-
core platform (codename Knights Landing, KNL). The KNL
is equipped with 32 tiles (each with two cores) working at
1.3GHz, interconnected by an on-chip mesh network. Each
core (4-way SMT) has 32 KB L1d private cache and a L2
cache of 1 MB shared with the sibling core on the same tile.
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1 /* Spawn a map accelerator instance */

2 auto map_instance = caf::spawn(map, 5);

3 /* Declare the Map function */

4 auto F = [](int el){ return el + 1;};

5 for (auto vec : read_from_disk()){

6 /* Offload the computation to the accelerator */

7 caf::request(map_instance, F, vec).then(

8 /* Async receive */

9 [=] (std::vector<int> result) {

10 send(next_actor, result); //send the result

11 });

12 }

spawn

actor next
actor 

file

send
data 

receive
data 

scatter/
gather

worker
1

worker
3

worker
5 

worker
2 

worker
4

Map accelerator

filefile

Fig. 3: An usage example of the Map accelerator (left-hand side). Logical schema of the example (right-hand side).

The machine is configured with 96 GB of DDR4 RAM with
16 GB of high-speed on-package MCDRAM configured in
cache mode. The machine runs CentOS 7.2 with Linux kernel
3.10.0 and the GCC compiler version 7.3.0. The code was
compiled with the -O3 optimization flag. All plots report the
average value obtained by five distinct runs.

The first benchmark considers a data-parallel computation
on a matrix A of size N×M . The program spawns an Actor
that computes, for each row of the input matrix, a function f
on each element of the row and then it sums up all elements
of the row. The symbolic computation of the i-th row is the
following:

∑M
j=0 f(A[i, j])) ∀i ∈ [0, N).

We parallelized the computing Actor by spawning the Map
accelerator and offloading to the accelerator the computation
of the function f over the matrix rows. The computing Actor
then executes the reduce part locally.

The benchmark has been executed with an input matrix
of size 100× 5000, and the function f executes a synthetic
computation of about 200µs on each element of the input
row. The test has been run with and without the thread-
to-core affinity configuration to evaluate the performance
improvement of isolating the accelerator threads from the
CAF run-time threads.

Figure 4 shows the execution time (in seconds) and the
scalability of the test. The total number of threads used is
fixed to 64 and they are mapped, by using the taskset
Linux command, to the 64 physical cores of the machine. For
the test, the system threads have been split into two subsets:
1) a set of threads assigned to the Map accelerator, and 2) a
second set assigned to the CAF run-time threads. In the plot,
the number of Map’s Workers used is reported in the bottom
x-axis, while the number of threads assigned to the CAF run-
time system is reported in the top x-axis. As can be seen,
the use of the Map accelerator allows obtaining a scalability
of about 50 with 63 Map Workers. Moreover, the version
that isolates the accelerator threads from the other run-time
threads captures a non-negligible performance advantage for
the execution time.

As a second test, we considered the CAF Latency Bench-
mark [20]. It aims at measuring the message latency of
CAF’s Actors considering either single pipeline of Actors

or multiple replicas of pipeline chains each one having a
fixed number of Actors (see Fig. 5). A Rate generator
Actor generates messages at a given constant rate. The
Result collector Actor, collects all messages and compute
the average message latency.

To evaluate the Map accelerator implementation, we mod-
ified the CAF Latency Benchmark by adding a new type
of Actor in the pipeline that instead of just forwarding the
message to the next Actor, it executes a data-parallel com-
putation on the input message (the schema of the modified
benchmark is shown in Fig. 6). There is only one computing
Actor for each pipeline chain. These ”heavy-weight” Actors
are the bottlenecks of the pipelines potentially producing
a significant increase in the average message latency. The
objective of this benchmark is to show how the message
latency can be reduced by parallelizing the compute intensive
Actors by using the Map accelerator. To this end, a single
instance of the Map accelerator is created at the program
start-up, and all computing Actors share its reference. In
this way, they can offload their computation to the parallel
accelerator to decrease their service time.

We tested the case of 100 pipeline chains each one with
8 Actors. The message rate is fixed to 1, 000 messages per
second. The computing Actors work on an input collection
of 5, 000 elements. The average execution time per item is
about 1µs. The benchmark lasts 15 seconds.

Figure 7 shows the average message latency of a message
for traversing a pipeline chain varying the number of Map’s
Workers. We consider two configurations: the first one with-
out the thread-to-core affinity and the second one with the
affinity configured. As in the previous benchmark, for all
configurations tested, the total number of system threads is
fixed to 64.

The results obtained demonstrate that the two versions
perform better than the configuration in which the computing
Actor is executed sequentially when the number of Map’s
Workers is in the range 8–48. Outside this range, there are
too few Actors either in the Map accelerator to amortize
the overhead introduced by the accelerator, or in the CAF
run-time system to execute the 800 Actors implementing
the benchmark, respectively. Therefore, in such conditions,
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Rate
generator 

actor 1 actor 2 actor 3 actor 8

Result
collector 

...

actor 1 actor 2 actor 3 actor 8...

actor 1 actor 2 actor 3 actor 8...
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pipeline 1

pipeline 2

pipeline N

message latency

message
with a timer

bottleneck actor

Fig. 5: The CAF Latency benchmark with bottleneck Actors.

Rate
generator 

actor 1 actor 2 actor 3 actor 8

Result
collector 

...

actor 1 actor 2 actor 3 actor 8...

...

pipeline 1

pipeline N

message
with a timer

Map
...

message latency

Fig. 6: The Map accelerator in the CAF Latency benchmark.

the message latency drastically increases because the two
resource sets are not well balanced.

The version with the sequential Actor has an average mes-
sage latency of about 7ms, whereas the version with the Map
accelerator and the thread-to-core affinity enabled has an
average latency of 0.8ms. The configuration without thread-
to-core affinity has an irregular message latency varying the
number of Workers. This is due to the interferences of the
two set of system threads that the OS scheduler is not always
able to evenly distribute to the available core resources.

To conclude, the two benchmarks tested demonstrate that
the Map accelerator can reduce the service time of Actors
performing map-like computations, requiring only a mini-
mal programming effort to the application developer. We
do believe that the very same approach can be profitably
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Fig. 7: CAF Latency Benchmark with 100 chains and input
vectors of 5, 000 elements.

used also for accelerating the computation of other parallel
patterns such as the pipeline, the task-farm and the divide-
and-conquer.

V. RELATED WORKS

Here we consider some research works that proposed
extensions or improvement of the Actors-based model.

Skel [21] is a parallel library written in Erlang. It provides
the user with a set of parallel patterns (e.g., pipeline, farm)
that can be composed in a functional way. Each pattern is
implemented by using Erlang Actors and can be customized
by providing a set of functions. The authors claim that Skel
can improve the programmability of the Actor model and
can also solve performance degradation issues. Our approach
differs from the Skel one. We advocate the use of a software
accelerator to seamlessly introduce parallel patterns in the
Actor model.

In [22] the authors extends the C++ Actor Framework
(CAF) to support external HW accelerator (e.g., GPUs)
through OpenCL. The extension implements an OpenCL
manager and a new OpenCL Actor. The OpenCL manager
supports the interaction with OpenCL capable devices and it
can spawn OpenCL Actors. Each OpenCL Actor implements
a single OpenCL kernel and thus the spawn operation need
the kernel source code, and the definition of the in and
out buffers as parameters. After spawning the OpenCL
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Actor, other Actors can send requests of computation that
can be forwarded to the defined external accelerator de-
vice. Although, the CAF OpenCL extension presents several
similarities to our approach, our proposal differ from it
in many aspects. First, our approach does not require a
specific external hardware accelerator to speed up data-
parallel computations. Also, we propose an effective way in
which CPU resources can be partitioned between the Actor
model and an Map accelerator. Moreover, our accelerator
supports concurrent interaction with multiple Actors and
each of them can execute a different function. Finally, we
propose a wider synergy between the Actor model and the
parallel patterns approach, where the Map accelerator is the
first implementation.

The Ray framework [23], is a distributed concurrency
framework designed to implement Reinforcement Learning
algorithms, capable to cooperate with the most modern
Machine Learning libraries. Ray implements a task-based
parallel model with remote procedure calls and promises
in combination with some concepts of the Actor model. In
particular, Ray implements Actors using the active object
model, where Actors are objects with an internal state and a
set of exposed methods. The combination of the Actor model
with the task-based model is an interesting way to combine
stateless pure functions (i.e. tasks) with stateful object with
methods (i.e. Ray Actors). Differently from Ray, we aim to
bring crafted solutions for common computational problems
and to bring a methodology to solve bottleneck problems
inside Actors-based applications. Indeed, Ray has a dynamic
computational graph, which suffers from the same issue of
the Actor model.

In [24] the authors proposed an improved message ex-
ecution scheduler for the Actor model. They propose a
customizable message scheduler that is capable to schedule
multiple independent messages at the same time. A simple
use-case is that of an Actor cell which receive read and write
requests, the actor cell can process multiple read operation
concurrently but only one write operation at the same time
when no other read operations are processed. From the
parallel patterns viewpoint, this problem can be solved by
a proper specialization of the task-farm pattern. However,
the authors propose an AmbientTalk implementation of the
scheduler, which uses a thread pool inside the Actor. Our
proposal promotes a more general approach to these kind of
parallel problems, aiming at providing the programmer with
suitable abstractions that can be explicitly instantiated and
properly customized to solve the problem at hand.

VI. CONCLUSION AND FUTURE WORK

The Actor model is becoming increasingly popular for im-
plementing parallel applications on multi/many-core systems
also thanks to its clear and straightforward programming
model and to the capability of managing a large number of
concurrent activities. However, the unstructured composition
of Actors may easily produce intricated topologies which
may hide potential bottleneck that, when discovered, may
not be easy to eliminate.

In this paper, we proposed a first attempt to combine
the Actor model with the structured parallel programming
approach based on parallel patterns by using the concept
of software accelerator. In particular, we proposed an ac-
celerator built in the C++ Actor Framework (CAF) that
can reduce the service time of Actors implementing data-
parallel computations according to the Map parallel pattern.
The accelerator has been implemented in such a way it
does not share resources with the CAF run-time system thus
allowing to reduce potential conflicts and to improve resource
utilization. To this end, we modify the CAF run-time to be
able to control the thread-to-core affinity of system threads.

As a future extension of this work, we planned to im-
plement other parallel patterns such as Map-Reduce, farm,
flat map, divide-and-conquer and pipeline by using the same
software accelerator approach. Our primary objective is to fa-
cilitate the programmer to compose Actors in a more reliable
and structured communication graph. Besides, the accelerator
approach deserves further testing, and new benchmarks have
to be implemented. We planned to implement one of the
reference benchmarks for testing Actor model implementa-
tions, namely the SAVINA benchmarks [25]. Finaly, we want
to study how non-functional features, such as the number
of resource assigned to the accelerator, can be dynamically
adapted by using already investigated algorithms and tech-
niques [26], [27].
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