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Abstract—In this work, we consider the C++ Actor Framework

(CAF), a recent proposal that revamped the interest in building

concurrent and distributed applications using the actor program-

ming model in C++. CAF has been optimized for high-throughput

computing, whereas message latency between actors is greatly

influenced by the message data rate: at low and moderate rates

the latency is higher than at high data rates. To this end, we

propose a modification of the polling strategies in the work-

stealing CAF scheduler, which can reduce message latency at low

and moderate data rates up to two orders of magnitude without

compromising the overall throughput and message latency at

maximum pressure. The technique proposed uses a lightweight

event notification protocol that is general enough to be used used

to optimize the runtime of other frameworks experiencing similar

issues.

Keywords: Actor model, CAF, multi-cores, message latency,
work-stealing, polling strategies.

I. INTRODUCTION

An ever-increasing number of applications requires high
performance for serving concurrent tasks. Often, applications
need to scale up instantaneously to satisfy high input demands
as in modern cloud settings or, they need to meet stringent
QoS requirements as in many real-time data streaming com-
putations [1].

Throughput, message latency and more recently power
consumption are considered the primary metrics to evaluate the
performance of computing systems [2]. Designing a parallel
programming framework that subsumes full scalability, low
message latency, high-throughput while, at the same time,
minimizes system power consumption is a challenging task
that requires using many sophisticated algorithms at different
abstraction level.

In this work, we consider the “C++ Actor Framework”
CAF [3], which is a modern, full-fledged C++ development
platform and a powerful runtime system that provides the user
with the actor programming model.

The actor model of computation [4], [5] has recently gained
significant attention because of its high level of abstraction that
makes it appealing for concurrent applications in parallel as
well as distributed computing. The model allows a complete
separation of the software design from its deployment at
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Fig. 1. Motivating example. Top:) Average message latency for a pipeline of
12 CAF actors for two constant message rate (10msg/s and 10Kmsg/s) and
two CAF configurations. Bottom:) Corresponding CPUs’ utilization.

runtime making it highly attractive for exploiting the potential
parallelism of the modern multi/many-cores platforms.

The CAF runtime can offer high-throughput, reliability,
scalability, and distribution transparency thanks to its careful
design [6]. However, it has not been optimized for providing
low end-to-end message latency, particularly in streaming
computations where the input rate can be highly variable.
To exemplify the problem we experienced, Fig. 1 shows
the analysis we carried out on a simple synthetic streaming
application composed of 12 CAF actors organized in a pipeline
topology. The first actor injects messages at a constant rate;
the other actors (but the last one) simply forward the message
they receive in input to the next actor. We measured the
average message latency to move a message from the first
to the last actor. The test has been executed considering
two different message rates: a low and a high data rate
scenarios, i.e. 10msg/s and 10Kmsg/s, respectively. We also
considered two configurations: the default CAF configuration,
and a custom configuration where the work-stealing runtime
has been configured to use an aggressive polling strategy
that maximizes system reactivity. As shown in the figure,
at low message rate the latency of the default configuration
is two orders of magnitude higher than the latency at high
message rate when considering the same version (3880 vs. 58



microseconds). Instead, if we consider the aggressive version,
the latency is significantly lower but, as shown by the bottom
plot, CPUs’ utilization is 100% regardless the input data rates.

This simple test demonstrates that the CAF message latency
depends on the input data rates. Moreover, when the message
latency is tuned by improving system reactivity (e.g. by
using an aggressive polling strategy in the runtime), CPUs’
utilization and consequently the system power consumption
significantly increase. Therefore, merely acting on the knobs
currently provided by the framework, it is not enough to fully
optimize the performance/power ratio on an application.

The solution we propose to overcome these issues and mak-
ing the message latency independent of the data rate is to mod-
ify the polling strategies in the work-stealing CAF scheduler.
To this end, we removed threads passive sleeping by intro-
ducing on-demand notifications implemented via lightweight
event signaling. This way we were able to improve system
reactivity without compromising CPU utilization, power con-
sumption, and system throughput. The technique proposed
is general enough to be employed in the optimization of
the performance/power ratio of runtime systems experiencing
similar issues.

The rest of this paper is organized as follows: Sect II
provides the backgrounds and describes recent related works;
Sect III discusses the proposed solution; Sect IV presents the
experimental results and finally Sect V provides conclusions.

II. BACKGROUND AND RELATED WORK

This section provides background concepts that are useful
to understand the contribution of this work.

A. The Actor Model
The actor model is a well-known concurrent programming

model first proposed by Hewitt et al. [4] in the context
of Artificial Intelligence. Later, the actor model has been
formalized by Agha [5], [7]. Actors are concurrent entities,
which interact exclusively via asynchronous messages. They
are uniquely identified by an opaque identifier so that they
can be transparently addressed during send operations. By
providing network-transparent messaging, the actor model
offers a high-level of abstraction for designing applications
targeting parallel and distributed systems.

Each actor buffers input messages in a mailbox and pro-
cesses them sequentially in a single logical step thus avoiding
non-determinism in actor execution. Upon receiving a mes-
sage, an actor can: (1) send messages to other actors, (2) spawn
new actors to distribute workload and (3) change its internal
behavior to process subsequent input messages differently.

Such event-based computation model prevents blocking
waits for specific messages, which helps avoiding deadlocks
in complex programs. Moreover, since actors can only interact
via message passing, there is no shared state between actors
so that they never corrupt each other internal state (i.e.,
local variables) avoiding potential race conditions. The lack
of shared state among actors, together with asynchronous
messaging enables actor programs to potentially exploit the

processing capabilities of the single multi-core machine. Also,
since actors are not tied to the specific physical machine
because of their opaque addressing, the runtime systems can
distribute actors across multiple multi-core machines de-facto
enabling strong scalability.

B. Actor-based Programming in CAF

The C++ Actor Framework (CAF) [3] allows the develop-
ment of concurrent programs based on the actor model lever-
aging on modern C++ language. Differently from other well-
known implementations of the actor model, such as Erlang
[8] and Akka [9], which use virtual machine abstractions,
CAF is entirely implemented in C++, and thus applications
implemented in CAF are compiled directly into native machine
code. This allows using the high-level programming model
offered by actors without sacrificing performance introduced
by virtualization layers.

CAF applications are built decomposing the computation
in small independent work items that are spawned as actors
and executed cooperatively by the CAF runtime. Actors are
modeled as lightweight state machines that are mapped onto a
pre-dimensioned set of runtime threads called workers. Instead
of assigning dedicated threads to actors, the CAF runtime
includes a scheduler that dynamically allocates ready actors
to workers. Whenever a waiting actor receives a message, it
changes its internal state to ready and the scheduler assigns
the actor to one of the worker thread for its execution. As a
result, the creation and destruction of actors is a lightweight
operation.

Actors that use blocking system calls (e.g., I/O functions)
can suspend runtime threads creating either imbalance in the
threads workload or starvation. The CAF programmer can
explicitly detach actors by using the detached spawn option,
so that the actor lives in a dedicated thread of execution.
A particular kind of detached actor is the blocking actor.
Detached actors are not as lightweight as event-based actors.

In CAF, actors are created using the spawn function. It
creates actors either from functions/lambdas or from classes
and returns a network-transparent actor handle. Communica-
tion happens via explicit message passing using the send

command. Messages are buffered in the mailbox of the re-
ceiver actor in arrival order before they are processed. The
response to an input message can be implemented by defining
behaviors (usually through C++ lambdas). Different behaviors
are identified by handler function signature, for example using
atoms, i.e. non-numerical constants with unambiguous type.

Fig. 2 presents a simple example showing some of the
features of the CAF framework.

Two actors exchange an integer value that is decremented
until it becomes zero. Lines 35 and 36 initialize the CAF
framework. Actors ActA and ActB are spawned at line 38 and
39, respectively. The second actor is spawned as detached
actor while ActA is an event-based actor. Each actor defines
three behaviors (init_a, send_a and stop_a) (using
C++11 lambdas starting from line 14). Line 11 tells the
runtime to skip messages until a init_a message is received.



Fig. 2. A simple CAF example of two actors exchanging an integer value.
The value is decremented by each actor until it becomes zero.

Then, by using the send behavior (line 20), the two actors
exchange the integer value n each time decrementing it until
it becomes 0. Eventually, the stop behavior is fired, which
terminates the current actor only after having sent the other
peer the stop message.

C. CAF work-stealing scheduler

The CAF scheduler consists of a single coordinator (not
necessarily an active thread) and a set of worker threads. The
default CAF scheduling policy is the work-stealing inspired to
the well-known scheduling algorithm proposed in [10]. The
fundamental idea of this algorithm is to remove the bottleneck
of a single global work items queue using, instead, a work
items queue for each worker thread (see Fig. 3).

Workers obtain work items only from their queue until it
becomes empty. Then, the worker acts as a thief, i.e., selects
one of the other workers as a victim and tries to steal a work
item from its queue. In CAF, a work item (or job) is an actor
ready to be executed. Top-level actors and messages from
detached threads are initially assigned to workers’ queue using
a round-robin policy. Jobs move between worker threads only
as a result of a stealing operation. This strategy minimizes
communication between threads and maximizes local reuse of
data.

Fig. 3. Work-stealing implementation schema in CAF.

CAF uses a double-ended queue for its workers, which
is synchronized with two spinlocks (one for the head and
one for the tail). As sketched in Fig. 3, new “external” jobs
are added to the back of the queue by using the method
external_enqueue, while new work items generated by
the worker itself are added to the front of the queue by using
the method internal_enqueue. This approach is used
to increase cache locality, since a new message that makes
ready an actor to be executed is likely to be still in the cache.
Workers execute the method run where the dequeue method
is periodically called for obtaining jobs from the front of
their queue and for stealing elements from the back of other
workers’ queue by using the method try_steal (called
inside the method dequeue).

To regulate the number of times and the sleeping time
between two distinct retries for obtaining a valid job, the
method dequeue uses in sequence three polling strategies
with different configurable values: 1) aggressive, 2) moderate
and 3) relaxed. For each strategy, the worker tries to pop out
a job from its local queue for a maximum number of attempts
and, every steal interval attempts, it tries to steal a job from
a victim worker. If all previous attempts fail, then the thread
sleeps for a sleep time interval. Once the maximum number
of attempts is reached, the worker moves to the next polling
strategy. The relaxed polling strategy is a dead end, i.e. the
worker will remain inside this strategy until it obtains a valid
job to execute.

Considering the CAF default values reported in Table I,
the aggressive strategy performs 100 attempts in total and 10
steal attempts with no sleep interval in between. The moderate
strategy tries to steal for 100 times with 50 microseconds sleep
interval between two steal attempts; the number of attempts
for obtaining a job from the local queue is 500. Finally, the
relaxed strategy runs indefinitely and the thread sleeps for 10
milliseconds between two attempts.

D. Pitfalls of work-stealing

Work-stealing is the default scheduling algorithm in several
parallel frameworks such as Intel’s Threading Building Blocks



TABLE I
DEFAULT VALUES FOR THE POLLING STRATEGIES OF THE

WORK-STEALING SCHEDULER IN CAF.

Polling

strategies

attemps

steal

interval

sleep

time (us)

aggressive 100 10 0
moderate 500 5 50
relaxed 1 1 10000

(TBB) [11], Cilk++ [12], X10 [13] and several OpenMP
implementations.

One of the main downsides of the work-stealing algorithm
is its termination phase or, more in general, the efficient
detection of idle states [14]. This is because workers have
local knowledge only, and when their queue runs out of work
items, they do not know if in the other queues there are jobs
to steal or, instead, if they could safely suspend themselves.
Moreover, if there are very few jobs in the system, it is hard
to decide if it is more convenient to keep trying to steal jobs
(and for how many times) or instead if it is better to wait for
a new job in the local worker queue or for enough jobs into
the system.

These issues are typically faced by implementing smart
polling strategies that postpone stealing retries using short
sleeping intervals without blocking the thread indefinitely. In
theory, if such sleeping delays are perfectly regulated it is
possible to obtain the best performance without consuming
extra CPU cycles and without adding further overheads. In
practice, it is quite difficult to find optimal values for the
backoff delays. Well-known techniques typically employed
in spin-locks are based on exponential and linear backoffs
[15]. The trade-off of the spin-then-sleep technique has been
evaluated in [16] where it is shown that merely spinning or
sleeping is sub-optimal in many real scenarios.

In addition, with highly variable input workload typical
of streaming applications [1], different polling configurations
are needed for the various phases of the applications making
the tuning phase of the polling interval a difficult task. As
we will see in Sect. IV, the use of wrong values, could
affect application reactivity or significantly increase power
consumption.

III. DESIGN

As described in Sect II, CAF uses three polling strategies
with different retry intervals and sleeping delays. In streaming
computations, if the arrival time is greater than the time spent
for computing a task plus the time spent in the polling phases
inside the agrressive and moderate strategies, the worker
thread will fall to sleep in the relaxed policy which employs
long sleeping time interval. In CAF, sleeping is implemented
using the std::this_thread::sleep_for C++ com-
mand that suspends the current thread for the entire time
value. If during the sleeping interval, a new job is scheduled in
the thread’s worker queue (calling the external_enqueue
method), the thread will see this job only at the end of the

sleeping interval. In the worst case scenario, this could be
almost the entire time period, thus significantly increasing the
total message latency.

To avoid this issues, it is sufficient to remove passive
sleeping in the relaxed polling strategy, and to add explicit
signaling on a per-thread event object. The worker thread will
suspend itself waiting for an event that will be signaled by the
CAF scheduler as soon as a new job has been pushed in the
thread’s worker queue. Since it is not possible to suspend the
thread indefinitely until an event is received (this could lead
to starvation), the maximum waiting time of the worker thread
is regulated by a timeout associated with the event object.

Fig. 4. Event implementation using the futex system call in Linux.

An example of event object implemented exploiting the
futex system call on Linux OS, is sketched in Fig. 4. No
complex compare-exchange based loops are used, as all atomic
operations required are embedded within the futex itself. An
event can either be set (RED in the example) or unset (GREEN).
If an event is unset, then the thread will wait until it is
set. The waiting is implemented with a futex system call,
which atomically checks if event==RED before putting the
calling thread to sleep for at most the time interval set in the
timeout (line 14 of Fig. 4). A similar implementation of
event objects can be made by using the SIMD Extensions
3 instructions (SSE3) monitor/mwait, which introduce
lower overhead than the futex system call. The monitor
instruction defines an address range used to monitor write-
back stores. The mwait instead is used to block the hardware
context where the thread is running entering in an optimized
power state waiting for a write-back store to the address range
defined by the monitor call. Unfortunately, their applicability



is very limited because kernel-level privileges are required1.
We decided to favor code portability with respect

to absolute performance figures, therefore we imple-
mented the event notification mechanism using only
standard C++ mechanisms, i.e. C++11 std::mutexes and
std::condition variables. The pseudo-code of the new CAF

work_stealing::dequeue (called DEQUEUE_NEW) and
work_stealing::external_enqueue methods that
use the event protocol are sketched in Alg. 1 and Alg. 2,
respectively.

Algorithm 1 New version of the work-stealing dequeue.
1: function DEQUEUE NEW( )
2: . try to get a valid job making use of the aggressive

and moderate polling strategies only ...
3: job=dequeue old(); . ... the job might not be valid
4: while ( ! validJob(job) ) do

5: mutex.lock()
6: sleeping = true . the thread might go to sleep
7: while ( ! thereAreJobsInTheQueue() ) do

8: . waiting for a message or timeout
9: cv.wait for(mutex,timeout)

10: end while

11: sleeping = false . woken-up, sleeping flag reset
12: mutex.unlock()
13: if (timeout.expired) then

14: job = tryToSteal()
15: else

16: job = dequeueLocal() . dequeue without polling
17: end if

18: end while

19: return job
20: end function

Algorithm 2 New external enqueue version.
1: procedure EXTERNAL ENQUEUE(job)
2: queue.append(job);
3: mutex.lock()
4: . checking if the thread has to be woken up
5: if ((sleeping==true) and policy.thereAreJobs()) then

6: cv.signal() . send a signal to the condition variable
7: end if

8: mutex.unlock()
9: end procedure

Let us consider first the dequeue new method. This method
retrieves a valid job to execute either from thread’s local
queue or by stealing a job to one of the other workers’
queues. The worker thread first tries to get a job by calling
the dequeue_old method (line 3), making use of only the
first two polling strategies (i.e. aggressive and moderate) with
their configuration parameters. Then, if the job is not valid, i.e.
the local queue is empty and, within the number of attempts
of the first two polling strategies, the worker was not able
to steal a valid job, then we assume that there are no (or
very few) jobs to execute in the system and so the thread can
be safely suspended waiting for a message notification or the

1Intel 64 and IA-32 Architectures Software Developer Manuals.

timeout expire (line 9). The timeout is needed to periodically
wake-up the thread to check if there are jobs in other threads’
queues and, in that case, to try to steal jobs. More precisely,
the worker is suspended on a condition variable (line 9),
whose test checks if the local queue is not empty (the method
thereAreJobsInTheQueue() at line 7 tests the emptiness of the
local queue). Before suspending itself, the thread sets the flag
sleeping to true (line 6). When the thread will be woken
up by a signal or because the timeout expired, the sleeping
flag is reset to false (line 11) and then either the thread tries
to get the job from its local queue (line 16), or tries to steal
a job (line 16).

Whenever a new work item has to be transferred to
a worker by the coordinator entity or by another thread,
the work_stealing::external_enqueue method is
called (see Alg. 2). In this function, if the sleeping flag is
set to true and if there are jobs in the worker queue selected
to execute the job (line 5), the sleeping worker thread will be
notified signalling the condition variable (line 6). The signal
on the condition variable will wake-up the thread that was
previously suspended.

The algorithm proposed, is independent of the kind of queue
used and of the backoff policy employed inside the dequeue
method. Furthermore, the algorithm is correct even if, instead
of using the wait_for call, the blocking wait method
is used (it blocks the thread until a notification is received
without any timeout), provided that the method for checking
the emptiness of the queue is correct.

IV. EVALUATION

A. Experimental settings

All tests in this section were conducted on an Intel Xeon
Server equipped with two Intel E5-2695 Ivy Bridge CPUs
running at 2.40GHz and featuring 24 cores (12 per socket).
Each hyper-threaded core has 32KB private L1, 256KB private
L2 and 30MB of L3 shared cache. The machine has 64GB of
DDR3 RAM, running Linux 3.14.49 x86 64 with the CPUfreq
performance governor enabled.

We used CAF version 0.15.3 and the GNU gcc compiler
version 6.4.0 with -O3 optimization flag. For all tests, the CAF
runtime uses 24 worker threads 2. The MAMMUT library [17]
version 1.0.0 is used to collect power consumption and CPU
utilization. On the specific architecture considered, MAMMUT
relies on RAPL counters to collect power consumption.

The code changes proposed in this paper can be downloaded
from the GitHub CAF repository3. At the time of writing, the
patch has been accepted by the CAF maintainer as a separate
branch (topic/latency) and are currently under consideration to
be merged in the master branch.

B. Benchmark description

The benchmark used for the tests is a linear pipeline of CAF
actors. The actor topology is sketched in Fig. 5. The first actor,

2Command line option --caf#scheduler.max-threads=24.
3CAF at GitHub: https://github.com/actor-framework/actor-framework



defined as a blocking actor, produces messages (either
weightless or with a payload) at a given constant rate. The rate
is provided to the benchmark as command line parameter.

Fig. 5. Pipeline benchmark.

In the following, we report only the results for weightless
messages. The reason is twofold: (1) we want to analyze the
overheads introduced by the CAF runtime; (2) the C++ moving
semantics extensively used in the CAF runtime implementation
makes the cost of sending messages with payloads almost
negligible since only memory references are moved without
any memory copies. Finally, the benchmark can also spawns
one actor as detached and this allows to analyze the latency
of messages between event-based and detached actors.

Each message generated has associated a timer that is started
just before the Rate generator actor sends the packet
to the first pipeline actor (actor 1 in Fig. 5) and stopped as
soon as the packet is received by the Result collector

actor. The Result collector computes a moving average
with an overlapping constant size of 5 values and eventually
produce in output the average value.

The pipeline benchmark is able to extract not only the total
average message latency but also the message latency between
the Rate generator and the first pipeline actor (g2p in
Fig. 5) and the receive and send latency between an event-
based actor and the detached actor (or viceversa), referred as
rcv and snd in Fig. 5, respectively.

The benchmark code can be downloaded from GitHub4.

C. Configurations tested
We considered four distinct benchmark configurations:

default: it uses the default CAF values for the three polling
strategies used in the work-stealing scheduler (see Table I
in Sect. II).

custom: it uses customized values for the stealing interval and
for the sleeping time of the moderate and relaxed polling
strategies to increase threads reactivity. In particular for
the moderate strategy, we reduced the sleeping time from
50us to 1us, whereas for the relaxed strategy, we increase
the stealing interval from 1 to 5 and we drastically
reduced the sleeping time from 10ms to 1us.

aggressive: this configuration uses 0us as sleeping duration
for all polling strategies. This means that the runtime
threads will keep polling their input queues.

new: this version uses the code changes proposed in Sect III.
Moreover, as in the custom version, we set the sleeping
time of the moderate strategy from 50us to 1us and the

4http://github.com/ATS-Advanced-Technology-
Solutions/caf latency benchmarks

timeout of the wait_for call (line 9 of Algorithm 1)
is set according to the relaxed sleep time (see Table. I).

D. Results

Here we discuss the results obtained running the benchmark
for 100s in the four different configurations studying the mes-
sage latency, the power consumption, and CPUs’ utilization.
Our Xeon server has approximately 40 Watts idle power and
a max total power consumption of about 180 Watts.

Fig. 6 reports the message latency, the power consumption
and the CPUs’ utilization varying the number of actors in
the pipeline benchmark for a message rate of 10msg/s. As
expected, the default version has a latency that is two orders
of magnitude higher than the other versions. The aggressive
version provides the lower latency but the highest power
consumption and CPU utilization. The new version has an
average latency comparable with the custom and aggressive
versions consuming less power and less CPU cycles.

If we consider higher message rate whose results are shown
in Fig 7, we can see that the new version has a lower latency
and power consumption than the default version. The CPU
utilization is marginally higher: from 5 � 8% for the default
version to 8� 10% of the new version.

In the previous tests, we used 10ms as timeout value for
the wait_for call in the new version. In Fig. 8, we study
the impact of the timeout value on both the message latency,
power consumption and CPUs’ utilization at low data rate.

Using timeout values lower than 500us has a positive impact
on the message latency (from 45us to 25us), whereas the
effect on the power consumption is about 15% increase and the
CPU utilization remains almost constant (about 1% increase).
This suggests that there is an optimal value for the timeout in
between 100us and 500us, which reduces the message latency
without significantly affecting power consumption and CPU
utilization. Tuning the timeout value is essential for reducing
the message latency, but differently from the polling time used
in the default version, finding the optimal timeout value for
the event mechanism in the new version is just an optimization
step. In fact, selecting larger values does not have severe
adverse effects as in the default version while selecting lower
values has only a minor impact on power consumption.

In Fig. 9 (left-hand side) we compare the custom and the
new version for a pipeline of 12 actors varying the relaxed
polling time and the wait for timeout, respectively. The mes-
sage latency of the custom version has a range of variation that
spans from 3.5ms to about 40us while the latency for the new
version varies from about 55us to 30us. Moreover, the optimal
value for the timeout of the new version is about 200us: lower
values increase CPUs’ utilization (and power consumption),
higher values slightly increase the message latency.

The jump in the message latency between 500us and 200us
is due to the wait for implementation5 that, on Linux systems,
uses a smart spin-then-sleep policy to avoid putting the thread
to sleep if the sleeping time is lower than a threshold [18].

5Indeed, it is implemented on top of the pthread_cond_timedwait.
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Fig. 6. Average message latency (microseconds – Left), power consumption (Watts – Center) and CPUs’ utilization (% – Right) of the different configurations
in the pipeline benchmark varying the n. of actors when the message rate is low: 10msg/s.
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Fig. 9. Left:) Message latency (microseconds) varying the relaxed polling
time. Right:) Message latency varying the message rate for the new version
with a wait_for timeout of 300us; the acustom version uses a polling time
of 1us for the relaxed policy.

In the right-hand side of Fig. 9, we reported a comparison
between the custom and new version when the message rate is
high (from 100Kmsg/s to 400Kmsg/s) and the timeout is set
to 200us. As shown the two versions provide almost identical
message latency proving that the proposed changes to improve
the message latency at low data rates do not produce negative
effects at high data rates.
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Fig. 10. Power efficiency (throughput/power) of the different configurations
varying the n. of actors in the pipeline benchmark.Two message rates
considered: 10msg/s (Left) and 100Kmsg/s (Right).

Fig. 10 reports the power efficiency (measured as through-
put per power) of the tested configurations considering two
message rate scenarios (low rate – left-hand side – and high
rate – right-hand side) and different pipeline configurations
(8, 16 and 24 actors) normalized to the most efficient version
for each case. The higher the value, the more efficient the
execution of the program. The new version uses a timeout
value of 200us. For low data rate, the new version is always
the most efficient for all cases tested. As expected, the default
version is the worst with an efficiency lower than 1%. For
high data rate, instead, the new version provide the best power
efficiency only when few actors are used in the benchmark
(up to 12 actors), in the other cases the best version is
the custom one. Notwithstanding, the new version provides
a power efficiency that is greater than 95%. Not surprising,
the aggressive version is always the worst one. In fact, since
there is no backoff between two distinct polling operations,
worker threads fight one each other contending CPU’s cores
and eventually increasing the overhead for making progress.
Also, if the worker is active on a core either doing useful
work or spinning, the underlying hardware context remains
busy as well, so the OS cannot switch-off core’s components

and sets the core in a low-power state. Such core draws power
regardless of the type of work the thread executes.

TABLE II
ACTOR LATENCY BREAKDOWN FOR A PIPELINE OF 12 AND 24 ACTORS

WHERE THE 8-TH ACTOR IS SPAWNED AS detached.

new

Rate

g2p act rcv snd

12 24 12 24 12 24 12 24

10 19 24 1 1 19 18 22 22
100K 20 24 3 3 20 20 8 9

In Table II we reported the message latency breakdown
considering the different kinds of CAF actors (blocking, event-
based and detached) spawned in the pipeline benchmark (see
Fig. 5). The table reports the data collected for two pipeline
configurations (12 and 24 actors) and two message rates
(10msg/s and 100Kmsg/s). As can be noted, the event-based
actor latency (act) is small compared with the other values.
This is because almost all communications occur within the
same worker thread that pushes/pops messages to/from mail-
box queues that are implemented using lock-free techniques.
Instead, blocking and detached actors perform inter-thread
communications pushing and popping jobs to/from a (spin-
)lock-based dequeue that might also require event signaling,
thus increasing the communication overhead.

Finally, we have evaluated the performance of the new

version considering the Savina benchmarks, a benchmark suite
for actor-oriented programs [19]. The Savina benchmark suite
focuses on computationally intensive applications and includes
both numeric and non-numeric problems. The CAF porting of
the benchmark suite comprises 23 out of 30 applications avail-
able. Some of them can be executed in different configurations.

Fig. 11 shows the average performance variation results (in
percentage) obtained running the Savina benchmarks on the
target platform. We considered the default CAF version
vs. the version with the code changes proposed in Sect III
(new). Higher values are better, meaning that the new version
provides increased performance with respect to the default
CAF version. As shown in the plot, there are only few cases
where the use of event notifications in the work-stealing run-
time negatively affects the performance (in the range 1-13%).
In particular, only for one benchmark of the suite (14logmap-
slow) we experienced an average performance degradation
of 13%. Conversely, there are many test cases where the
performance improves significantly (up to 72%). This large
improvement is mainly due to the fact that several benchmarks
use few active workers and the proposed changes in the CAF
runtime remove contention on the active workers’ queue.

V. CONCLUSIONS

In this paper, we have experimentally evaluated the mes-
sage latency of the actor-based framework CAF on a multi-
core platform. We used as testing workload a configurable
benchmark where a set of actors are connected in a pipeline
topology. Our experimental results show that message-passing
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Fig. 11. Savina benchmarks performance results obtained running the new vs. the default version of the work-stealing runtime. The bars measure the
average performance variation (in percentage) over 5 executions of each benchmark. A value greater than 0 means better performance.

latency between CAF actors depends on the input message
rate, precisely, at low and moderate rates messages experience
higher latency than at high data rates.

To overcome this issue, we proposed a modification in the
work-stealing polling strategy employed in the CAF runtime,
consisting in removing passive thread sleeping and adding
explicit event notifications by using a per-thread event object
implemented in a portable way by using C++ condition vari-
ables. The protocol used is independent of the work-stealing
implementation used in CAF, and it is general enough to
be used in others runtime with similar issues. The proposed
code changes significantly reduce message latency (up to two
orders of magnitude for low data rates), power consumption,
and CPU utilization at low and moderate data rates without
compromising system throughput at high data rates.
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Actors – A Scalable Software Platform for Distributed, Heterogeneous
Environments,” in Proc. of the 4rd ACM SIGPLAN Conference on
Systems, Programming, and Applications (SPLASH ’13), Workshop
AGERE! New York, NY, USA: ACM, Oct. 2013, pp. 87–96.

[4] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in Proc. of the 3rd Int. Joint
Conference on Artificial Intelligence, ser. IJCAI’73. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1973, pp. 235–245.

[5] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[6] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting actor pro-
gramming in c++,” Computer Languages, Systems & Structures, vol. 45,
no. Supplement C, pp. 105 – 131, 2016.

[7] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, “A foundation
for actor computation,” J. Funct. Program., vol. 7, no. 1, pp. 1–72, 1997.

[8] J. Armstrong, “The development of erlang,” SIGPLAN Not., vol. 32,
no. 8, pp. 196–203, Aug. 1997.

[9] “Typesafe Inc.” Akka. http://akka.io.
[10] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-

putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, Sep.
1999. [Online]. Available: http://doi.acm.org/10.1145/324133.324234

[11] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. ”O’Reilly Media, Inc.”, 2007.

[12] C. E. Leiserson, “The cilk++ concurrency platform,” in Proc. of the 46th
Annual Design Automation Conference, ser. DAC ’09. New York, NY,
USA: ACM, 2009, pp. 522–527.

[13] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar,
and K. Yelick, “Deadlock-free scheduling of x10 computations with
bounded resources,” in Proc. of the Nineteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, ser. SPAA ’07. New York,
NY, USA: ACM, 2007, pp. 229–240.
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