
Optimizing Message-Passing on Multicore
Architectures using Hardware Multi-Threading

Daniele Buono, Tiziano De Matteis, Gabriele Mencagli and Marco Vanneschi
Department of Computer Science, University of Pisa

Largo B. Pontecorvo, 3
I-56127 Pisa, Italy

Email: {d.buono, dematteis, mencagli, vannesch}@di.unipi.it

Abstract—Shared-memory and message-passing are two op-
posite models to develop parallel computations. The shared-
memory model, adopted by existing frameworks such as OpenMP,
represents a de-facto standard on multi-/many-core architectures.
However, message-passing deserves to be studied for its inherent
properties in terms of portability and flexibility as well as for
its better ease of debugging. Achieving good performance from
the use of messages in shared-memory architectures requires
an efficient implementation of the run-time support. This paper
investigates the definition of a delegation mechanism on multi-
threaded architectures able to: (i) overlap communications with
calculation phases; (ii) parallelize distribution and collective oper-
ations. Our ideas have been exemplified using two parallel bench-
marks on the Intel Phi, showing that in these applications our
message-passing support outperforms MPI and reaches similar
performance compared to standard OpenMP implementations.

Keywords—message passing, shared memory, multi-core,
communications-calculation overlapping, hardware multi-
threading.

I. INTRODUCTION

Traditionally, message-passing and shared-memory consti-
tute the two fundamental concurrency models giving the basis
to the modern programming models for parallel computing.
The debate about the most efficient and effective way to
develop parallel programs represents a very complicated and
controversial issue. In general, the best solution depends on
the specific application pattern and the use of communica-
tion/synchronization [2], [12]. The result is that existing frame-
works adopt one of the concurrency model (notably OpenMP
and MPI for shared-memory and message-passing program-
ming respectively), while to choice of the most appropriate
model for their own applications is left to programmers [22].

One of the most recognized advantage of the message-
passing model is its inherent independence from the underlying
architecture, i.e. it is portable in principle: provided that the
proper run-time support is designed, a message-passing com-
putation can be implemented on a distributed-memory cluster
or on a shared-memory multiprocessor like a multi-/many-core
chip multiprocessor, or (perhaps the most interesting case for
very high parallelism) on a cluster of multi-/many-core nodes.

On shared-memory architectures a comparison between
the performance achieved by message-passing and shared-
memory implementations of the same benchmark suite is
useful to understand the performance issues of the two models
in a very pragmatic way. The general result is that masking
the communication impact on the overall performance and

providing an efficient way to accelerate distribution and col-
lective functionalities are crucial aspects to design message-
passing parallel programs able to scale acceptably with large
parallelism degrees [14]. In this context, this paper investigates
the design issues of message-passing supports on multi-/many-
core and provides the following research contributions:

• we describe a general run-time support mechanism
based on communication threads coupled with the
functionalities of parallel programs. Although the idea
of using support threads is not new, we discuss very
flexible ways to assign communication threads to
different sub-parts of the computation which need to
be accelerated. The result is a uniform mechanism
to overlap communications with calculation and to
parallelize distribution activities and collective oper-
ations;

• we discuss the execution of communication threads
on hardware contexts of multi-threaded architectures
(notably the recent Intel Phi

TM
). The importance of

Hardware Multi-Threading (shortly HMT) for paral-
lel programs is debatable. Instead of increasing the
maximum parallelism degree of the computation, we
propose to use HMT to execute support activities like
the execution of point-to-point communications. This
way to use HMT by cooperative threads is essentially
new in the context of message-passing programming.

In Section V we conclude the paper with an experimental
evaluation using two parallel benchmarks on the Intel Phi

TM
.

The results show that the use of communication threads,
properly mapped onto HMT contexts, represents an effec-
tive way to properly mask communication latencies and to
parallelize distribution activities. The general result is that
the performance of our message-passing implementations is
similar to corresponding shared-memory versions developed
using standard tools (the difference is bounded by 10%) and
outperforms classic message-passing frameworks as MPI.

II. RELATED WORK

The analysis of message-passing libraries on multi-/many-
core architectures and the performance comparison with
shared-memory programming models is a debated issue. Stud-
ies like in [2], [12], [22] compare MPI and OpenMP, obtaining
results in favor of one of the two paradigms depending on the
application. In general they all agree that the main overhead in
MPI implementations is given by the communication support.

The idea of using hardware and software supports to
speedup communications in message-passing environments is
quite established. Zero-copy communications are an important
optimization, in which the communication support guarantees
that no additional copy between the sender and the receiver
buffers is performed during the transmission of a message.
Over the last years, several message-passing supports have
provided zero-copy communications. These include, but not
only: MPICH-PM [15], VMMC-2 [6], AM [19], U-Net [18]
and BIP [7].

High-performance interconnections (e.g. Infiniband and
Myrinet) are equipped with the architectural support (network
adapters) able to offload partially or entirely communications
among nodes, making possible the overlap between commu-
nication and calculation phases. Several works analyze the
idea of using cores/processors to offload communications in
presence of simple interconnection networks (e.g. Gigabit
Ethernet). An example is described in [13], where the authors
develop a general-purpose communication engine for MPICH.
Besides overlapping point-to-point communications, optimized
collective operations have been the focus of several researches;
an example is described in [10], where the authors discuss
an optimized implementation of the primitive MPI_BCAST,
by exploiting the multicast mechanism natively offered by the
Infiniband network.

On multi-/many-core architectures several architectural fa-
cilities can be used to accelerate communications. Along
this line HMT is an interesting candidate. Its original aim
is to optimize the overall processor instruction throughput
by masking internal and external latencies inside the CPU
pipeline; how to efficiently exploit it in parallel computing is
still debated. Different studies [4], [16] show that using HMT
to increase the parallelism degree of applications may not offer
significant advantages, and sometimes also causes performance
degradations basically due to increased contention of those
resources that have already limited the performance with a
single thread per core.

A more interesting approach is to design cooperative
threads which help each other instead of competing on re-
sources. Some examples are speculative precomputation [3],
that enables specialized prefetching activities, prepushing [17]
to anticipate cache-to-cache transfers, and multipath execu-
tion [20] of different branch directions with multiple threads
to reduce misprediction overhead. In this paper we propose to
use HMT to accelerate message-passing inside shared-memory
CPUs. The most similar work to ours is in [8], that presents
the idea of using HMT to implement communication threads.
However, this work targets distributed-memory architectures,
and communication threads are made available at the program-
mer level (i.e. they are not inside a communication library).

III. ISSUES FOR AN EFFICIENT MESSAGE-PASSING ON
MULTICORE

When developing parallel programs using message-passing,
two important and interrelated aspects deserve to be carefully
addressed in order to provide competitive implementations:

• the basic communication primitives, i.e. send and
receive, need to be efficiently implemented in order
to minimize their impact on the overall performance;

• message-passing programs make use of collective and
distribution primitives, notably scatter (for partition-
ing input data), multicast (for replicating input data),
gather (for collecting results), as well as distribution
operations based on point-to-point communications
(e.g. on-demand and round-robin scheduling). If not
properly optimized, they can rapidly become the per-
formance bottleneck when we use high parallelism.

In this paper we focus on run-time mechanisms to develop
efficient message-passing supports on multi-/many-cores.

A. Lowering and masking communication latencies

To reduce the impact of communications on the application
performance we can move in two directions:

1) since communication latency is a function of the
message size, it can be reduced by minimizing the
copies required by a pair of send/receive operations;

2) when an execution pattern characterized by a se-
quence of calculation and communication phases is
recognized, we can mask communications by overlap-
ping them with calculation. Naturally, this is possible
if the application semantics allows communications
to be overlapped with calculation, and if the commu-
nication form is asynchronous and non-blocking.

The two points represent different sides of the problem.
The first point is meaningful also when overlapping is not
possible, e.g. if the semantics does not allow it or if proper
hardware/software support is not available. If it is possible
to completely overlap communications with a sufficiently
long calculation phase, point (2) is in principle sufficient to
make the impact of communication latency null. Finally, the
combination of both (1) and (2) makes it possible to hide
communication latency also with fine grain computations.

A well-known solution to point (1) is by using zero-copy
communications, i.e. a data transferring mode in which exactly
one copy from the sender buffer to the receiver buffer is per-
formed during a communication, without any additional copy
(e.g. from user space to kernel space). On traditional message-
passing systems like distributed-memory architectures, zero-
copy communications have been implemented relying on ad-
vanced networking infrastructures and devices (e. g. InfiniBand
and Myrinet) using advanced network adapters. On shared-
memory architectures a zero-copy communication [11] can
be performed entirely at the user-space level during the send
primitive, as done in state-of-the-art frameworks like in [19].

Communication-computation overlapping is an interesting
aspect when developing efficient message-passing supports.
Fig. 1 shows feasible temporal situations of a sequence of
calculation and communication phases where we assume that
each message is the result of the last calculation phase. Fig. 1a
depicts a non-overlapping situation in which the communi-
cation latency is entirely paid. In Fig. 1b the communica-
tion latency is fully masked by the next calculation phase,
which can start in parallel. This situation is possible if: (i)
the communication semantics is non-blocking, i.e. the send
primitive returns immediately to the caller before the message
has been completely copied into the destination buffer; (ii)
proper software and architectural supports exist such that the

execution of communication primitives can be delegated to
proper ”units” in charge of performing the copy from the
sender buffer to the receiver one in parallel with the calcu-
lation. Finally, Fig. 1c shows the situation in which, though
overlapping is supported, the length of calculation phase is
less than the communication latency, i.e. communications are
partially overlapped to calculation.

calculation phase 1 communication calculation phase 2 communication

Lcom

(a)

calculation phase 1

communication

calculation phase 2 calculation phase 3

communication

(b)

calc. 1

communication communication

calc. 2 calc. 3

communication

calc. 4 calc. 5

communication

calc. 6

Tcom

(c)

Fig. 1: Cases of communication/calculation overlapping.

As said, communication-computation overlapping requires
proper software and architectural supports. More precisely:

• a run-time support mechanism to delegate the execu-
tion of communication operations;

• a communication ”unit” able to execute communica-
tion primitives in parallel with calculation phases.

The delegation mechanism implements a way to assign
the execution of send primitives to a different entity. This
mechanism must be efficient, i.e. with a cost much lower than
the communication itself. An efficient delegation is possible
if we assume that the source entity of the parallel program
(the one executing the send primitive) and the communica-
tion unit exploit a shared-memory cooperation, i.e. passing
the delegation parameters (e.g. the message buffer and the
receiver identifier) by-reference without additional copies. This
is possible if they share the same virtual address space or a part
of it (the one for the messages and the other communication
data structures).

When communication inside shared-memory architectures
is concerned, communication units can be concretized using
the available architectural facilities:

• a communication unit can be implemented by a core of
the architecture, dedicated to execute communication
primitives delegated by different parts of the parallel
computation (e.g. Emitter, Workers and Collector). In
this case the core can not be used to increase the
parallelism degree of the application;

• instead of using an entire core, a communication unit
can be a hardware context in the case of HMT CPUs;

• communication primitives can be delegated to spe-
cialized co-processors if they are available. Some
existing multicores, especially network processors,
are equipped with hardware accelerators which are
amenable to be used in this way. As an example,

the series of Tilera CPUs [1] are equipped with
DMA engines that can be delegated to execute the
most costly part of communications, i.e. the copy of
the message to the destination buffer of the receiver.

B. Point-to-point distributions and collective operations

Collectives and distributions are critical phases for the
performance and scalability of message-passing parallel pro-
grams. Optimization of such operations has been the focus of
many years of research. On distributed-memory architectures,
high-speed collectives are based on tree-based algorithms with
different shapes depending on the network topology [14].

Also in multi-/many-core architectures, collectives and
distributions deserve special attention. As an example, let us
consider a point-to-point distribution of a task-farm sketched
in Fig. 2a, where an Emitter functionality (E) is in charge of
generating and scheduling a stream of tasks to a set of Workers
({W}) and results are collected by a Collector functionality
(C). This example is meaningful to understand that, point-
to-point distributions can be critical to the performance of
message-passing parallel programs. In the scheme of Fig. 2a,
the maximum throughput Bmax of the task-farm application
is limited by the Emitter when the number of Workers is
sufficiently high, i.e. Bmax = 1/Lcom(σ), with Lcom the
communication latency expressed as a function of the message
size σ.

E

W

W

.

.

.

Lcom(�)

Lcom(�)

�
message size

(a) Centralized distribution.

E

W

W

.

.

.

Lcom(�)

Lcom(�)

<delegation> KU

KU

1

m
<delegation>

(b) Parallel distribution.

Fig. 2: Point-to-point distribution: centralized and parallel versions.

To alleviate this situation the Emitter functionality needs
to be properly parallelized. A simple solution consists in
doing the message copy in the Workers side. If the receive
operation is in charge of copying the message from the sender
to the receiver buffer (instead of the opposite as previously
discussed), the result is a parallelization of the point-to-point
distribution. However this solution increases the service time of
the Worker: although the Emitter is no more a bottleneck, the
Worker service time is higher since it performs the copy of the
input task from the Emitter in addition to the calculation phase.
Moreover, it is worth noting that this scheme is not applicable
to the Collector (otherwise all the copies of the results would
be performed serially by the Collector, becoming a bottleneck
as the Emitter in the initial case).

A solution which achieves both parallelization of the
Emitter distribution and overlapping with Workers execution
consists in a more general utilization of the overlapping
mechanism described in Section III-A (see Fig. 2b). In this

case, if the Emitter delegates communications to m ≥ 1
available communication units (denoted by KU in the fig-
ure), the maximum throughput of the application becomes
theoretically equal to Bmax = m/Lcom(σ), i.e. m times
higher than in the centralized case. This represents a sort of
best case improvement; how much the maximum throughput
can be really improved depends on the way in which the
communication units are implemented (i.e. if they are executed
on dedicated cores, co-processors, or thread contexts of a HMT
architecture), and on the physical communication channel
exploited: on a distributed-memory system a single processor
is usually enough to support the maximum network bandwidth,
so multiple units only offer a slight improvement; nevertheless,
in multi-core architectures multiple KUs can be really effective
to fully utilize the available shared memory bandwidth.

The key idea of this mechanism is that multiple delegations
can be issued by the Emitter with a small overhead. As
we have seen in Section III-A, this is possible using a by-
reference mode of passing messages to the communication
units. It is worth noting that the same idea can be applied
to collective primitives such as scatter and multicast. Multiple
communication units are in charge of performing a part of the
scatter/multicast to a sub-set of the Workers. In the best case,
if the number of communication units is equal to the number
of Workers, the completion time of a collective can become
equal to the latency of a single point-to-point communication.

IV. A MESSAGE-PASSING SUPPORT

To provide a rapid prototyping environment for the con-
cepts and ideas introduced in Section III, we introduce the core
part of our message-passing library and its runtime support
for shared-memory architectures. While interesting on the
long term, the extension of existing message-passing systems
such as MPI requires a large effort in terms of design and
development. We will address this aspect in our future work.

A. A lightweight Message-Passing library

We have implemented the minimal set of functionalities
inspired by the CSP (Communicating Sequential Processes)
semantics [9]. Explicit (named) channels are used by the
functionalities of a parallel computation to exchange messages.
A channel is a passive data structure (channel descriptor)
of the run-time support - i.e. not directly accessible by the
programmer - that represents a sort of ”device” to perform
communications. Basic primitives are send and receive ones,
operating on a specified channel (by passing its unique iden-
tifier and, in the send case, the pointer to the message buffer).

We focus on asynchronous point-to-point communications,
i.e. send and receive operations on the same channel do not
necessarily happen at the same time instant. During the channel
creation, the programmer specifies the asynchrony degree k ≥
0, i.e. the maximum number of messages that can be stored
at any given point in time inside the channel without blocking
the sender. Synchronous communications represent a particular
case, achieved setting k = 0 during the channel creation.

To easily guarantee the asynchrony degree, channels are
univocally associated with a message type, defined at the
channel creation. This makes it possible to statically allocate
the channel data structures of our run-time support without

additional overhead to manage internal buffers of dynamic size.
Furthermore, the use of typed channels avoids type mismatch
between send and receive pairs on the same channel.

As stated in Section III, a critical point for an efficient
message-passing is to make the communication latency as low
as possible. We face the problem by: (i) implementing zero-
copy communications and, (ii) implementing the communica-
tion support entirely in user-space. About this point, in order
to implement the sharing of run-time support data-structures
(channel descriptors, delegation queues, receivers buffers) we
have two possibilities:

• the functionalities of a parallel program are imple-
mented by means of processes and POSIX SYSV
shared memory segments to implement the (partial)
sharing of memory spaces;

• all the functionalities are pthreads sharing the memory
space for dynamically allocated data structures (heap).

We expect that the two solutions have different overhead
(higher in the first case, to allocate and bind shared memory
segments between processes). For the sake of simplicity in this
paper we discuss the implementation of our message-passing
library using pthreads. It is worth noting that, though we use
pthreads, we require that the programs written using our library
assume a local environment model, in which the unique shared
data structures are the ones of our message-passing support,
i.e. from a high-level viewpoint the programmer uses pthreads
as processes with independent memory spaces.

Point i) is addressed by implementing a single copy from
the address space of the sender to that one of the receiver.
The channel consists of a static set of k receiving buffers
used in a circular manner. The copy is performed by the
send primitive, while the receive is in charge of checking the
presence of a message only, returning a pointer to the correct
buffer to the caller. The second point ii) is aimed at avoiding
to perform system calls during communication (required to
manage full and empty status of the circular buffer). The
correctness of operations on channel descriptors and delegation
queues is obtained by using user-space spin-locks mechanisms.
However, as stated in the literature [5], busy-wait may have a
negative effect when combined with hardware multi-threading.
Solutions to partially solve this problem will be discussed in
Section V, devoted to the experimental evaluation.

B. Delegation mechanism and communication threads

In this part, we briefly discuss the implementation of
the delegation mechanism on our library targeting generic
multicores. Since we adopt zero-copy communications, only
send primitives deserve to be delegated to communication
units, since receive operations are only in charge of checking
the presence of a message.

In our library a communication unit is implemented as
a support thread accelerating one or more functionalities of
the parallel program. The programmer specifies the number of
communication threads (hereinafter denoted by KT) during the
program initialization by using a proper primitive of the library.
According to the desired affinity, communication threads can
be executed on dedicated cores as well as fixed on specific
hardware contexts throughout the execution.

As said in Section III-A, the delegation mechanism must
be as efficient as possible (faster than the communication also
for short/medium message sizes) and able to support multiple
delegation requests possibly in a FIFO fashion. Fig. 3 shows
an abstract representation of our implementation.

P

process/thread of the parallel
program (e.g. Workers, Emitter)

KT
delegation queue

<ch_id, msg>

. . .

static array of receiving buffers

Channel Descriptor

send primitive on
ch_id

communiction thread (executed on a
dedicated core or a hardware context)

Fig. 3: Implementation of the delegation mechanism: delegation
queue, channel descriptor and communication thread.

The interaction between Emitter, Worker and Collector
functionalities and a communication thread is performed using
a queue data structure of the run-time support (invisible to the
programmer). Elements of the queue are delegation descriptors
indicating the channel identifier and the message pointer. The
queue is accessed following the producer-consumer paradigm
protected by user-level synchronization.

From the programmer viewpoint, during the channel cre-
ation a proper set of communication threads are passed (by
identifiers) to the channel creation function. This makes it
possible to delegate send primitives on the channel to one
or more communication threads, transparently selected by the
run-time support according to load balancing policies. When
delegated to a support thread, the send primitive implements a
non-blocking semantics: it returns immediately the control to
the caller with a request identifier. A wait primitive (similar to
MPI) is provided to check the completion of the send in order
to consistently re-use the message buffer.

V. EXPERIMENTS

To evaluate our message-passing support we perform ex-
periments using different parallelism patterns and comparing
our library with state-of-the-art message-passing and shared-
memory implementations on multicores.

Our target architecture is the many-core Intel Xeon Phi
TM

5110P featuring 60 cores running at 1056 Mhz interconnected
by a bi-directional ring bus. Each core is equipped with a
32 KB L1 data cache and a 512 KB L2 cache. An important
component of each core is its 512 bit wide vector processor
unit (VPU), which can be used for double and single precision
SIMD instructions. The architecture is equipped with 8 GB
of GDDR5 memory interfaced with the ring bus through
8 memory controllers. Instead of using the Intel Phi

TM
as

a co-processor, we use it as a general-purpose manycore,
i.e. as a stand-alone architecture on which executing our
experiments. All the experiments have been compiled using
the icc compiler ver. 13.0.1 with the -O3 optimizations and
the -mmic flag to produce the binary executables for the Intel
PhiTM architecture.

The cores of the Intel Phi
TM

support a 4-way interleaved
multi-threaded execution (one of the possible implementations
of hardware multi-threading). Each of the four hardware
threads is assigned to a buffer of two instruction bundles. Each
core is capable of issuing two instructions per clock cycle
so each bundle consists of two instructions. The instruction
bundles of the four threads are executed in a round-robin
fashion during consecutive time slots to mask internal latencies
(logical dependencies) or external delays (cache line misses).

In this section, in order to evaluate the design ideas
presented in Section III and IV, we study message-passing and
shared-memory implementations of two parallel benchmarks.

A. Stream-parallel experiment

The first experiment is based on a video filtering kernel.
The application works by converting a stream of 1000× 1000
pixels uncompressed RGB images into the gray-scale format.
This is a simple, yet widely used filter in the pre-processing
phase of many complex video streaming applications [21] (e.g.
feature extraction and edge detection).

The filter has been written to be easily vectorized by the
Intel compiler, in order to exploit at best the VPUs of the
cores. The application has been parallelized using a task-farm
paradigm: we use several Workers, each one applying the
filter to images received by a distribution entity called Emitter;
output results are sent by Workers to a Collector. The Emitter
distributes images using a round-robin scheduling. Given the
roughly constant filtering time, this strategy balances the
workload to the Workers. At the beginning of the computation
the stream of images is pre-loaded in memory by the Emitter
(images are read from a file passed to the program).

In a message-passing implementation images are transmit-
ted by value. Each Worker receives the images from the Emit-
ter, computes the filter, and sends the result to the Collector.

In a shared-memory implementation, all the program data
structures can be used by any functionality of the parallel
program (Emitter, Workers and Collector). In this model
the Emitter can pass the images to Workers by reference.
The Emitter transmits the unique identifier (e.g. the memory
pointer) of the image to be processed; the filter is applied in-
place and the image identifier is forwarded to the Collector at
the end of the computation.

1) Using communication threads to overlap communica-
tions with calculation: we start by studying the effect of
communication threads to overlap communications with cal-
culation. In the case of the task-farm scheme, the only func-
tionalities performing calculation are the Workers. Due to
the zero-copy communications provided by our library, the
transmission phase to the Collector is the only one deserving
to be overlapped with the calculation of the next image.

In this experiment we compare the following implementa-
tions of the task-farm:

• Sh-Mem: a shared-memory implementation with
POSIX pthreads in which the Emitter passes the
pointers to the images to the Workers by using single-
producer single-consumer shared queues protected by
standard pthread spin-lock mechanisms;

• MPI: a message-passing implementation using the
Intel MPI library ver. 4.1.0.024 and asynchronous
non-blocking communications (i.e. MPI_Isend and
MPI_Irecv);

• No-KT: the message-passing implementation using
our library without communication threads;

• KT-W: similar to the previous point but using one
communication thread for each Worker.

As stated in section IV, we use spin-locks in our support
to protect channel descriptors and delegation queues. Espe-
cially for HMT architectures, the busy-waiting phase must
not aggressively consume the processor resources when the
synchronization involves two threads executed on the same
core [5]. On Intel Phi

TM
we achieve this behavior by using

the delay instruction inside the spin-loop, which avoids to
fetch/issue instructions from the issuing thread for a certain
number of clock cycles specified in a proper register. So doing
we can slow down the busy-waiting loop and even implement
advanced features such as exponential back-off.

Fig. 4 and Tab. I show the service time T (n)
S of the task-

farm (inverse of the application throughput) using n Workers
(referred to as parallelism degree) and the scalability:

S(n) =
T

(1)
S

T
(n)
S

Given the extensive HMT support of the Intel Phi
TM

, it is
important to use more than one thread context per core;
nevertheless, the use of hardware multi-threading in parallel
applications is widely known to be problematic and often
with uncertain results. In particular, the affinity of threads on
hardware contexts is extremely important. In the experiment of
Fig. 4 two cores are dedicated to the Emitter and the Collector
functionalities. Up to 58 cores, we map one Worker onto each
core (plus a communication thread per core in the KT-W case).
We use more Workers per core with the MPI, Sh-Mem and
No-KT versions.

 100

 300

 1000

 5000

 20000

 1 58 116 174 232

S
e

rv
ic

e
 t

im
e

 (
u

s
e

c
)

Parallelism degree

Service time of different task-farm implementations.

Sh-Mem. No-KT. KT-W. MPI.

Fig. 4: Service time of the task-farm using different implementations.

From a first impact, we can note that with high par-
allelism degrees the shared-memory implementation is the
best one. In particular, with a limited number of Workers all
the message-passing implementations perform quite similarly,
and their service time stops to decrease with more than 12

Workers. Intuitively, the throughput of the message-passing
versions is limited by the Emitter, which performs point-to-
point distributions to Workers. Nevertheless, a first notable
result is that our library (KT-W and No-KT cases) offers better
service times than MPI. The performance of KT-W version is
slightly better than No-KT. In Fig. 4 this difference can not
be appreciated (the two lines are very close). Tab. I gives a
detailed description of the results, with the overlapping support
achieving a constant improvement of ∼ 5% w.r.t the No-KT
version. Up to 12 Workers, when the Emitter does not limit
the application throughput using message-passing, it is also
interesting to note that the KT-W version obtains very similar
results to the shared-memory one.

N Sh-Mem MPI No-KT KT-W
T

(n)
S S(n) T

(n)
S T

(n)
S T

(n)
S S(n) gain

1 13614 1 16558 14789 14022 1 5.18%

4 3407 3.99 4177 3703 3515 3.98 5.07%

8 1709 7.96 2200 1856 1764 7.94 4.97%

12 1141 11.93 1650 1241 1193 11.75 3.85%

16 860 15.83 1665 1229 1228 11.41 ∼ 0%

58 247 55.12 2183 1240 1239 11.31 ∼ 0%

TABLE I: Service time TS and scalability S of the implementations
and performance gain of using KTs; time values are reported in µs.

2) Using communication threads to parallelize the Emitter:
previous results show that a sequential Emitter is able to
sustain up to 12 Workers before becoming a bottleneck. To
increase the overall throughput, the distribution phase can
be parallelized using a proper set of communication threads
denoted by KTE . The number of communication threads nekt
can be empirically calculated as a function of the number
N of Workers, i.e. nekt(N) = d(N/12)e. The results of the
experiments are shown in Fig. 5. Since communication threads
can be used to parallelize the Emitter and to overlap Workers
communications, we study two different allocation policies:

• KT-specialized: Emitter and Collector are fixed on two
dedicated cores. A number of communication threads
KTE (according to the previous function) are used for
the Emitter and fixed on a number of dedicated cores.
We execute an amount of communication threads for
the Workers, KTW . To avoid to under-utilize com-
munication threads, we use one KTW for a group
of Workers (the best configuration uses one KTW

for each group of 10 Workers). It is important to
observe that this solution is also useful to limit the
amount of shared data structures, which is a valuable
property if SYSV shared-memory segments are used
to implement shared memory space between processes
instead of using pthreads;

• KT-generalized: instead of separate KTs for the Emit-
ter and the Workers, we use KTs in a general way.
We fix at most one KT per core, which is in charge of
executing send operations directed/generated to/from
the Workers mapped onto that core, i.e. it executes
delegated sends from the Emitter and from the Work-
ers. It is worth noting that this version needs a unified
address space for all the application, i.e. Emitter,
Collector, Workers and KTs are threads of the same
program.

 100

 300

 800

 2000

 5000

 1 58 116 174 232

S
e

rv
ic

e
 t

im
e

 (
u

s
e

c
)

Parallelism degree

Service time using KT-specialized and KT-generalized.

Sh-Mem.
KT-Spec.
KT-Gen.

Fig. 5: Service time of the task-farm: different allocation policies
and parallelization of the Emitter.

Fig. 5 shows that we obtain similar results compared
to the shared-memory implementation. Numerical results are
depicted in Tab. II highlighting that, when we use up to one
Worker per core, Sh-Mem and the KT-specialized versions
are aligned (note, however, that by using KTs we limit the
number of Workers to 48). The difference increases when we
use multiple thread contexts to execute more Workers per core,
mainly due the presence of KTs that limit the maximum num-
ber of available contexts for Worker execution. When we use
higher parallelism degrees, KT-generalized provides slightly
better results compared with KT-specialized. The performance
loss w.r.t Sh-Mem is bounded by 10%.

N Sh-Mem KT Specialized KT Generalized
T

(n)
S S(n) T

(n)
S S(n) T

(n)
S S(n)

4 3407 3.99 3416 3.99 3711 4.01

16 860 15.8 862 15.8 930 16

48 295 46.1 298 45.7 313 47.5

58 247 55.1 - - 260 57.2

2 per core 169.7 80.2 193.7 70.4 186.3 79.8

3 per core 156.2 87.2 177 77 168.5 88.2

4 per core 151.3 90 169.7 80.3 - -

TABLE II: Service time TS and scalability S of the implementations
and performance gain by using KTs; time values are reported in µs.

B. Data-parallel experiment

In this section we present a second experiment based on
a data-parallel five-point stencil computation. This application
is common in finite difference approximations of differential
equations [21]. Consider a two dimensional grid of points
(represented as a matrix A of doubles), the value of every
point at time step t+ 1 is updated by a function (usually the
average) applied to the point itself and to its four neighbor
points at time step t; this is repeated for a certain number
of time steps. The data-parallel program consists in a set of
Workers applying the computation on their partition of the
matrix at each time step. We adopt a partitioning by blocks
of rows. In this case, “vertical” communications have to be
done (one row exchanged with the northern neighbor, and one
with the southern neighbor). For the purpose of our analysis,
we assume that each Worker starts the computation holding
its partition, neglecting the scatter/gather phases on message-
passing and the memory copies for the shared-memory version.

This is a reasonable assumption if we consider a large number
of time steps such that the initialization phase can be neglected
with a negligible implication on the completion time.

We developed two shared-memory implementations. The
first one, denoted by Sh-Mem, operates on two matrix copies,
the first representing At (t denotes the current iteration) and
the other, At−1, is overwritten with At+1. The synchronization
at the end of each iteration is implemented using a pthread
barrier between Workers. The second one, denoted by OMP,
is a OpenMP version obtained by adding a parallel for
annotation over the loop on the lines of the matrix. The
OpenMP program has been compiled using the icc ver.
13.0.1 compiler (the only one available on Intel Phi

TM
) with

the -openmp flag and granularity=fine,balanced
options.

We compare the shared-memory implementations with
three message-passing versions. The first one, denoted by No-
KT, does not use communication threads. To overlap com-
munications with computation, the five-point stencil algorithm
has been rewritten as depicted in Alg. 1. Communications
of border lines (with relative indices 1 and g in Alg. 1)
are overlapped with calculation of the inner region of the
Worker partition (with relative indices from 2 to g−1). When
communications with neighbors are completed, the Worker
can compute the border lines. In Alg. 1 we denote by M2

the size of the matrix and by T the number of time steps of
the computation. We implemented a version named KT-W, in
which for each Worker we add a communication thread, and
a version denoted by SKT that allocates a limited number of
KTs each one shared among a group of Workers.

Algorithm 1: Five-point stencil (Worker Wk).

for t=1 to T do
send(At

1,⇤, Wk�1);

send(At
g,⇤, Wk+1);

for i=2 to g � 1 do
for j=1 to M do

At+1
i,j =(At

i,j+At
i�1,j+At

i+1,j+At
i,j�1+At

i,j+1)/5;

end

end
receive(At

0,⇤, Wk�1);

receive(At
g+1,⇤, Wk+1);

for j=1 to M do
At+1

1,j =(At
1,j+At

0,j+At
2,j+At

1,j�1+At
1,j+1)/5;

At+1
g,j =(At

g,j+At
g�1,j+At

g+1,j+At
g,j�1+At

g,j+1)/5;

end

end

//Communication of border elements.

//Internal calculation overlapped with previous sends.

//Calculation of border parts of the partition.

1) Comparison between Shared-Memory and Message-
Passing implementations: in our benchmark we test the imple-
mentations with two different matrix sizes (i.e. 1080 × 1080
and 8640 × 8640 pixels) and with a number of time steps
fixed to 100 on the Intel Phi

TM
. The performance metrics

of interest are the completion time T
(n)
C and the scalability

S(n) = T
(1)
C /T

(n)
C . Fig. 6 shows the results obtained with a

matrix of 1080×1080 elements using up to 60 Workers for the
sake of readability. Results with more Workers are summarized
in Tab. III.

We can note an overall limited scalability and a slow-down
when allocating multiple Workers per core, probably because
we reach the available memory bandwidth. The OpenMP

 10

 30

 80

 200

 500

 1 5 10 15 20 25 30 35 40 45 50 55 60

C
o
m

p
le

ti
o
n
 t
im

e
 (

m
s
e
c
)

Parallelism degree

Completion time of five-point stencil.

Sh-Mem.
No-KT.

KT-W.
SKT.

OMP.

Fig. 6: Completion time with 1080× 1080 matrices.

N Sh-Mem OMP No-KT SKT KT-W
T

(n)
C S(n) T

(n)
C T

(n)
C T

(n)
C T

(n)
C S(n)

1 957 1 930 969 962 965 1

4 243 3.93 303 256 253 255 3.78

16 65.1 14.7 141 70.5 68.4 68.3 14.1

30 37.1 25.8 123 44.1 41.1 41.7 23.1

45 26.1 36.8 134 30.8 28.4 29.2 33

60 22.1 43.4 157 25.5 - 22.8 42.2

2 per
core

19.7 48.3 197 23.1 26.6 402 2.4

3 per
core

23.2 41.2 272 29.8 26.9 - -

4 per
core

24.5 39.1 351 43.7 2190 - -

TABLE III: Numerical results of data-parallel implementations for
1080× 1080 matrices. Times are reported in ms.

version is the slowest, and it is not suitable for extremely fine-
grain computations, while Sh-Mem slightly outperforms all
the other implementations. In this application the overlapping
support works well: with a higher number of Workers, and thus
smaller partitions, the gap between KT and Sh-Mem versions
decreases, ending with very similar completion times. This
is an expected result, because the ratio between calculation
and communication decreases using higher parallelism degrees
(each Worker exchanges the same number of elements with
its neighbors). It is worth noting, however, that allocating two
Workers and two KTs on the same core significantly lowers
the performance, resulting in a very limited scalability. SKT
version works better, but due to a smaller number of available
contexts for Worker functionalities (some contexts are devoted
to execute KTs) it is not able to reach the peak performance
of the other implementations.

The scenario is quite different if we increase the computa-
tional grain of the problem. With 8640×8640 matrices (Fig. 7
and Tab. IV), the OMP version achieves the same performance
of the other implementations. The effect of overlapping be-
comes negligible, i.e. No-KT, KT and SKT versions achieve
very similar peak performance results.

2) Efficient exploitation of Hardware Multi-Threading: in
this paper we discuss the use of hardware multi-threading to
overlap communications with calculation in message-passing
programs. However, even with this programming model, the
benefit of using multiple hardware contexts per core is difficult

 1

 4

 10

 25

 60

 1 5 10 15 20 25 30 35 40 45 50 55 60

C
o
m

p
le

ti
o

n
 t

im
e

 (
s
e

c
)

Parallelism degree

Completion time of five-point stencil.

Sh-Mem.
No-KT.

KT-W.
SKT.

OMP.

Fig. 7: Completion time with 8640× 8640 matrices.

N Sh-Mem OMP No-KT SKT KT-W
T

(n)
C S(n) T

(n)
C T

(n)
C T

(n)
C T

(n)
C S(n)

1 58.6 1 52.6 59.1 58.5 59.3 1

16 36.9 15.9 34.8 37.3 37.1 37.5 15.8

54 13.4 43.7 14.5 14.1 13.9 13.9 45.7

60 13.1 45.1 14.4 13.6 - 13.6 43.7

2 per core 19.5 30.1 21.7 19.1 18.2 20.1 29.4

3 per core 21.6 27.2 24.9 23.5 29.4 - -
4 per core 22.4 26.1 26.6 27.4 31.2 - -

TABLE IV: Numerical results of data-parallel implementations for
8640× 8640 matrices. Times are reported in s.

to estimate and the performance result is often unpredictable.
For instance, it is not clear if it is convenient to use multiple
thread contexts to increase the parallelism degree of the
program, or if they are useful to execute support functionalities
such as communication threads. This interesting aspect, which
still deserves further investigations, can be exemplified by the
experiment shown in Fig. 8. We study the completion time
of our data-parallel benchmark by using the hardware thread
contexts in different ways. In the first case (denoted by KT)
we map one Worker thread and one KT per core (we use
two of the four available thread contexts); in the second case
(denoted by MultiW) we map two Worker threads per core
without any KT. The results are depicted in Fig. 8 by showing
the performance gain w.r.t a baseline in which we do not use
HMT, i.e. we use exactly one context per core by mapping
one Worker thread. A positive gain represents a performance
improvement (a reduction in the completion time), vice-versa
a negative one is a performance loss.

The result confirms that the exploitation of HMT in parallel
programs is still a sort of ”dark magic”: even by consider-
ing the same program with different data sizes, we obtain
completely different results. In particular, we notice that for
MultiW the gain is reduced when increasing the parallelism
degree; here the starting point is significant: in the first case, by
having an initial gain of ∼ 33%, we end with a good advantage
even with 60 cores; in the second, starting with a low gain, we
end with a performance loss of 30%. This suggests that, using
HMT for communication threads has the important advantage
of not excessively affecting the Workers execution time on
the other contexts. In both benchmarks the application runs
equally or faster; however, the performance gain is reduced,
as it depends on the amount of communications that can be

 0

 6

 12

 18

 24

 30

 36

 1 8 16 24 32 40 48 56 60

%
 G

a
in

Used cores

Comparison between KT and MultiW - Percentage gain.

MultiW.
KT.

(a) Matrix 1080× 1080.

-40

-30

-20

-10

 0

 10

 1 8 16 24 32 40 48 56 60

%
 G

a
in

Used cores

Comparison between KT and MultiW - Percentage gain.

MultiW.
KT.

(b) Matrix 8640× 8640.

Fig. 8: Percentage gain between KT and Multi-W compared with the
baseline without HMT.

effectively overlapped.

VI. CONCLUSION

This paper dealt with the use of message-passing paradigm
for parallel programming on multi-/many-core. Message-
passing represents a valuable alternative on these architectures,
not only because it is more portable in principle, but also
because it is able to offer similar performance compared with
shared-memory models provided that the run-time support
is properly designed. We introduced a lightweight support
able to outperform MPI on very fine grain computations. We
provided a delegation mechanism which can be efficiently used
to overlap communications with calculation and to parallelize
distribution activities, effectively reducing the performance gap
w.r.t shared-memory implementations at the cost of decreasing
the maximum available parallelism degree.

In line with existing research works, we discussed the use
of HMT to execute communication threads. Specific tests prove
that this solution represents a ”safer” choice in terms of per-
formance than allocating multiple Workers on HMT contexts,
ensuring the absence of performance degradation w.r.t single-
context parallel programs and alleviating the impact of support
threads on the maximum available parallelism degree.

REFERENCES

[1] “Tilera tile64pro.” [Online]. Available:
http://www.tilera.com/products/processors/TILEPRO64

[2] B. Armstrong, S. Kim, and R. Eigenmann, “Quantifying differences
between openmp and mpi using a large-scale application suite,” in
High Performance Computing, ser. Lecture Notes in Computer Science,
M. Valero, K. Joe, M. Kitsuregawa, and H. Tanaka, Eds. Springer
Berlin Heidelberg, 2000, vol. 1940, pp. 482–493.

[3] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. P. Shen, “Speculative precomputation: long-range prefetching
of delinquent loads,” in Proceedings of the 28th annual international
symposium on Computer architecture, ser. ISCA ’01. New York, NY,
USA: ACM, 2001, pp. 14–25.

[4] M. Curtis-Maury and T. Wang, “Integrating multiple forms of mul-
tithreaded execution on multi-smt systems: A study with scientific
applications,” in Proceedings of the Second International Conference on
the Quantitative Evaluation of Systems, ser. QEST ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 199–.

[5] T. De Matteis, F. Luporini, G. Mencagli, and M. Vanneschi, “Evaluation
of architectural supports for fine-grained synchronization mechanisms,”
in Proceedings of the 11th IASTED International Conference on Parallel
and Distributed Computing and Networks, Innsbruck, Austria, 2013.

[6] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li, “Vmmc-2:
Efficient support for reliable, connection-oriented communication,” in
IN PROCEEDINGS OF HOT INTERCONNECTS, 1997.

[7] P. Geoffray, L. Prylli, and B. Tourancheau, “Bip-smp : High per-
formance message passing over a cluster of commodity smps,” in
Supercomputing, ACM/IEEE 1999 Conference, 1999, pp. 20–20.

[8] G. Goumas, N. Anastopoulos, N. Koziris, and N. Ioannou, “Overlap-
ping computation and communication in smt clusters with commodity
interconnects,” in Cluster Computing and Workshops, 2009. CLUSTER
’09. IEEE International Conference on, 2009, pp. 1–10.

[9] C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666–677, Aug. 1978.

[10] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-time mpi
broadcast algorithm for large-scale infiniband clusters with multicast,”
in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, 2007, pp. 1–8.

[11] F. Jiao, N. Mahajan, J. Willcock, A. Chauhan, and A. Lumsdaine,
“Partial globalization of partitioned address spaces for zero-copy com-
munication with shared memory.” in HiPC. IEEE, 2011, pp. 1–10.

[12] G. Krawezik, “Performance comparison of mpi and three openmp
programming styles on shared memory multiprocessors,” in Proceedings
of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, ser. SPAA ’03. New York, NY, USA: ACM, 2003.

[13] P. Lai, P. Balaji, R. Thakur, and D. Panda, “Proone: a general-
purpose protocol onload engine for multi- and many-core architectures,”
Computer Science - Research and Development, vol. 23, no. 3-4, 2009.

[14] T. Ma, G. Bosilca, A. Bouteiller, and J. J. Dongarra, “Kernel-
assisted and topology-aware {MPI} collective communications on
multicore/many-core platforms,” Journal of Parallel and Distributed
Computing, vol. 73, no. 7, pp. 1000 – 1010, 2013.

[15] F. O’Carroll, H. Tezuka, A. Hori, and Y. Ishikawa, “The design and
implementation of zero copy mpi using commodity hardware with a
high performance network,” in Proceedings of the 12th international
conference on Supercomputing, ser. ICS ’98. New York, NY, USA:
ACM, 1998, pp. 243–250.

[16] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and R. Biswas,
“The impact of hyper-threading on processor resource utilization in
production applications,” in Proceedings of the 2011 18th International
Conference on High Performance Computing, ser. HIPC ’11. Wash-
ington, DC, USA: IEEE Computer Society, 2011, pp. 1–10.

[17] S. Varoglu and S. Jenks, “Architectural support for thread communica-
tions in multi-core processors,” Parall. Comput., vol. 37, no. 1, 2011.

[18] T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-net: a user-level
network interface for parallel and distributed computing,” SIGOPS Oper.
Syst. Rev., vol. 29, no. 5, pp. 40–53, Dec. 1995.

[19] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active messages: a mechanism for integrated communication and
computation,” SIGARCH Comput. Archit. News, vol. 20, no. 2, pp. 256–
266, Apr. 1992.

[20] S. Wallace, B. Calder, and D. M. Tullsen, “Threaded multiple path
execution,” SIGARCH Comput. Archit. News, vol. 26, no. 3, Apr. 1998.

[21] B. Wilkinson and M. Allen, Parallel programming: techniques and
applications using networked workstations and parallel computers.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999.

[22] X. Wu and V. Taylor, “Performance characteristics of hybrid
mpi/openmp implementations of nas parallel benchmarks sp and bt
on large-scale multicore supercomputers,” SIGMETRICS Perform. Eval.
Rev., vol. 38, no. 4, pp. 56–62, Mar. 2011.

