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ABSTRACT

The work proposes ffMDF, a lightweight dynamic
run-time support able to achieve high performance
in the execution of dense linear algebra kernels on
shared-cache multi-core. ffMDF implements a dynamic
macro-dataflow interpreter processing DAG graphs
generated on-the-fly out of standard numeric kernel
code. The experimental results demonstrate that the
performance obtained using ffMDF on both fine-grain
and coarse-grain problems is comparable with or even
better than that achieved by de-facto standard so-
lutions (notably PLASMA library), which use separate
run-time supports specifically optimised for different
computational grains on modern multi-core.
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1 Introduction

Dense linear algebra (DLA) kernels are representative
of a large class of computations that are both highly
demanding in terms of raw performance and used in
a wide range of different applications. DLA kernels
have been considered for parallelisation on any kind
of parallel hardware. Lately, a lot of research effort is
focusing on multi-/many-core platforms and heteroge-
neous systems [22, 6, 20].

The parallelisation techniques have been typically
based on two distinct approaches operating at differ-
ent levels: pure vectorisation or either static or dy-
namic scheduling of tasks composing Directed Acyclic
Graphs (DAGS), representing the data dependencies
within the kernels. Pure vectorisation techniques are
suitable to parallelise DLA kernels on vector/SIMD
like architectures, such as the GPUs or CPUs with
SIMD instruction set extensions. Instead, static or
dynamic scheduling of DAGs has been proven to be
effective when targeting multi-core architectures, pos-
sibly in conjunction with the optimisations of compu-
tations associated with each DAG node, i.e. by ex-
ploiting the SIMD instruction set extensions of the
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micro-architecture at hand [17].

In the static scheduling approach, the correct ex-
ecution of DAG nodes (tasks) is maintained by iden-
tifying a precise partial ordering, without the need to
maintain complete data-dependency information. In-
stead, in the dynamic scheduling approach (used in
ffMDF), the run-time support is in charge of scheduling
tasks to the processing units as they become available
(fireable), i.e. all input data-dependencies are satis-
fied. While static scheduling strategies need to be
defined at hand for each DLA algorithm, a dynamic
approach is more general in principle, and deserves
special attention because it is potentially able to ex-
ploit the maximum parallelism of the considered DAG
ensuring a balanced workload among processing units.
However, this potential advantage has a trade-off in
a higher implementation complexity. It is required to
manage the on-the-fly generation of tasks, with their
relative data dependencies, and to implement an effi-
cient algorithm to explore the graph, searching for new
tasks to assign to the available processing units.

The implementation of efficient DAGs schedulers
is a critical problem especially for DLLA kernels. Over
the last years, several run-time frameworks have been
developed providing support to the scheduling of com-
putations represented as DAGs on multi-core (see
Sect. 5). The PLASMA library [12, 2], introduced
a new set of algorithms for DLA (named tile algo-
rithms [10, 17]) in which parallelism is not bounded in-
side the BLAS kernel, but it can be described at a higher
level modelling the computation as DAG of tasks. Due
to the performance delivered by these new algorithms,
PLASMA is considered the state-of-the-art for linear al-
gebra on modern multi-core. In PLASMA, the execu-
tion of a tile algorithm is performed using two sep-
arate run-time supports: a static run-time based on
static scheduling strategies suitable to efficiently ex-
ecute fine-grain DAGs, and a run-time based on dy-
namic scheduling for coarse-grain problems. The se-
lection of which run-time to use for a given algorithm
is left to the user.

The work presented in this paper distinguishes
from the previous ones by adopting a Structured Par-
allel Programming model approach [13, 16] while de-
signing a run-time suitable to support the execution



of DAGs from different applicative domains on multi-
core architectures. The result is ffMDF, a lightweight
dynamic run-time support for the efficient execution
of DAGs generated on-the-fly. This design, based on
the macro-dataflow model presented in Sect. 2 and us-
ing the synchronisation mechanisms presented in [4],
makes it possible to achieve an efficient execution of
any kind of DAGs, and in particular those result-
ing from the dependencies analysis, performed at run-
time, of DLA algorithms.

The experiments prove that ffMDF is able to effi-
ciently execute both coarse- and fine-grain DAGs, the
latter typically solved using a static scheduling ap-
proach, where task assignment to processing units is
predetermined at compile time to minimise run-time
overheads [18].

The contribution of this paper is twofold:

1. the definition of a generic lightweight dynamic
scheduling run-time support for the efficient ex-
ecution of DAGs. The efficiency of the run-time
has been proven on both fine- and coarse-grain
DLA problems, demonstrating that it is possible
to build one single efficient run-time support for
any computational grains;

2. the implementation of the run-time provides a fur-
ther yet meaningful scientific contribution. The
run-time is built out of the structured composi-
tion of well-known parallel patterns enabling the
design and implementation with a quite moderate
programming effort. The structured design en-
abled general-purpose optimisations in the man-
agement of data dependencies and task schedul-
ing and the elimination of lock-based operations
on concurrent data structures.

The rest of this paper is organised as follows.
Sect. 2 introduces the general macro data-flow model
used to implement fIMDF. Sect. 3 discusses the overall
design of ffMDF. Sect. 4 presents the results of a wide
set of experiments validating the design and imple-
mentation choices and comparing ffMDF with de-facto
standard solutions. Finally, Sect. 5 briefly discusses
existing research works on dynamic scheduling and ex-
ecution of DLA algorithms on parallel architectures,
and Sec. 6 draws conclusions.

2 The Macro-Dataflow Model

Data flow execution is a well-known computing
paradigm [23] extremely attractive for parallel pro-
cessing. It consists in an asynchronous way to execute
instructions based solely on the availability of their
input arguments (pure data dependencies, i.e. read-
after-write). The data flow model potentially makes
it possible to achieve the highest throughput while ex-
ecuting a program, as parallelism is expressed at the

finest granularity level (i.e. at the level of instruc-
tions). This is at the expense of a huge complexity
in the development of the implementation model, in
particular in the management of data dependencies
and storage space (where operands and meta-data are
maintained) and in the efficient detection and schedul-
ing of the firable (ready to be executed) instructions.
As a consequence, real hardware implementations of
this paradigm usually provide poor scalability and per-
formance [23] compared to the control-flow counter-
part, and are mainly used to implement sub-portions
of modern superscalar architectures as well as special-
purpose machines for specific applicative domains (e.g.
digital signal processing [21]).

With the emergence of highly parallel multi-core
architectures, the problem of expressing fine grain par-
allelism through dataflow models has gained a renewed
attention. Instead of expressing parallelism at the in-
struction level, portions of the sequential code having
pure functional dependencies between input parame-
ter and output results, are considered macro-dataflow
(MDF) instructions. The resulting MDF program is
therefore represented as a graph whose nodes are com-
putational kernels and arcs read-after-write dependen-
cies. The instructions interpreter (i.e. the run-time
support) is in charge of scheduling fireable instructions
and managing data dependencies as fast as possible
to avoid introducing new computational bottlenecks.
To this end, the following three points represent fun-
damental aspects for an efficient implementation of a
MDF interpreter in particular for fine-grain computa-
tions:

Construction of the task graph (DAG): in the
general case the task graph could be very large; its
generation time can affect significantly the compu-
tation time, and the memory required to store the
entire graph may be extremely large. To alleviate
these issues, a widely used solution consists in gen-
erating the graph during the computation, such that
only a “window” of the graph is maintained in mem-
ory. This also allows to overlap tasks computation
with the graph generation.

Handling task dependencies: two main opera-
tions on the graph need to be properly optimised:
i) update dependencies after the completion of previ-
ously scheduled tasks; ii) determine ready (fireable)
tasks to be executed. These operations should be
done as fast as possible and in parallel with tasks
computation, to avoid affecting the performance.

Scheduling of fireable tasks: a task having all in-
put dependencies resolved (fireable) may be selected
by the interpreter for execution. This selection needs
to be performed in a smart way considering that two
main optimisations can be applied in this phase when
targeting multi-core architectures: i) locality optimi-



sation in order to better exploit cache level hierar-
chies, and ii) parallelism optimisation in order to
maintain the number of ready tasks as big as possible
during the execution to prevent stalls. The first op-
timisation leverages on the fact that graph arcs rep-
resents data dependencies, so that if task 7 unlocks
execution of task j, then they share at least one of
the dependencies. Executing task j on the same pro-
cessor that ran task ¢ (as soon as possible), increases
the probability that the common data reside in the
cache hierarchy. The second optimisation leverages
on the fact that a graph node with an higher degree
of output arcs, might unlock a larger number of tasks.
Following this principle, the scheduling policy should
select with higher priority among all fireable tasks
those ones that have the higher number of outgoing
edges. This can be accomplished by ordering fireable
tasks with respect to the degree of the related node
on the graph.

Finally, to reduce memory consumption, in-place
computation is generally used on shared memory
platforms instead of the classic dataflow approach.
To this end, dataflow graphs have to be enriched by
additional anti-dependencies (write-after-read) be-
tween tasks for removing the need of costly copies
of the original data structure. This at the price of a
possible lower parallelism between MDF instructions.

3 Designing a lightweight dynamic
run-time

3.1 Skeleton—based design

A MDF interpreter may be implemented as a two-stage
pipeline: a sequential stage called Graph Descriptor
(GD), which defines and executes the user algorithm
that eventually produces the instructions for building
the DAG, and a parallel stage that generates (a por-
tion) of the DAG using a suitable data representation
and then executes in parallel the resulting DAG nodes
as soon as their input dependencies are satisfied. The
partial results of the computation are typically pro-
duced in output as a stream of tasks or stored in the
shared memory by updating a data structure.

The parallel stage is logically composed by 2 con-
current entities: a task scheduler (called ESched) and a
set of replicated workers (Ws) which are the real inter-
preter of the MDF instructions. The ESched receives
in a non-deterministic way, both new instructions com-
ing from the GD and also completed tasks coming from
the set of workers. It generates dynamically the graph
nodes during the computation upon receiving instruc-
tions from GD. From the sequential order in which
tasks are generated by the GD, the ESched computes a
partial ordering that ensures computation correctness,
and, by evaluating data dependencies among tasks, it

adds the corresponding node/edge to the DAG struc-
ture. A completed task coming from one of the workers
may either activate new tasks ready to be scheduled for
execution, or trigger the termination condition. The
resulting skeleton structure (called ffMDF) is sketched
in Fig. 1 (upper left hand side). Using the proposed
skeleton, all the run-time support overhead is bound in
the two sequential stages GD and ESched. While this
approach may in principle limit the scalability with a
large amount of graph nodes, the high number of cores
in current and foreseen multi-core platforms, and the
careful design of the ESched, makes this pattern a good
candidate to remove much of the overhead that limits
the performance of the dynamic scheduling in other
frameworks.

The implementation of the ffMDF skeleton has
been developed using FastFlow [1, 9], a skeleton-based
programming framework. FastFlow is a structured par-
allel programming environment implemented in C++
on top of POSIX threads [5, 3]. It provides the user
with streaming parallel patterns/skeletons like sequen-
tial, pipeline and task-farm, which can be composed
arbitrarily. The task-farm pattern can be instanti-
ated in different ways. We used the one that allows
to customise the task scheduling policy, and to com-
pletely programm the Emitter thread, which performs
pre-processing of input tasks and their scheduling to-
wards a pool of sequential workers. The workers (i.e.
the FastFlow sequential stages), compute the results
and route them back to the Emitter thread using a
feedback channel. Figure 1 (left hand side) shows the
FastFlow code needed to build the 2-stage pipeline of
the ffMDF skeleton. The task-farm Emitter thread im-
plements the ESched modules.

The programmer that uses the ffMDF pattern,
is only required to express the operations that com-
pose the DAG. As an example, in Figure 1 (right)
it is shown the simplified code needed to instantiate
and run the Cholesky factorisation algorithm using the
ffMDF pattern. The programmer has to select one of
the available scheduling policy SchedP, and to provide
a function pointer (the Algo function in the figure)
which describes the algorithm that will be executed
by the GD stage of the run-time. In the Algo func-
tion, the AddTask procedure (implemented by the
ffMDF runtime) is used to define the operations com-
posing the graph. It requires, a function pointer to
the real kernel code (i.e. low level PLASMA wrappers
or LAPACK wrappers), the number and the list of
parameters used by the function. For each parame-
ter the user has to specify its size and its mode. The
mode specifies if the parameter is used in INPUT or
OUTPUT, in such a way that the corresponding graph
dependencies may be built. A special mode, VALUE,
is required for those parameters that are directly eval-
uated inside the GD and do not concur to the DAG
creation. All tasks generated via the AddTask func-
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sequential stage

ff :: ff_farm <SchedP> farm; // farm instance

std :: vector<ff_node x> V; // workers vector

for(int i=0;i<nworkers;++i) V.push_back(new W);
farm.add_workers(V); // adds workers to the farm
farm.add_emitter(new ESched(farm.getlb()));// scheduler
farm.wrap_around(); // adds the feedback channel

ff :: ff_pipeline pipe(false, QUEUE_SIZE); // pipeline
pipe.add_stage(new GD(Algo,Parameters)); // adds 1st stage
pipe.add_stage(&farm); // adds 2nd stage

int main() {
ff_ MDF<SchedP> pchol(Algo,Parameters,nworkers);
pchol.run_and_wait_end();

void Algo(void* params){
for(int k=0;k<tiles;k++) {
for(int n=0;n<k;n++)
AddTask(CHERK,11,CblasRowMajor,VALUE,sizeof(int)
AddTask(CPOTF2,5,..., A[k] [k, OUTPUT,sizeof(A[K][k]),...);
for(int m=k+1;m<tiles;m++) {
for(int n=0;n<k;n++)
AddTask(CGEMM,14,...,A[K][n],INPUT,sizeof(A[k][n])
AddTask(CTRSM,12,...,A[k][k],INPUT,sizeof(A[k][k]),...);
}
}
}

Figure 1: Left): ffMDF implementation skeleton using FastFlow. Right): Example code needed to describe and
execute the block Cholesky factorisation algorithm using the ffMDF pattern.

tion are packed and sent to the ESched thread, which
creates the corresponding DAG node.

In the ffMDF skeleton only the ESched thread
works on the DAG, so that neither critical sections
nor cache invalidations overhead is spent for updat-
ing the graph structure. This way, we also remove
the run-time overhead for managing concurrent data
structures in the worker threads. Nonetheless, the
Worker threads have to obtain tasks from the ESched
following a Producer—Consumer pattern. The lock-free
Single-Producer Single-Consumer queue implementing
a shared-memory data-flow channel available in the
FastFlow task-farm pattern, allowed us to bound such
communication time to few tenths of clock cycles [4].
Furthermore, as we will see in the experimental sec-
tion, the ESched thread is not a real bottleneck of
the system, since we were able to bound all the pre-
processing and scheduling activities for a single input
task in few hundreds of clock cycles.

Since the memory required to store the entire
DAG may be huge, we decided to mantain in main
memory only a “window” of the graph structure in or-
der to limit the amount of memory used. When the
number of generated graph nodes reaches a predeter-
mined threshold (that can be tuned by the user), the
channel from GD to ESched is temporarily disabled;
this way the graph generation is halted and the ESched
handles only completed tasks coming from the work-
ers. When the number of available instructions falls
below the threshold, the channel from the GD node is
re-enabled.

The pseudo-code of the ESched and of the generic
worker are shown in Algorithm 1 and 2, respectively.
We omitted the GD pseudo-code since it only executes
the user-defined function (“Algo” in the example code
of Fig. 1).

Algorithm 1: ESched pseudo-code

while /ComputationEnded do

Receive a task ¢

if t is from one of the workers then

Update dependencies

Remove t from the DAG

foreach available worker w do
t < Select a ready task
Send t to w

end

if size(DAG)<threshold then

| Enable input from GD
end

else
Calculate t dependencies

Add ¢ to the DAG

if size(DAG)>threshold then
| Disable input from GD
end

end
end

3.2 Task scheduling policies

Worker threads receive tasks through an on-demand
protocol, i.e. tasks are scheduled upon request. This
policy ensures a very good work load balancing with-
out using more complex and costly work-stealing tech-
niques. When multiple fireable tasks are available,
they are enqueued in a local buffer by the ESched.
When the worker completes the computation on a
task, a notification is sent back to ESched, so that it
can update the graph with the new dependencies, and
the computed node is removed from the graph freeing
memory space. Using a centralised entity for the task
scheduling does not limit the optimisations discussed



in Section 2, on the contrary this allows the imple-
mentation of simpler and efficient algorithms without
incurring in the extra complexity and overheads of con-
current implementations.

The (currently) available ffMDF scheduling poli-
cies (SchedP) are the following ones:

SIMPLE (S): the tasks to be executed are selected
on a FIFO order basis: the first task becoming fire-
able is the first one executed; this is considered the
basic scheduling strategy. It entirely relies on the
FastFlow task-farm support, so that it basically came
“for free”.

LOCALITY FIFO (LF): a locality-oriented
scheduling, implemented by using multiple ready
queues, one per worker thread. Tasks that become
fireable after the completion of a given task executed
by the worker i, are inserted in a ready queue associ-
ated to the worker i. Tasks scheduled to the worker
1 are extracted in FIFO ordering by the ready queue
1. When the queue is empty, tasks are stolen from
other workers queues, implementing a kind of cen-
tralized work stealing strategy.

LOCALITY LIFO (LL): another locality-oriented
scheduling that works exactly as the LF policy, with
the only exception that tasks are extracted from the
ready queues in a LIFO order (i.e. the last inserted
task is the first to be extracted), possibly guarantee-
ing even more cache locality than the previous case.

PARALLELISM (P): a parallelism-oriented
scheduling, in which ready tasks are kept in a single
queue. The first task to be executed is the ready
task with the higher number of forward dependencies
in the DAG following the concept expressed in
Section 2. This policy has been implemented by
using a single priority queue.

LOCALITY PARALLELISM (LP): a mix of
parallelism and locality-oriented scheduling policies,
in which we ensure locality by using a queue per
worker thread, as in the LL and LF policies, and
parallelism by extracting from the queues using the
priority mechanism of the P policy.

Although more complex policies can be added,
we tried to keep them as simple as possible in order to
avoid the case in which the ESched stage is the main

Algorithm 2: Worker pseudo-code

while !ComputationEnded do
Get a task from ESched

Compute the task
Send the completed task to ESched
end

bottleneck of the ffMDF pattern when fine grain DAGs
are executed.

4 Experiments

In this section we validate the implementation of the
ffMDF run-time using the LU and Cholesky factorisa-
tion algorithms (hereinafter CHOL) on a dense matrix
of single precision complex elements. Three platforms
are used in the evaluation: SB) a 16-core machine with
2 CPUs eight-core 2-way hyperthreading Intel Sandy
Bridge Xeon E5-2650 2.0GHz with 20MB L3 cache
and 32GB of RAM; NH) a 32-core machine with 4
CPUs eight-core 2-way hyperthreading Intel Nehalem
Xeon E7-4820 2.0GHz with 18MB L3 cache and 64GB
of RAM; and MC) a 24-core machine with 2 CPUs
twelve-core AMD Magny-Cours Opteron 6176 2.3GHz
with 12MB L3 cache shared by two groups of 6 cores,
no hyperthreading support and 32GB of RAM. For the
sake of conciseness, since the SB and NH machines de-
liver similar qualitative results, we mainly report the
results obtained on the SB machine. The three servers
run the same Linux x86_64 distribution.

In the experiments we consider different matrix
sizes to evaluate the run-time in different conditions
of task granularity and total number of tasks. We use
relatively large matrices of 4096 x 4096, 8192 x 8192
and 16384 x 16384 single precision complex numbers,
which are a sub-set of the problem size considered in
similar existing work [11, 10, 17]. We also compare our
implementation using smaller matrices of 512x512 and
1024 x 1024 elements. These sizes represent a challeng-
ing scenario for a dynamic run-time support, since we
are forced to use smaller blocks to extract enough par-
allelism. The resulting graph is a fine grain DAG. In
general, fine grain DLA DAGs are those graphs whose
nodes represent a computation equivalent to few thou-
sand (1-10) of floating point instructions.

A very important parameter of block based algo-
rithms is the block size, which affects both the num-
ber of tasks in the graph and the amount of paral-
lelism. Decreasing too much the block size produces
two negative effects on the parallel execution time:
having smaller blocks imply that i) the run-time sup-
port is more frequently called therefore its overhead
may eventually affect the performance, and ii) the low
level kernel sequential execution is less efficient. A
careful study of the trade-off between speedup and se-



quential time is required to obtain the best parallel
execution time. In this section, except when stated
otherwise, we use the block size that enables the best
execution time on the considered platform.

4.1 Scheduling strategies and overall speedup

We start with a brief analysis of the different schedul-
ing policies for the ffIMDF run-time described in Sec. 3,
using relatively small matrix size (the same results are
obtained for larger matrices) considering the LU fac-
torisation (see Fig 2-left). The experimental results
match our expectations: the SIMPLE scheduling is the
worst of the set, while LP performs better than the oth-
ers since it implements both locality and parallelism
optimisations. Given the optimal results of LP, we use
this policy for all the other tests.

Then, we measured the average time the ESched
takes to fetch a task from one of the input queues and
to execute the Algorithm 1. We obtain an average
computation time in clock cycles of ~1200. Taking
into account that for the considered algorithms, when
using very small blocks of 32 x 32 the average compu-
tation time per block is at least one order of magnitude
higher, the ESched thread is not a bottleneck of the
system for any reasonable block size.

In Fig. 2-right, it is sketched the execution time
and the speedup obtained on the SB machine for the
2 algorithms when considering large matrices (8192 x
8192). The ffMDF implementation is able to obtain
very good time decrease and almost ideal speedup for
both algorithms up to 16 workers threads (18 threads
used in total). The same test for smaller matrix
(1024(64)—not reported here for lack of space) exhibits
good execution time decrease but not the maximum
speedup possible (8.5 and 5.4 for LU and CHOL, re-
spectively). This is mainly due to the lack of indepen-
dent tasks that can be executed concurrently for the
considered block size.

25 25

Execution Time (ms)

S LF LL P LP

4.2 ffMDF vs PLASMA library

We compare the ffMDF run-time against the PLASMA
library (2.5.0b1). The block Cholesky factorisation
implemented uses the left-looking variant of the algo-
rithm. The same version is used in the PLASMA library
when the static run-time is selected; the dynamic run-
time uses the right-looking version [17]. For the LU
factorisation, the algorithm used is the same.

The concurrency degrees of the ffMDF and
PLASMA run-time are different, the ffIMDF run-time
uses two extra threads: one (GD) for DAG’s instruc-
tion generation, and one (ESched) for graph building
and task scheduling purposes. The number of work-
ing threads (workers), i.e. threads that perform low
level kernel operations, are the same in both versions.
For the sake of readability, in the following graphs is
reported the number of working threads rather than
the actual concurrency degree. In order to present a
fair comparison, Table 1 shows the best times achiev-
able for the various considered implementations. For
the low level kernel, we used the PLASMA wrappers to
the BLAS and LAPACK functions. PLASMA has been
compiled against the Intel MKL library (version 11.0).

In Fig. 3, we compare the ffMDF with the two
PLASMA run-time versions, varying the block size on the
SB platform. PLASMA-S and PLASMA-D are the static
and dynamic run-time, respectively. For this test, we
selected small matrices so that the different run-time
support overhead becomes more evident due to the
finer grain computation. All tests were performed us-
ing 16 worker threads. As expected, PLASMA-S and
PLASMA-D have very different behaviour depending on
the block size. PLASMA-S confirms its low run-time
overhead, being able to deliver good results using
blocks with a size unacceptable for the PLASMA-D run-
time. Conversely, the PLASMA-D version works well
only with blocks larger than 128 that, given the small
size of the matrices, provide too few concurrent tasks
to guarantee good performances with 16 cores. The
ffMDF implementation obtains very good results start-
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Figure 2: ffMDF on the SB platform. Left): LU execution time for different scheduling policies (size 1024(64)).
Right): Execution time and speedup for LU and CHOL, 8192(512) and 8192(256), respectively.
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Figure 4: ffMDF vs PLASMA small vs big matrices(blocks), LU algorithm. Left): 1024(64). Right): 16384(1024).

ing with block sizes of 32 x 32; for smaller blocks, the
difference with PLASMA-S is mainly due to the overhead
introduced by the dynamic scheduling for the many
small tasks of the graph.

This behaviour is confirmed with the experiment
reported in Fig. 4, where bigger matrices are analysed
varying the parallelism degree. The graph on the left-
hand side shows that the ffMDF run-time obtains the
best performance with less than 16 workers, obtain-
ing a speedup of ~ 8.5 and an overall gain of +12%
and +34% w.r.t. the PLASMA-S and the PLASMA-D, re-
spectively. Figure 4-right shows that when larger ma-
trices are considered the PLASMA library performance
is inverted considering the two run-time versions: the
dynamic implementation works better than the static
one. The ffMDF implementation obtains almost the
same performance of the PLASMA-D version up to 15
worker threads and then spots a performance penalty
of —3% (32.64s vs 33.62s). Although not reported
here due to space constraints, with smaller matrix
(8192 x 8192 elements) the performance penalty mea-
sured of the ffIMDF run-time drops to less than 1%.
The small performance degradation is mainly due to
the extra thread used in the ffMDF run-time w.r.t. to
PLASMA-D. In particular with 16 worker threads, we
have both the GD and the ESched threads mapped on
cores hosting also a worker thread (each thread pinned

on a separate HW context of the 2-way hyperthreading
CPU support). When the computation granularity of
the task is high (several hundreds of thousands of clock
cycles), the “noise” introduced by the extra thread
mapped on the same physical core of the ESched and
GD threads is not negligible though very small. In
this scenario, however, the performance of the appli-
cation is highly dependent on the HW threading imple-
mentation offered by the platform, in fact, while such
“noise” is bounded in a small range (less than 3%) on
the SB machine, the same test (not reported here for
lack of space) executed on the NH machine (32-core
2-way hyperthreading) using 32 worker threads, pro-
duces opposite results: the ffMDF takes 38.5s whereas
the PLASMA-D implementation takes 41.6s with a gain
of ~ 7% (see also Fig. 5-right for the case 8192(256)).

When hyperthreading support is not available on
the platform, we expect an important performance
drop by using multiprogramming for large matrices.
We estimated such overhead by running the LU fac-
torisation algorithm on the MC platform. The ob-
tained results are sketched in Fig. 5- Left. The perfor-
mance up to 22 worker threads, spots the same trend
as in the SB and NH platforms since we have 1 thread
per physical core. With more worker threads the per-
formance dramatically decreases due to the high con-
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Figure 6: ffMDF vs PLASMA, LU and CHOL algorithms on SB platform. Left): 512(32). Right): 4096(256).

tention produced by the non-blocking run-time used
in the implementation of the ffMDF. This behaviour
is particularly critical for big matrices where, without
hyperthreading, we loose 2 cores whereas for small ma-
trices, where the maximum performance is obtained
with fewer worker threads, the performance of the
ffMDF run-time is almost the same of the PLASMA static
run-time. The measured penalty on this platform
for big matrices is ~ 2/24 (~8%). On architecture
with hyperthreading support the non-blocking run-
time used in the FastFlow framework for implement-
ing efficient synchronisations, does not impair perfor-
mance for 2 main reasons: i) the context switch over-
head between the 2 threads is negligible, and ii) busy-
waiting instructions and other instructions of the sec-
ond thread (the Worker) are pipelined together in the
core’s functional units, [14].

In Fig. 5-right it is reported the execution time
on the NH and SB platforms. It is worth pointing
out that the minimum service time obtained on the
NH platform using 32 worker threads is almost the
same of the one obtained on the SB platform using 16
worker threads (4.45s vs 4.39). The Intel MKL library
on the SB platform exploits the AVX instruction set
which uses SIMD registers of 256 bits instead of the
128 bits register used in the NH platform. The execu-

tion time on the NH platform is almost twice the time
obtained on the SB platform proving that: i) the AVX
implementation is quite good and is able to double the
performance for this kind of applications, and ii) the
ESched thread does not introduce significant delay also
in the presence of relatively high parallelism degrees.

Finally, in Fig. 6 we compare both LU and CHOL
algorithms on the SB platform considering the best
PLASMA implementation for the 2 cases: PLASMA-S
for the case 512 x 512 and PLASMA-D for the case
4096 x 4096. The performance obtained in both cases
by the ffMDF implementation is better than or com-
parable with the one obtained by the best implemen-
tation of the PLASMA library. This confirms our initial
claim: it is possible to implement a dynamic run-time
support able to obtain optimal performance for any
DAG granularity on modern shared-cache multi-core.

As final summary, in Table 1 are reported the best
times for ffIMDF, PLASMA-S and PLASMA-D obtained in
executing the LU and CHOL benchmarks over the SB
platform. The last column shows the percentage gain
of the ffMDF implementation over the best one of the
PLASMA library.



Bench. Size fIMDF [PLASMA-S [ PLASMA-D [ % G.
512(64) 8.69 9.30 9.95 6.5
1024(64) 22.48 | 25.63 34.43 | 12.3
4096(256) | 612.89 | 613.44 | 611.69 | -0.2
8192(512) |4391.24 | 4531.45 | 4335.92| -1.3

16384(1024) | 33622 | 37148 | 32641 | -2.9
512(32) 5.43 5.98 10.37 9.2
1024(64) 12.02 15.04 19.19 20
4096(256) | 279.77 | 278.98 | 280.81 |[-0.28
8192(256) | 1751.3 | 1781.39 |1738.19 |-0.75
16384(512) | 13516 | 13185 | 13136 | -2.8

LU

CHOL

Table 1: Best times (in ms) obtained in executing the
benchmarks on the SB platform

5 Related Work

A large research effort has been devoted to studying
efficient run-time supports for the execution of parallel
programs expressed as DAG graphs [15, 20, 6, 24, 8].

In Cilk [15], tasks represent procedures performed
by spawning a set of threads for each recursive call.
Load balancing is achieved through a randomised work
stealing technique and is based on a classic fork-and-
join pattern. This makes Cilk particularly good for
highly recursive code and not well suited to extract
parallelism from a data dependencies DAG.

SMP Superscalar [20] (SMPss) is a parallel pro-
gramming environment based on compile time anno-
tations. SMPss and Cilk share some common points.
The programmer is responsible for explicitly identi-
fying tasks, and load balancing is achieved using a
cache-aware work stealing technique optimising data
locality. Compared to Cilk, SMPss handles the com-
putation of arbitrary DAGs which are automatically
constructed from an abstract representation of tasks
and their input/output dependencies.

PaRSEC [8] is another scheduling environment
for graphs of tasks. Differently from the others, it
targets clusters of multicore, therefore handling data
exchange among the machines by means of communi-
cation mechanisms such as MPI. Another distinctive
point of PaRSEC is the use of a symbolic, problem-
size-independent representation of the DAG, that re-
lieves the authors from the run-time creation of the
task graph. It has been used in DPLASMA [7], the
distributed version of PLASMA.

StarPU [6] is focused on handling accelerators
such as GPUs. Graph tasks are scheduled by its run-
time support on both the CPU and various accelera-
tors, provided the programmer has given a task imple-
mentation for each architecture.

QUARK is the run-time support for the dynamic
scheduling execution of the PLASMA library [19]. In
QUARK, the application algorithm is expressed by
means of a sequence of tasks each one composed of the
function to be computed and of parameters list. The

construction of the DAG is performed sequentially by
a (master) thread during the computation, maintain-
ing only a graph “window” to bound memory usage
with very large graphs. The master schedules tasks
towards a pool of worker threads each one having an
input queue. Work-load balance is obtained using a
work stealing algorithm. Once a task is executed, the
dependency graph is updated either by the master or
by the workers themselves. Locality on data usage is
preserved by scheduling tasks that use the same data
on the same worker. A task can also be characterised
by a priority, so a task with higher priority will be
executed earlier. Both these optimisations require the
intervention of the user that has to specify the hints
for preserving locality on a given task parameter or
the priority of the task.

6 Conclusion

This paper presents and assesses ffMDF, a lightweight
dynamic run-time support for efficient execution of
DLA on modern shared-cache multi-core platforms.
Two important DLA algorithms have been studied:
LU and Cholesky factorisation. For both of them we
conduct an analysis of the performance when both
small and big matrices are taken into account.

The performance obtained is compared with
those achieved by using the efficient, and widely used
PLASMA numerical library [2]. PLASMA has been de-
signed to provide the best performance in the execu-
tion of DLA algorithms on multi-core platforms by
using two separate run-time variants: a static run-
time optimised for small problem size, and a dynamic
run-time optimized for large problem size. The results
show that: i) for large matrices, ffMDF is able to ob-
tain comparable performance of the PLASMA dynamic
run-time with a maximum performance penalty, in the
worst case, less than 3% on machine with hyperthread-
ing support (and 8% on the tested machine without
hyperthreading), instead, for small matrices, ffMDF is
able to obtain better performance, up to more than
10% and 30% with respect to the static and dynamic
PLASMA run-time, respectively.

As future work, we intend to deeply analyse which
are the performance contributions provided by the low
level non-blocking synchronisation mechanisms used to
implement ffIMDF. Furthermore, in order to extend the
work for targeting heterogeneous many-core platforms,
we plan to investigate other skeleton implementations
for the dynamic run-time.
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