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Abstract—High-volume data streams are straining the limits
of stream processing frameworks which need advanced parallel
processing capabilities to withstand the actual incoming band-
width. Parallel processing must be synergically integrated with
elastic features in order dynamically scale the amount of utilized
resources by accomplishing the Quality of Service goals in a cost-
effective manner. This paper proposes a control-theoretic strat-
egy to drive the elastic behavior of latency-sensitive streaming
operators in distributed environments. The strategy takes scaling
decisions in advance by relying on a predictive model-based
approach. Our ideas have been experimentally evaluated on a
cluster using a real-world streaming application fed by synthetic
and real datasets. The results show that our approach takes
the strictly necessary reconfigurations while providing reduced
resource consumption. Furthermore, it allows the operator to
meet desired average latency requirements with a significant
reduction in the experienced latency jitter.

Index Terms—Data Stream Processing, Elastic Scaling, Con-
tinuous Queries

I. INTRODUCTION

In a world driven by information, Data Stream Processing
(DaSP) represents one of the hottest IT trending topics [1].

DaSP applications are typically executed 24-hours-a-day,
seven-days-a-week to process continuous data flows coming
from different sources. In this scenario, there exist natural
“ebbs and flows” in the input rate and workload characteristics
that must be promptly addressed by the run-time system
supporting stream processing applications.

Stream processing applications must be able to autonomi-
cally scale up or down the used resources by maintaining the
required Quality of Service (QoS) in a cost-effective manner
with reduced system downtimes [2], [3]. Decisions on when
and how to change the current application configuration (e.g.,
number of used resources) must be taken by elastic strategies
with the following expected characteristics:
• they must be able to meet the desired QoS requirements.

In addition, we focus on quality-sensitive real-time appli-
cations whose users are strongly affected by the latency
of delivered results (and by its variability);

• to take a new scaling decision, the strategy should account
for the stability of the application configuration, avoiding
frequent modifications that may result in a high number
of QoS violations and highly irregular QoS outcomes;

• they should be cost-effective by avoiding wasting re-
sources.

In distributed environments the impact of these properties is
further emphasized, due to the significant transient overhead
of re-scaling decisions (state migration among nodes [2]). The
contributions of this work are summarized as follows:

• we present a control-theoretic strategy based on Model
Predictive Control (MPC) [4]. With respect to our pre-
vious works [5], [6] which were limited to multicores,
the strategy and its implementation framework have been
extended to distributed environments which are by far the
most realistic case for stream processing frameworks;

• we evaluate our strategy in a real-world context of a
latency-sensitive streaming application, by deriving the
impact of the strategy in the amount of reconfigurations
performed, average resource consumption and number of
QoS violations experienced. A first comparison among
our strategy and an existing heuristic is proposed;

• we evaluate the impact of reconfigurations in the deliv-
ered latency, by analyzing the effect of our strategy in
minimizing the latency variability in terms of jitter.

The paper is organized as follows. Sect. II provides an
overview on Data Stream Processing. Sect. III presents our
control-theoretic approach. Sect. IV describes our distributed
implementation and Sect. V shows the experimental evalua-
tion. Finally, Sect. VII states the conclusion of this work.

II. BACKGROUND

DaSP applications are modeled as direct graphs whose
vertices are operators and arcs are streams [1]. The input
stream conveys a sequence of data items (tuples), consumed
and analyzed by the application. They represent occurred
events or, more in general, any information of interest. An
operator applies an intermediate computation that consumes
input items and produces new tuples as new stream(s).

Stateful operators are a class of operators that keep an
internal state while processing the input items. Output re-
sults depend on the value of the internal state which is
continuously updated. Of special attention are the so-called
partitioned-stateful (or keyed) operators [1], [2], [7], where
the input stream conveys tuples belonging to multiple logical
substreams that must be processed independently. In those
cases, the data structures supporting the internal state can
be separated into independent partitions, one per substream.
An example is a pattern recognition operator that processes



independently tuples belonging to different stock symbols in
a financial market stream.

A. Elastic Intra-operator Parallelism

In case the specified QoS requirements are not met by the
current implementation (e.g., actual latency is unsatisfactory),
bottleneck operators must be internally parallelized. Paral-
lelism deserves special attention for stateful operators, in order
to preserve the computation semantics and correctness.

Typically a partioned-stateful operator is parallelized by
replicating the operator in multiple worker entities, each one
processing a subset of the logical substreams [1], [7]. The
logical scheme of this parallelization is sketched in Fig. 1.
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Fig. 1: Graph of streaming operators: scheme of parallel and elastic
partitioned-stateful operator.

The operator receives a stream of tuples and produces a
stream of results. All the tuples with the same partitioning
attribute (key) are processed sequentially by the same worker
(Wi) in the arrival order. The emitter (E) and collector (C)
entities act as interfaces from/to input and output stream(s).
The first is in charge of routing each input tuple to the
corresponding worker using a (hash) routing function. The
collector receives results from the workers and transmits them
onto the output stream(s).

DaSP scenarios are often characterized by intensive work-
load fluctuations (e.g., variability in the arrival rate, processing
time per tuple and changes in the frequency of keys) that must
addressed in the design of parallel operators. Therefore, the
parallelized operator should adapt itself in order to keep its
QoS optimized according to the user expectations.

In an elastic scenario the parallel operator is supported by
a controller (red part in Fig. 1), an entity able to observe
the operator execution and to respond to different cases of
dynamicity. The two parts interact according to a closed loop
(Monitoring, Analyze, Plan, Execute). Based on the evaluation
of a specific strategy, a set of actions are taken by the controller
to change the operator configuration (e.g., distribution func-
tion, amount of parallelism). In this paper the main focus is
on the design of such strategies, which assume a foremost role
in achieving good quality by the overall operator execution.

III. LATENCY-AWARE PREDICTIVE ELASTICITY

Three fundamental goals must be accomplished by any
elastic support for stream processing operators. They must
provide accuracy in maintaining the desired QoS level re-
quired by the final user (e.g., providing a desired average

latency value), stability of the reconfiguration process, i.e.
avoid frequent reconfigurations that could have a detrimental
effect on the operator performance, and being cost-effective
using the strictly necessary computing resources to respect the
given QoS constraints.

In Refs. [5], [6] we investigated the feasibility of Model
Predictive Control (MPC) [4] as a viable control-theoretic
approach to drive the elastic behavior of stream processing op-
erators on multicores. Here, we extend this model for latency-
sensitive operators executed on distributed architectures.

A MPC-based controller exploits a model to predict the
future system behavior over a limited prediction horizon. The
controller is time-driven: the adaptation strategy is re-evaluated
at the beginning of fixed time intervals called control steps.
At each step the controller executes three distinct phases
described in the following three subsections.

A. Disturbances Predictions

The controller obtains the past measurements of disturbance
inputs that cannot be directly controlled. They include:
• TA, σA: the mean and standard deviation of the inter-

arrival time of tuples over the input stream;
• {pk}k∈K current frequency distribution of the keys (log-

ical substreams);
• {Tk}k∈K mean computation time per tuple for the differ-

ent keys.
To profitably apply the MPC-based technique, the controller

must be able to predict the future evolution of such distur-
bances over a limited future horizon of some control steps.
Owing to the past history updated periodically, the controller
is in charge of evaluating time-series history-based filters (e.g.,
autoregressive moving average or neural network approaches
to non-linear forecasting [8]). In the following, we indicate
with a tilde superscript the predicted values of disturbances.

B. System Model

The elastic support uses a system model to dynamically
compare the QoS that would be achieved under the predicted
disturbance conditions by different operator configurations.
The model captures the relation between QoS variables (e.g.,
the operator latency) and a configuration expressed as the
current number of workers utilized (denoted by n).

To evaluate the expected latency achieved by an opera-
tor configuration, our MPC-based strategy exploits analytical
models based on fundamental results of Queuing Theory.

We define the ideal service rate of the operator as the
average number of tuples that the operator is able to serve
per time unit assuming that it is never idle. We are interested
in the inverse quantity, i.e. the ideal service time T idS . Under
the assumption that the load is evenly distributed among
the workers (the emitter functionality will update the routing
function to provide this property, see Sect. IV), the ideal
service time at step τ can be computed as:

T̃ idS (τ) =

∑
k∈K p̃k(τ)T̃k(τ)

n(τ)
=
T̃ (τ)

n(τ)
(1)



i.e. the ratio of the mean computation time T per tuple of any
key over the current number of workers n utilized during the
same control step.

Our target measurement is the latency, more formally called
response time of the operator. It is the average time interval
from when a newly received tuple arrives at the operator until
the corresponding result is transmitted onto the operator output
stream. It can be modeled as the sum of two quantities:

RQ(τ) =WQ(τ) + T (τ) (2)

where WQ is the mean waiting time that a tuple spends from its
arrival to the system to when the operator starts its execution
in the corresponding worker.

To estimate the current average waiting time, our idea is
to model the operator as a G/G/1 queueing system, i.e.
a server with inter-arrival time and service times having
general statistical distributions. An approximation is given by
Kingman’s formula [9]:

W̃Q(τ) ≈
(

ρ̃(τ)

1− ρ̃(τ)

)(
c̃2a(τ) + c̃2s(τ)

2

)
T̃ idS (τ) (3)

where the utilization factor of the operator during step τ is
defined as ρ̃(τ) = T̃ idS (τ)/T̃A(τ), and ca and cs represent the
coefficient of variations of the inter-arrival and ideal service
time while the ideal service time can be determined as in Eq. 1.

This model has been adopted in the past for the latency
estimation of streaming operators [3] and provides good
accuracy provided that the needed measurements (i.e. coef-
ficient of variations and utilization factor of the server) can
be monitored and estimated from the running computation.
Furthermore, the model does not need unrealistic assumptions
like fixed stochastic distributions for the arrival and service
processes (like the exponential distributions adopted for sim-
plified M/M/1 and M/M/n models). In fact, any arrival and
service distributions can be modeled provided that the needed
parameters can be estimated at run-time.

We use this model to drive the MPC-based latency-aware
elastic support of our distributed operator. To increase the pre-
cision of the model in highly-variable execution scenarios, we
use a feedback mechanism to correct the estimation obtained
by Kingman’s formula according to the average prediction
errors measured in the last control steps.

C. Optimization

The third step of the MPC-based strategy is to solve
an optimization problem exploiting the system model. The
controller does not look only for the best configuration for
the next step. Instead, it is capable of analyzing the estimated
behavior for a longer horizon in order to drive more stable and
accurate decisions. Therefore, the result of the optimization
problem is a reconfiguration trajectory Uh(τ) = (n(τ),n(τ+
1), . . . ,n(τ+h−1)) over a prediction horizon of h ≥ 1 steps.
Formally, the optimization problem is as follows:

min
Uh(τ)

J =

h−1∑
i=0

L
(
R̃Q(τ + i), n(τ + i)

)
(4)

Once the optimal trajectory is found, the controller imple-
ments the first element of that trajectory as the new config-
uration of the operator for the next step. Then, the whole
procedure is re-iterated at the next control step, using the
new disturbance measurements to update the forecasts (this
principle is universally known as receding horizon [4]).

The function L is a step-wise cost that can be defined to
model different control objectives. The formulation that we
use is the following (with i = 0, . . . , h− 1):

L
(
R̃Q(τ + i), n(τ + i)

)
= Qcost(τ + i)+ QoS cost

+Rcost(τ + i)+ Resource cost

+ Swcost(τ + i) Switching cost
(5)

The QoS cost represents the user degree of satisfaction with
the actual QoS of the operator. Since we are interested in
latency-sensitive operators, we suppose that the QoS require-
ment is a maximum bound on the actual average response
time. To model this, we use the following cost definition:

Qcost(τ + i) = α · exp

(
R̃Q(τ + i)

δ

)
(6)

where α > 0 is a normalization factor. The cost lies in the
interval (α, eα] for latency values within the interval (0, δ],
where δ > 0 is a maximum threshold for the response
time. The idea is that such kind of cost heavily penalizes
configurations with a response time greater than the threshold.

The resource cost models a penalty proportional to the
amount of resources consumed, that is a cost proportional to
the number of used workers, i.e. Rcost(τ + i) = β · n(τ + i)
where where β > 0 is a normalization factor.

Finally, the switching cost models the penalty incurred in
changing the current configuration. Although different defini-
tions can be adopted, in this paper we analyze the effect of a
switching cost capable of penalizing large changes in the used
configuration. It is formally defined as follows:

Swcost(τ + i) = γ
(
n(τ + i)− n(τ + i− 1)

)2
(7)

where γ > 0 is a normalization factor.

IV. DISTRIBUTED IMPLEMENTATION

In this section we describe our distributed implementation
of elastic partitioned-stateful data stream operators. The im-
plementation is written in C++ and targets distributed systems
of multicore-based nodes. The design is sketched in Fig. 2.
The implementation distinguishes two types of nodes:
• a master node executing the (global) emitter (E), (global)

collector (C), and the controller functionalities equipped
with other services (e.g., for the implementation of re-
configuration activities) as described in the sequel;

• a set of executor nodes, i.e. nodes in charge of executing
the workers of the distributed operator.

This distinction provides a clear separation between the nodes
in charge of executing the business logic of the operator (i.e.
where the worker instances are running) from the one that runs



.

.

. EC

EXECUTOR NODE 1

EE

W

W

SUPERVISOR

E C

Local Store

.

.

. ECEE

W

W

SUPERVISOR

Local Store

CONTROLLER

Local monitoring and 
reconfiguration messages

Remote monitoring and 
reconfiguration messages

MASTER
NODE

EXECUTOR NODE N

Remote 
Backing Store

Fig. 2: Schema of the distributed operator.

support tasks to interface the whole distributed implementation
with the input and the output streams.

As Fig. 2 shows, each executor node runs a sort of replica of
the parallelized operator. Besides the workers (each one exe-
cuted by a dedicated thread), an execution node has additional
entities executed by a corresponding number of threads:
• an executor’s emitter (EE in figure) and an executor’s col-

lector (EC). They are connected with the global emitter
and collector and are respectively in charge of dispatching
input tuples to the destination workers and gathering the
produced results by sending them to the global collector;

• a supervisor entity in charge of collecting all the measure-
ments from the workers execution, and of transmitting
them as a single monitoring snapshot to the controller
at the beginning of each control step. Furthermore, the
supervisor implements run-time support mechanisms for
spawning/killing worker instances.

The run-time system tries to package the worker instances
in the minimum number of executor nodes: only when there
is no space for adding additional workers within an existing
executor (i.e. we are using all the available cores of the node),
we start deploying a new executor onto an available node.

Incoming tuples are routed to the correct worker instances
associated with the corresponding substream. Such routing
is performed hierarchically, i.e. the global emitter maintains
an association table between partitioning keys and existing
executor nodes while each EE maintains the correspondence
between keys and worker instances.

The global controller is in charge of evaluating the MPC-
based strategy described in Sect. III. Although the strategy
evaluation is centralized, all the run-time support actions
and reconfiguration activities are decentralized and executed
independently by the supervisors in each executor node. This is
a compromise to allow the whole implementation to be easily
expandable in systems with many available execution nodes.

Excluding the operational data flow, we can distinguish
two different classes of messages: local messages exchanged
within an executor node, and remote messages between ex-
ecutor nodes and master node. For remote messages we have:
• monitoring messages: the monitoring snapshot of an ex-

ecutor node is periodically transmitted by the supervisor
to the remote controller;

• reconfiguration messages sent by the controller to the
supervisors in order to implement an operator reconfigu-
ration. Supervisors react to such messages by instantiating
or removing workers within the executor node.

In the implementation, remote messages are transmitted
over Posix TCP/IP sockets between the master and the ex-
ecution nodes. All the data/messages remotely exchanged are
serialized using the Google Protocol Buffer (protobuf)
library [10]. Internally to an executor node, the entities (EE,
workers and CC) interact by exchanging memory pointers
to shared data structures using the cooperation model (lock-
free single-producer single-consumer queues) provided by the
FastFlow parallel programming frameworks [11].

A. Support to Elasticity

Reconfiguration mechanisms apply the strategic choices
taken by the controller by increasing/decreasing the number
of worker instances currently present in the executor nodes.
As already pointed out in Ref. [2], state migration is the
fundamental task performed by the run-time support. Once
that the number of workers is changed, the input bandwidth
must be redirected to them in order to keep the computational
load balanced. Therefore, a subset of the existing keys, and the
data structures supporting their internal state, must be properly
migrated between distinct workers.

Several state migration protocols have been presented in
the literature [2], [12], [13] with the goal of reducing the
downtime experienced by the operator during the reconfig-
uration process and by preserving the computation semantics,
i.e. by processing all the tuples in their arrival order. Tuples
of the moving keys received during the reconfiguration phase
are temporarily buffered and routed to the worker when the
migration of the needed data structures is complete. In our
implementation we adopt a protocol inspired by the work in
Ref. [12], where, in order to avoid blocking the natural flow
of the tuples non involved by the migration, new input items
belonging to migrated keys are temporarily buffered in the
destination workers and processed at the end of the migration.

State migration requires the transferring of some data
structures. To this end, our run-time support implements a
hierarchical repository with two levels, see Fig. 2:
• a local repository inside each executor node, used for

state migration among the internal workers. It consists in
a shared memory area where the migrated data structures
(or just their pointers) are copied and acquired;

• a remote repository used for exchanging data between
distributed executor nodes. It can be implemented in
various ways: by back-end databases or using socket-
based or MPI-based implementations [2].



Differently from some existing solutions [2], [12], [13],
we decided to implement the remote repository using the
Memcached service [14], a widely used repository for caching
results of database calls (used by Facebook, Wikipedia, Flickr).
Memcached is an in-memory store for small chunks of arbi-
trary data. Objects can be stored and retrieved by using an
unique identifier. To utilize Memcached as remote repository,
we need a Memcached server (memcached), i.e. an active
entity maintaining the repository, and a client interacting with
the server for saving/retrieving/deleting objects. In our case,
the memcached server is in execution on the master node,
and it is in charge of handling the requests arriving from the
various clients, i.e. workers that copy/acquire the internal state
serialized using protobuf) from/to the server.

V. EVALUATION

The evaluation of the proposed control strategies is per-
formed on a data stream processing application operating
in the High Frequency Trading (HFT) domain, where ap-
plications are very latency-sensitive; both the magnitude and
variability of latency play a decisive role for the end users.
The computational kernel is sketched in Fig. 3.
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Fig. 3: Kernel of a high-frequency trading application used to discover
trading opportunities in real-time.

The source operator generates a stream of financial quotes
(i.e. bid and ask proposals) represented by a record of the
proposed price, volume and the stock symbol (64 bytes in
total). The operator processes bids and asks grouped by the
stock symbol (partitioning keys) and estimates the future
volume and price for the quotes of each symbol using a sliding
window of the last received tuples of the group. A count-
based sliding window of size |W| and slide δ is maintained
for each group. At each activation of a new window of data,
the operator executes the Levenberg-Marquardt regression
algorithm (C++ library lmfit [15]) to produce a polynomial
fitting the quotes. To reduce the number of quotes to process,
they are first aggregated using a resolution interval of 1 ms.

A. Distributed Architecture and Workload

The distributed-memory system used for the evaluation is a
small cluster of four identical nodes interconnected through an
Infiniband network nominally working at 40Gb/s. Each node
is a dual CPUs Intel Xeon E5-2699, for a total of 36 physical
cores running at 2.30GHz (HyperThreading was turned off).
Every machine has 192GB of RAM and runs a Linux-based
operating system. The used compiler is gcc (version 4.8.1),
and we compile with the -O3 optimization flag. The additional

services/libraries used are: Fastflow (version 2.0.5), Mem-
cached (version 1.4.25), Libmemcached (version 1.0.18)
and Google Protocol Buffer (version proto2).

All the entities in Fig. 2 are implemented as threads pinned
on distinct cores of the nodes. For simplicity, we map the
master onto a dedicated physical node while the other three
nodes are used for the executors. Due to the presence of the
EE, EC and supervisor entities, each executor node can run
up to 33 worker instances for a maximum overall parallelism
degree of the operator of 99 workers. The memcached server
is executed with 8 threads in the master node, a configuration
sufficient to handle all the requests in our execution scenarios.
The default setting is to use windows of |W| = 2000 tuples
which are evaluate every new δ = 10 tuples received.

We propose an evaluation under a synthetic workload shown
in Fig. 4a, where the arrival rate follows a random-walk
model while the key frequency distribution is fixed. The whole
duration of the workload is of 240 seconds. Furthermore,
we analyze the operator behavior in a real-world workload
(Fig. 4b) obtained from a trading day of various stock markets
(e.g., NASDAQ, NYSE)1. In this dataset we have 8, 163 traded
stocks which a time-varying key probability distribution; on
average the most frequent key constitutes the 0.81% of the
whole generated quotes. The dataset has been accelerated 50
times to reproduce throttled input rates.
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Fig. 4: Arrival rate: synthetic and a real throttled (50×) datasets.

B. Mechanisms Evaluation

The controller computes a new routing function to balance
the workload among workers. This is executed periodically
and at each operator reconfiguration. The necessary state
migration actions generate some impact in the experienced

1Data available at ftp://ftp.nyxdata.com/Historical%20Data%20Samples/.

ftp://ftp.nyxdata.com/Historical%20Data%20Samples/


latency of the operator. To provide an evaluation of this effect,
we compare two different heuristics. The first one, called
Balanced, computes ex-novo a new routing table in order to
balance the workload perfectly among the existing workers,
possibly resulting in a large number of migrated keys. The
second one is inspired by the work in Ref. [12] (Flux), where
the operator tries to equalize the load among workers as much
as possible while minimizing key movement. The idea is to
use an imbalance threshold that represents an upper limit to
the relative difference in the load between the most loaded
worker and the least loaded one. In the comparison we use
two versions of this heuristic, i.e. Flux-5 and Flux-10 using a
threshold of 5% and 10% respectively.

In the test scenario the operator is not a bottleneck and the
workload is balanced until timestamp 30. Then we force the
input rate to suddenly change from 400K tuples/sec to 700K
tuples/sec. At timestamp 31 the number of workers is changed
from 30 to 60 in order to cope with the new input rate (using an
additional executor node). In this case, the migration involves
both the local and the remote repositories. The latency results
of this analysis are shown in Fig. 5.
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Fig. 5: Measured latency of the operator in the time instants before,
during and after a reconfiguration.

In the first phase the rate changes and latency grows as the
operator becomes a bottleneck. During this phase we do not
measure any significant difference between heuristics. After
timestamp 31 (phase 2) the controller triggers the reconfigu-
ration, new workers are created and some keys are migrated.
In the Balanced strategy we move 8, 061 keys (2, 690 of which
are moved using the remote repository), while with Flux-5 and
Flux-10 we move 431 (389 remotely) and 418 (376 remotely)
keys. The less the amount of migrated keys the lower the
experienced latency peaks during this phase.

Finally, during phase 3 workers process tuples that were
buffered during the migration. For Flux-5 and Flux-10 this
phase can be completed faster owing to the smaller number of
pending tuples to execute, while in the Balanced heuristic the
execution of the pending tuples lasts several seconds more. In
the final part of the test (subplot in the figure), the Balanced
strategy obtains a slightly lower latency compared to the other
two heuristics, owing to better load balancing.

In conclusion, the small advantage of the Balanced strategy
during the final part of the test is negligible with respect to

the highest latency peaks and longest reconfiguration time.
Therefore, this experiment shows that reconfigurations have
substantial impact on the operator performance, and this can
be reduced (but not eliminated) by minimizing of the number
of migrated keys while achieving a sufficient load balancing.

C. Strategies Evaluation

In this part we evaluate the behavior of the MPC-based
strategy. We study different instances of the strategy:
• NoSw: MPC-based strategy without the switching cost

term (γ = 0). The horizon length is set to one (h = 1),
since it has no impact on reconfiguration decisions;

• Sw: MPC-based strategy with switching cost enabled and
horizon length of h ≥ 1 steps.

The cost parameters α, β and γ (in Sw case) are carefully
chosen in order to: i) normalize the different terms of the cost
function (Eq. 5); ii) give more priority to the QoS cost, i.e. the
controller tries to reduce the number of QoS violations with
minimal resource consumption.

In all the presented experiments the control step length
is set of 3 seconds: for this application such time interval
always guarantees the completion of the reconfiguration phase
(e.g., of all the state migrations). Statistical predictions of
disturbances (e.g., arrival rate) along the used horizon are
computed using a set of time-series Holt Winters filters. All
the experiments have been repeated 20 times by collecting the
average measurements. The strategies are compared using four
measures representing contrasting objectives of the adaptation
process, i.e. stability, accuracy, settling time and overshoot.

The accuracy indicates the count of QoS violations experi-
enced by the operator using the elastic strategy, i.e. the number
of control steps having an average latency higher than the de-
sired threshold. In the experiment we use a value of δ = 5 ms
for the random walk workload and δ = 25 ms for the real
dataset (which is more challenging to sustain). Stability is
expressed as the number of reconfigurations performed by the
operator during the execution. The overshoot is the overall
resource consumption, measured as the average number of
cores utilized by the operator. Finally, the settling time is a
measure of how fast the strategy is to reach a configuration sat-
isfying the new workload conditions:strategies applying small
reconfigurations (few workers added each time) obtain smaller
settling time than strategies preferring large reconfigurations.

Figs. 6 reports the values of the four metrics for the
NoSw strategy and different Sw strategies with various horizon
lengths (h = 1, 2, 3). Each radar plot shows the averaged value
of the measured metrics for the two different workloads.

Tab. I reports the numerical results for the real workload,
which is the most interesting scenario. Here we also compare
the behaviour of our strategies against: i) a peak-load configu-
ration in which the operator is statically configured to use all
the possible worker instances; ii) a rule-based approach (event-
condition-action rules) [16] where the number of workers are
increased/decreased every time the operator utilization goes
over/under a maximum/minimum threshold. Qualitatively, we
obtain the following behavior:
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(a) Random walk.
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(b) Real dataset.

Fig. 6: Results showing the properties obtained by different elastic
strategies: accuracy, stability, overshoot and settling time. For each
spoke, we indicate (in brackets) the minimum and maximum values
that correspond respectively to the center and external edge of plot.

• the switching cost term allows reaching a better stability
and to reduce the number of QoS violations;

• the switching cost with short horizons produces a high
overshoot (cores utilized) and small settling time (average
number of workers added/remove at each reconfigura-
tion), as the operator uses more resources than necessary
and it is slower in releasing/acquiring resources. This can
be mitigated by using longer horizons provided that the
disturbance predictions are sufficiently accurate (we limit
the horizon length to h = 3 for this reason).

Our strategy allows the operator to obtain a number of QoS
violations comparable (few additional violations) with the
peak-load configuration by saving 45% of resources. The
policy-based approach executes more reconfigurations and
thus more QoS violations.

D. Analysis of Latency Variability

From the previous analysis we understand that the switching
cost term in the formulation of the MPC optimization problem
allows the controller to reduce the number of reconfigurations
and their average amplitude. Reconfiguration stability and
amplitude affect the quality of the latency results experienced
by the user (or by the next operators in the operator graph).
In many application domains, besides the average value of

Strategy Reconf. Violat. Cores Amplit.

NoSw 139.33 52 53.25 11.88
Sw h=1 102.09 21 62.37 2
Sw h=2 140.93 22 60.98 1.93
Sw h=3 143.27 29 60 2.64

Rule based 147.2 43 46.36 3.09
Peak Load - 19 99 -

TABLE I: Summary of the numerical results of the strategies.

latency, it may be essential to keep the instantaneous latency as
smooth as possible by avoiding large variations. This concept
is captured by the latency jitter [17]. More precisely, we
measure the so-called instantaneous packet delay variation
(see RFC 3393 IETF), measured as the average variation of the
latency measured for two consecutive results. This measure is
a function of the processing load, queueing of tuples within
the operators, and it is intuitively affected by the amount and
amplitude of reconfigurations performed.

Tab. II provides an interesting analysis of some derived
metrics of the operator execution with the elastic strategies
studied before. We focus on the real-world dataset which
exhibits more wide and sudden variations in the input rate. The
table reports for each strategy the jitter measured and the 95-th
percentile of the latency results, in order to show an estimate
of the latency variability. As it can be noticed, both the number

NoSw Sw Rule Peak
h = 1 h = 2 h = 3 based load

Jitter 38.8 14.7 15.5 18.1 29.6 13.8
95th 341.9 56.3 63.6 78.8 153.9 45.1

TABLE II: Quality and variability of the latency results from the
elastic operator. Measures are in milliseconds.

of reconfigurations and their amplitude have substantial effect
on the measured jitter. For example, despite the NoSw and Sw
h = 2 strategies achieve a similar number of reconfigurations,
the latter is able to achieve a lower jitter owing to the reduced
reconfiguration amplitude. On the other side, if we consider
the case Sw h = 1, which has a reconfiguration amplitude
similar to Sw h = 2, it achieves the best jitter due to the lower
number of performed reconfigurations. Similar conclusions
can be drawn for the 95-th percentile values.

These results provide a further evidence of the effectiveness
of our approach. The strategies with switching cost provide a
jitter similar to the case of a peak-load configuration, where
reconfigurations are never performed. Therefore, our strategies
execute the strictly necessary reconfigurations to adapt to the
actual incoming rate without consuming too many resources
and with limited impact on latency variability.

VI. RELATED WORKS

In the recent years a large numbers of Stream Processing
Engines (like Apache Storm, Apache Flink and IBM Infos-



phere Streams) have been proposed by open source projects,
academia and big companies. Despite all of them exploit
distributed hardware and tackle the continuous execution of
DaSP applications, they do not provide elastic supports or the
provided mechanisms are still embryonic.

Scaling decisions should be taken by the system automat-
ically according to the actual workload level monitored at
run-time. Some of the existing proposals are essentially best
effort [13], [2], [18], [19] and throughput oriented. Instead,
in this paper we focus on the elastic execution of operators
particularly sensitive to latency.

In Ref. [20] the authors propose a method to dynamically
adapt the parallelism degree to limit the length of the input
queue of streaming operators. This gives bounds on the
waiting time in queue but not on the experienced latency.
Moreover, they assume that the input rate and processing time
distributions are exponential or deterministic, assumptions that
rarely meet the real world.

In Ref. [13] the authors study how to minimize latency
spikes during the process of scaling decisions. This work
does not enforce constraints on the average latency. As far
as we know, the strategy proposed in Ref. [3] is the only past
work designed to minimize latency violations. The approach is
similar to the one in this paper (Queuing Theory models) but
does not consider stateful operators. In this paper we integrate
such models with a predictive control-based technique that
takes in advance reconfiguration decisions using statistical
forecasts of disturbances influencing the operator behavior.

Concerning the type of strategy used, the majority of
these works propose a reactive strategy: the system tries
to continuously match the amounts of demanded resources
to react to a modification in the arrival rate. In contrast,
the work in Ref. [18] is one of the few trying to apply
a predictive approach leveraging the estimated knowledge
of future resource and workload behavior to plan resources
allocation. Our work tries to formalize this predictive behavior
by introducing the horizon length, a further parameter to tune
the foresight degree of the controller.

VII. CONCLUSIONS

This paper proposed an elastic strategy for latency-sensitive
distributed data streams operators. The approach is aimed
at controlling the average latency by taking optimal scaling
decisions evaluated over limited future time horizons. Experi-
ments proved the effectiveness of the approach in reducing the
amount of QoS violations and reconfigurations performed. The
final outcome is that the operator controlled with our strategy
achieves more stable latency results with a limited jitter.

Future research directions of our work are oriented towards
the integration of the approach in existing stream processing
frameworks like Apache Storm.
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