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ABSTRACT

In adaptive distributed parallel applications the adaptation
process is based on the ability to change some characteris-
tics of parallel components, such as the parallelism form and
the parallelism degree, in response to unexpected execution
conditions. Although existing research work has studied this
problem, it is of increasing importance to investigate adap-
tation strategies able to reach important properties like the
stability of control decisions, i.e. to guarantee that recon-
figurations are effective and durable, and control optimal-
ity, expressed by means of cooperative and non-cooperative
agreements between decisions of different controllers. These
properties are crucial in distributed environments like Grids
and Clouds, where reconfigurations imply a cost both in
terms of a performance degradation as well as a monetary
charge. In this paper we briefly introduce the basic ideas
of our methodology and we introduce different adaptation
strategies based on alternative formulations of the Model-
based Predictive Control technique. First hints about the
effectiveness of our approach are discussed through experi-
ments developed in a simulation environment.
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C.2.4 [Computer Communication Networks]: Distributed

Systems— Distributed applications
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1. INTRODUCTION

In dynamic execution contexts the achievement of de-
sired levels of Quality of Service (QoS) requires to con-
tinuously adapt the application configuration in response
to exogenous uncontrollable factors like workload variations
and time-varying user requirements. For distributed paral-
lel applications reconfiguration activities consist in run-time
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modifications of the parallelism degree and the parallelism
form of specific application components. The development
of adaptive applications implies to face with two central is-
sues. The first one concerns how a distributed system can
change its behavior at run-time, i.e. which reconfigurations
are defined and how they are implemented. The second point
investigates the logic and the methodological tools behind
the definition of adaptation strategies, i.e. how reconfig-
urations are selected in response to critical and unezxpected
execution conditions.

On Cloud environments the problem of dynamic recon-
figurations introduces new issues peculiar to this comput-
ing paradigm. In elastic cloud infrastructures, computing
resources are usually delivered on-demand to the users in
terms of virtual machines deployed in remote provider data
centers. When executing adaptive applications, the modi-
fication of the application configuration leads to significant
changes in the used infrastructure by frequently creating and
shutting down virtualized resources. This can induce differ-
ent costs on the computation, both in terms of performance
degradation (e.g. parallel modules could be blocked wait-
ing for the reconfiguration process to complete) as well as in
terms of a monetary charge due to the dynamic provisioning
of resources. It is clear that, given the nature of these exe-
cution environments, reconfigurations do not come for free,
but finding appropriate additional resources could be tricky,
time-consuming and economically expensive.

In this paper we present an overview of our methodol-
ogy [12]. In our approach, the adaptation strategy is decom-
posed among the application components/modules. Each
module is composed of an Operating Part (a reconfigurable
parallel computation performing structured parallelism pat-
terns such as task-farm, data-parallel and divide-and- con-
quer schemes) and a Control Part interconnected in a closed-
loop model. Each local control problem is composed of: (i) a
cost function that describes the local QoS goals and reconfig-
uration costs; (ii) a model that formally describes the future
evolution of local QoS variables. The module adaptation is
driven by a control-theoretic strategy known as Model-based
Predictive Control [5]. Proper definitions of the cost func-
tions drive the adaptation strategy towards the achievement
of properties like:

o the stability of the control decisions. We use this term
in a different meaning w.r.t the classic concept of sta-
bility of dynamical systems used in Control Theory. A
stable adaptation strategy avoids oscillating behaviors
and minimizes the number of reconfigurations (avoid
to modify the application configuration unnecessarily);



e control optimality, i.e. reaching desired trade-offs be-
tween contrasting QoS goals (e.g. performance and
resource consumption).

The presence of interconnected components leads to a crit-
ical problem: the reconfigurations selected by a module may
influence QoS parameters of other modules of the applica-
tion (control sub-problems can be coupled with each other).
This means that Control Parts should communicate in order
to take effective reconfiguration decisions. We face with this
problem by adopting two diametrically different approaches:

e controllers operate selfishly: each controller optimizes
its local cost without taking into account the effects of
its actions on the other controllers;

e controllers operate in a cooperative fashion, in order to
select reconfigurations that are optimal from a global
viewpoint instead of pursuing their self-interest.

The outline of this paper is the following. In the next
section we review existing research work on adaptiveness for
distributed parallel computations. Section 3 presents the
general description of our methodology. In Section 4 we
discuss some preliminary results concerning the application
of our methodology. Finally, Section 5 concludes this paper.

2. RELATED WORK

Providing computing systems with run-time supports to
dynamic reconfigurations has been the subject of several re-
searches in different fields like Mobile, Grid and Cloud Com-
puting. On such environments, it is of great importance
to dynamically provide computing resources to applications
featuring variable QoS requirements and characterized by ir-
regular workload conditions. Examples are described in [15,
11], in which provisioning mechanisms of virtual machines
are developed to accelerate compute-intensive jobs submit-
ted into Cloud platforms.

Besides efficient run-time supports [14, 1], emerging com-
puting environments raise critical problems related to when
reconfigurations should be executed in order to optimize
performance and economic aspects. Therefore, adaptation
strategies have gained much attention. A common approach
consists in providing the mapping between execution condi-
tions and corresponding reconfigurations explicitly, through
a set of policy rules expressed by a declarative language [8].
Examples of autonomic frameworks adopting this approach
are described in [9] for distributed computing systems, and [1,
2] more oriented towards high-performance applications.

On the other hand, the adoption of Control Theory foun-
dations to adapt computing systems [6] have moved beyond
the preliminary stage. An example of a framework in which
control-theoretic strategies have been applied to improve
software performance is described in [16]. A comprehensive
overview of decision-making strategies is presented in [10].
In this work emerges that Optimal Control approaches are
suitable to optimize performance requirements and operat-
ing costs by avoiding unnecessary reconfigurations. Despite
the existence of first activities in this area [7], this research
direction is still open and requires further investigations.

3. OVERVIEW OF THE METHODOLOGY

The core element of our methodology is the concept of
adaptive parallel module (i.e. shortly ParMod), an active

unit featuring a parallel computation and an adaptation
strategy to respond to dynamic execution conditions. A
ParMod is structured into two interconnected parts:

e the Operating Part performs a structured parallel
computation [4], expressed parametrically w.r.t the par-
allelism degree. The computation is activated by re-
ceiving tasks from input data streams. Results are
transmitted onto output data streams directed to other
application components;

e the Control Part (controller) observes the Operat-
ing Part execution and performs reconfiguration ac-
tivities (i.e. parallelism degree variations - number of
threads/processes of the current implementation - and
changes in the executed parallelism form).

The Operating Part collects and periodically exchanges
measurements (monitoring data) representing the behavior
of the parallel computation (e.g. memory usage, resource
utilization, service time and computation latency). In or-
der to take effective reconfiguration decisions, Control Parts
of different ParMods exchange control messages in order to
reach specific agreements between their reconfiguration de-
cisions. Figure 1 outlines the internal structure of a ParMod
and the existing interconnections between sub-systems.
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Figure 1: Internal structure of an adaptive parallel module.

In our model the control logic evaluation is performed at
equally spaced time instants. We call control step the time
interval between two successive evaluations of the adapta-
tion strategy.

3.1 Distributed Model-based Predictive
Control

For each application module M; we identify a local model
involving the following set of variables:

e local QoS variables (x;(k) € R™) are metrics related
to performance, memory usage and resource consump-
tion for a given control step k;

e local control variables (u;(k) € U;) are controllable
parameters that identify the ParMod configuration used
throughout the k-th control step;

e local disturbances (d;(k) € R™) model exogenous
uncontrollable factors influencing the module’s QoS
(e.g. the arrival rate from external sources).

Coupling relationships between sub-problems are modeled
though a proper set of input/output interconnecting vari-
ables between Control Parts. We denote with vin-;(k) € R?



the interconnection variables received by ParMod M; from
the other modules, and with v,y:-; (k) € R’ the interconnect-
ing variables transmitted by M; to the other controllers.

A general formulation of the Operating Part model is
given by the following discrete-time model:

xi(k 1) = @i (xi(k), dilk), wi(h), vinsi(R)) (1)

The model allows the Control Part to predict the values
assumed by local QoS variables as a function of control
inputs, local disturbances, input interconnecting variables
from other controllers and present values of QoS variables.
In this case we speak about a dynamic model, described by a
set of difference equations. Otherwise, if future QoS values
do not depend on the present values, we speak about a static
model expressible through a set of algebraic equations.

The output interconnecting variables are calculated as a
function of the actual QoS variables, disturbances and con-
trol inputs:

Vour-i(K) = Zi (xi(k), di(k), wi(k)) (2)

where Z; is called the output generation function.

The basic strategy adopted by each Control Part follows
the general principle of Model-based Predictive Control [5]
(shortly MPC). MPC is an Optimal Control approach in
which the current reconfiguration is taken by solving a finite-
horizon optimization problem using the current value of QoS
variables and statistical multiple-step ahead predictions of
future disturbances. Only the first reconfiguration of the
optimal sequence is applied to the Operating Part, and the
procedure is repeated at the next control step. This strategy
has the effect of making the prediction horizon slide in the
future step-by-step, in order to continuously adapt the opti-
mal reconfigurations to the update disturbance predictions.

Distributed MPC schemes can be applied to control large-
scale systems such as distributed computations. In this case
the global optimization problem is composed of a set of cou-
pled sub-problems. Nomn-cooperative schemes consist in
controllers that operate selfishly. At each control step each
Control Part (CP;) selects the optimal control trajectory by
solving the following local problem?:

al;g min J; (Yz(k) + 1), Uz(k), Vln-l(k)) (3)
U;(k)

s.t.

Xl(k‘ + 1) =, (Xb(k), d,(k), ui(k), Vm-z(k))

ul(k) e U;

CP; selects the control trajectory U; (k) that optimizes its
local objective (cost) function J; given the current trajec-
tory of received interconnecting variables and predicted local
disturbances. Therefore, in this formulation, each controller
optimizes its local cost function without taking into account
the effects of its actions on the other controllers.

A selfish approach can be ineffective when we want to
achieve the global optimality in a system-wise sense. This
problem can be solved by resorting on cooperative control
schemes in which controllers, instead of simply reacting
to the decisions of the partners, account for the effects of
their actions on the local objectives of the others. In this

lan uppercase overlined letter denotes a sequence of values (tra-
jectory) starting from a given control step.

case, each Control Part CP; should select the optimal control
trajectory by solving a global optimization problem stated
as follows:

N
argmin  Jg = Zwi Ji (Yz(k +1), Uz‘(k)7 Vin-i(k))
U1 (k),....UN (k) i=1
(4)
s.1.
Xi(k +4 1) EX (Xi(k), dz(k), ui(k), Vin_i(k)) 1=1,2,.. .,N
ul(k) eEU; 1= 1,2,...,N

where Jg is the global cost function of the whole system,
defined as the weighted sum of local objectives.

4. EVALUATION OF THE METHODOLOGY

In order to provide first preliminary results, we have devel-
oped a ParMod simulation environment based on the Om-
NeT++ discrete event simulator®. A ParMod is composed of
two simulation parts, the first one implements the Operating
Part and the second is in charge of executing the adaptation
logic (Control Part). The behavior of a simulation module
can be programmed following an event-driven programming
style. A module can receive different classes of messages
from other modules. Each time a new message is received,
the handlemessage () routine is called automatically. Inside
the definition of this routine the programmer can specify dif-
ferent handlers based on the type of the received message,
and can also generate new messages that will be transmitted
to other modules. Communications are performed through
the definition of ports: each port is binded with a port of
another module in such a way that each message transmit-
ted using a local port will be delivered to a well-identified
destination (see Figure 2).
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Figure 2: Simulation of an Adaptive Parallel Module.

In order to reproduce the behavior of a structured paral-
lel computation operating on a stream of input tasks, the
Operating Part implements a queue logic with a blocking
semantics. Tasks are received and buffered into a queue
data structure. The communication protocol is based on the
transmission of SEND and ACK messages. If the received task
can be buffered (i.e. there is a free position in the queue),
the Operating Part transmits an ACK message to the sender.
Otherwise, if there is no free space in the queue, the received
task and other information (e.g. the sender identifier) are
stored in a special data-structure and the ACK transmission

2visit http://www.omnetpp.org/ for further details about this
open-source simulator.



is delayed until a position in the queue is freed. The commu-
nication protocol makes the sender wait for an explicit ACK
message before transmitting the next task to a destination.

The Operating Part can adopt two working logics repro-
ducing structured parallelism schemes and their impact on
performance parameters such as the service time and the
computation latency: (i) a task-farm semantics, in which
at most p tasks in parallel can be executed, where p is the
current parallelism degree; (ii) a data-parallel semantics, in
which only one task at a time can be processed with an ex-
ecution time equal to the calculation time divided by the
parallelism degree. The parallelism degree is simulated as
an attribute of the Operating Part.

4.1 Competition and Cooperation between
Controllers

In multi-federated Cloud environments, users have the
possibility to transparently access to a pool of virtualized
computing resources without regard to where resources are
physically located and what Cloud providers really provide
them. In this situation, adaptation strategies can become
extremely complex, since different parts of a distributed
application can be executed on Cloud providers applying
different costs and billing models. In this case the appli-
cation controllers, which dynamically regulate the resource
consumption of the application, need to exchange informa-
tion in order to meet the desired QoS goals but, at the same
time, try to reach the best execution cost.

We study two diametrically different ways to perform the
interaction between controllers: (i) a selfish scheme, in
which Control Parts interact in order to reach an agreement
modeled by the concept of Nash Equilibrium; (ii) a coop-
erative scheme, in which controllers cooperate in order
to take optimal reconfiguration decisions in a system-wise
sense. To contextualize these strategies, we consider the
problem of regulating the resource consumption (expressed
in terms of provisioned computing nodes) of a distributed
parallel application executed in a federated Cloud environ-
ment. In order to maintain the desired level of performance,
the necessary amount of used resources can change consis-
tently over the time, due to application-dependent reasons
(e.g. a variable workload) or caused by the dynamic behav-
ior of the execution platform (e.g. availability of computing
and networking resources).

Each ParMod is aimed at optimizing two QoS objectives:
its effective performance, modeled by its inter-departure time
(the steady-state average time between two successive result
departures), and its resource consumption, proportional to
the number of used nodes (the parallelism degree of the com-
putation). For each ParMod M; we introduce a local cost
function defined over a future horizon of one control step
(one-step ahead MPC):

Ji(k) = a; Tp, (k+ 1) + Bini(k) (5)

where Tp, (k) models the inter-departure time (QoS vari-
able) assumed at the beginning of control step k + 1 (it
refers to the behavior measured at the end of the last con-
trol step k), and n;(k) € U; is the parallelism degree (control
input) adopted throughout the k-th control step (where U;
is the closed interval [1,n{***]). «; and j3; are two positive
coefficients representing the desired trade-off between per-
formance and resource utilization.

The prediction of the steady-state performance of a mod-

ule is a complex problem, which requires to represent the
stochastic behavior of the entire computation graph (e.g.
modeled as a network of queues) in order to identify the pres-
ence of bottlenecks. From the performance viewpoint, each
module is characterized by a mean service time which de-
pends on the internal structured parallelization. For the sake
of simplicity, we assume that the service time of a ParMod
scales perfectly with its parallelism degree, i.e. Ts,(k) =
Teaic-i(k)/ni(k), where Teqic-i(k) represents the mean cal-
culation time (modeled as a disturbance) per task during
control step k. In this paper we adopt a simple yet pow-
erful approach to estimate the steady-state performance.
The method, originally presented in [12], is valid for acyclic
graphs with a single source module and can be summarized
by the following result:

THEOREM 1 (PERFORMANCE MODELING). Given a sin-
gle source acyclic graph G composed of N modules, the inter-
departure time Tp, from M; is given by the following model
(®; as stated in expression 1):

Tp, (k1) = max{ i1 (Ts, (0), fi2 (T, (0) - fion (T (0) |

(6)
Each term f;; with j = 1,2,...,N expresses the inter-
departure time of M; if module M; is the bottleneck of the
graph. f; ; is defined as a function of the service time of M :

> ( I1 ps,d(k)>

VreP(My—M;) \V($:d)ET

fi,j (Tsj (k)) = TSj (k)
I[1 Ps,d(k)>

VreP(My—M;) <V<S»d)€7‘
(7

where My denotes the source of G, P(My1 — M;) is the set
of all the paths in the graph starting from My and reaching
M;, and ps,q(k) is the probability to transmit tasks from M,
to My during control step k (it is modeled as a disturbance).
Since we do not know which module will be the bottleneck,
the inter-departure time of M, is calculated by taking the
mazimum between the functions f; ; for j=1,...,N.

4.1.1 Finding Nash Equilibria

The first approach is based on controllers that pursue
their self-interest, i.e. each Control Part selects the recon-
figuration decision (best response) that optimizes its local
cost function given the control information received by the
other controllers. In this problem controllers exchange their
service times, which represent input/output interconnect-
ing variables. In order to make our analysis tractable, the
parallelism degree n;(k) is treated as a positive real-valued
number. For each ParMod we introduce the following con-
cept:

DEFINITION 1  (IDEAL PARALLELISM DEGREE). The
ideal parallelism degree of M; during control step k is a
value nj (k) such that the local cost function J; is minimized
in isolation, i.e. assuming that Tp,(k + 1) = fi:(Ts, (k)):

(673 Tcalc—i(k)
Bi
It expresses the optimal trade-off between performance and

resource cost when the ParMod has no knowledge about the
behavior of the other modules.

ni (k) = (8)



Given the particular structure of the local cost functions,
we can state the conditions under which a set of parallelism
degrees represents an allocation satisfying the Nash optimal-
ity concept:

PROPOSITION 1
parallelism degrees [nge)(k), née)(k:)7
the following conditions are satisfied:

Ts,(k) = Tp,(k+1) Vi=1,2,...,N

(NASH EQUILIBRIA). Given a vector of
, ng\f)(k:)]T such that

n{ (k) <nj(k) Vi=1,2,...,N

This set of parallelism degrees represents a Nash equilibrium.

The previous conditions identify a set of control decisions
such that: (i) for each ParMod its service time is equal to
its inter-departure time; (ii) no ParMod uses a parallelism
degree greater than its ideal parallelism degree. The first
condition implies that each ParMod has not the unilateral
incentive to increase its parallelism degree, since its effective
performance can not be improved if the other modules do not
change their control decisions. With the second condition
each ParMod M; has not the unilateral incentive to decrease
the current parallelism degree (smaller parallelism degrees
make the local cost function worse off).

At each control step, Control Parts interact in order to
reach an agreement modeled by a Nash equilibrium. Start-
ing from their ideal parallelism degree, the best response of
ParMod M; can be identified as follows:

e a parallelism degree smaller than the ideal parallelism
degree: due to the presence of a module acting as a
bottleneck, the best response of M; is a parallelism
degree 7;(k) that allows the module to adapt to the
bottleneck’s performance;

e the ideal parallelism degree: in this case M; is the bot-
tleneck, and it has no incentive to deviate from the
current control decision.

In the first case, n;(k) represents the parallelism degree
that allows M; to reach a service time equal to its steady-
state inter-arrival time from the source modules (i.e. avoid-
ing to be unnecessary fast). It can be calculated as: n;(k) =
Teaic-i(k)/ fi,n(k) where M, denotes the bottleneck of the
graph.

It is worth noting that the same best responses are also
valid when modeling non-ideal performance behaviors of par-
allel modules, e.g. when the service time stops to decrease or
even increases after a specific parallelism degree. Intuitively,
the service time should be modeled as a convex function of
the parallelism degree to have the same best responses de-
scribed before.

Control Parts exchange their service times (interconnect-
ing variables) and apply their best response in order to adapt
to the performance advertised by their neighbors. Assum-
ing a connected graph between controllers, a Nash equilib-
rium can be reached after a fixed number of information
exchanges, equal to the diameter of the network. Infor-
mally the rationale is that control decisions need to propa-
gate reaching all the other controllers in a finite number of
information exchanges. Since best responses are monoton-
ically decreasing (adopting the ideal parallelism degrees as

the starting point), the final result converges to an efficient
Nash equilibrium in a Pareto sense. Finally, each Control
Part selects an integer parallelism degree obtained by apply-
ing an integer rounding of the final result. Further details
and the proofs about the correctness of this approach can
be found in [12].

4.1.2 A Cooperative Approach

In the previous strategy the interactions between Control
Parts have been described in terms of the best responses. In
this section we present a different approach in which con-
trollers solve their local control problems in a cooperative
way: i.e. having in mind a global objective function of the
whole system (e.g. defined as the sum of local cost func-
tions).

Although a Nash equilibrium can be Pareto efficient, it can
differ from the set of parallelism degrees that optimize the
sum of the local cost functions (named Social Optimum).
This is due to the selfish behavior of controllers: Control
Parts can globally improve the total cost if they select con-
trol actions taking into account not only their local outcome,
but also the effects of their actions on the other controllers.

We solve the cooperative problem using the Distributed
Subgradient Method, originally proposed in [13] for multi-
agent environments. The method addresses the problem of
optimizing the sum Jg (k) = > Ji(k) of non-smooth convex
functions known only by their agents. This method has the
following set of interesting properties:

e cach Control Part knows only its local cost function
and the model to predict the steady-state performance
of its Operating Part;

e each local cost is expressed by a non-differentiable con-
vex function (we recall that the inter-departure time is
defined as the point-wise maximum of a set of convex
functions f; ;);

e for scalability and reliability reasons, Control Parts are
directly interconnected only between neighbors.

In this strategy controllers exchange their estimate of the
globally optimal strategy profile S(k) € RY, i.e. a set of
control actions (i.e. parallelism degrees) for each ParMod.
Controllers iteratively exchange their local estimates and
compute the next estimate using the following rule:

N

> (Wl S () = o gi] (9)

Jj=1

8[(i(]1+1)(k) =Py,

where ¢ is the current iteration, a? > 0is the step-size and
Gi is a subgradient of J; at point S[(;]I)(k)B. Py, is the Eu-
clidean projection onto the convex set of admissible strategy
profiles defined by: Uy =U1 X Uz X ... X Un.

Each controller maintains a set of weights representing the
importance given to the estimates received by the controllers
(zero is assigned to non-neighbor controllers). To prove the
convergence to the social optimum, in [13] the authors state
a condition about how the weights should be assigned: the
weight matrices W € RV *Y should be doubly stochastic, i.e.
all the columns and rows sum to 1.

The cooperative MPC strategy consists in a sequence of
actions performed by the controllers at each control step k:

38[(5) (k) is the estimate of the i-th controller at iteration q.



e each controller acquires monitoring information from
its Operating Part and calculates one-step ahead pre-
dictions of disturbances;

e each controller uses a specific initial estimate of the
social optimum and applies the iterative protocol for a
fixed number of iterations;

e after the last iteration, each controller knows its opti-
mal parallelism degree and applies it (properly rounded
to the nearest integer) as the new parallelism degree
for control step k.

In this formulation, since we adopt a horizon of 1 step
in the future, a reconfiguration trajectory corresponds to a
parallelism degree for the current control step.

In terms of number of exchanged messages, this strategy
is outwardly similar to the selfish approach described in Sec-
tion 4.1.1. It consists in a sequence of iterations in which
each controller receives local estimates from the neighbors,
updates its local estimate and transmits it the neighboring
controllers. W.r.t the selfish strategy, in which the number
of information exchanges depends on the topological proper-
ties of the computation graph (diameter), here the number
of iterations should be sufficient enough to guarantee a de-
sired approximation of the social optimum. However, the
feasibility can be drastically improved by considering two
aspects:

e cach controller applies an integer rounding of the final
parallelism degree;

e to reduce the number of iterations, we can use as the
starting estimate the social optimum calculated at the
previous control step (warm start), which is likely close
to the new social optimum.

4.1.3 Comparison and Optimality

The two adaptation strategies have been applied to a
simple computation graph composed of three parallel mod-
ules (Figure 3). Tasks are generated by the first module,
which dispatches them to the other ParMods according to a
discrete probability distribution (p(k) is the probability to
transmit tasks to the second ParMod). We have simulated
a scenario in which p(k) periodically fluctuates, alternating
execution phases in which the second module is much more
stressed and phases in which tasks are more often trans-
mitted to the third module. p(k) variates for uncontrollable
reasons related to the application semantics, thus it has been
modeled as a disturbance variables.

Figure 4 depicts the mean values of p(k) at each sampling
interval of an execution of 600 control steps (each one of
240 seconds). This behavior is typical of a seasonal work-
load. For this reason we have performed statistical predic-
tions (the solid red line in the figure) using a seasonal Holt-
Winters smoothing technique [3] (composed of three EWMA
filters for the smooth, trend and the seasonal components).
The results show quite accurate predictions, with a relative
error for one-step predictions less than 10%.

Due to the variations of p(k), the optimal parallelism de-
grees change during the execution. In the non-cooperative
approach, at each control step the controllers select an inte-
ger approximation of the efficient Nash equilibrium. In the
cooperative approach controllers reach an approximation of

ParMod 2
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Figure 3: Computation graph of the first experiment.

the social optimum at each control step, by applying the
Distributed Subgradient Method.

The configuration parameters and the mean calculation
times are summarized in Table 1. Cost parameters (o and
B) are user-defined and state the desired trade-off between
performance and resource consumption. Although the a pa-
rameter is the same for all the modules (i.e. they give the
same importance to the performance), each ParMod applies
a different resource utilization cost since we suppose that
parallel modules are executed on Cloud platforms applying
different cost parameters. The calculation times are gen-
erated according to normally distributed random variables.
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Figure 4: Probability time-series.

Figure 5 shows the actual value of local cost functions of
the second ParMod and of the global cost for each control
step of the execution. The red lines correspond to the selfish
strategy while the blue lines are the values of the local costs
with the cooperative approach. Although there are time
intervals in which the local cost of the second module is
better using the selfish strategy (Figure 5a), in the average
case the cooperative approach provides a better global cost
throughout the execution (Figure 5b). This behavior is the
essence of cooperation: in order to optimize the sum of the
local costs, there are execution phases in which the second
ParMod selects non-locally optimal control decisions.

Table 2 reports the total values of the global and the local

ParMod 1 ParMod 2 ParMod 3
Teate-i 15 sec. 30 sec. 40 sec.
a; 4 4 4
Bi 0.6 2.5 1.5

Table 1: Cost parameters and mean calculation times.
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Figure 5: Comparison between selfish and cooperative

strategies.

costs over the entire execution. In terms of total cost, the
cooperative approach achieves a 20% reduction compared
to the selfish strategy. This means that the average price of
stability (ratio between the cost of the best Nash equilibrium
and that of the global optimal outcome) is equal to 0.80 in
this example. This is the optimality loss due to the selfish
interaction between controllers.

Non-cooperative Cooperative
Total J1 7,778 4,939
Total J2 24,375 21,990
Total Js 25,994 19,490
Total Jo 58,147 46,419

Table 2: Sum of local and global costs with the non-
cooperative and cooperative strategies.

In terms of exchanged messages, the selfish strategy can
be completed after two information exchanges (which is the
diameter of the graph shown in Figure 3). For the cooper-
ative strategy the number of iterations is one order of mag-
nitude higher (experiments have been performed using 125
iterations per step).

4.2 Improving the Reconfiguration Stability

In this section we describe the potential of our control
strategies by introducing different formulations of local cost
functions. Besides modeling a simple cost proportional to
the resource utilization, more complex strategies can ac-
count for the cost of switching from a configuration to an-
other one. This can be a key factor in heterogeneous en-
vironments like Clouds, in which the cost of applying a re-
configuration (which requires the dynamic provisioning of
computing resources) is of paramount importance in addi-
tion to the reaching of desired QoS levels. We introduce
a second formulation characterized by a local cost function
defined as follows:

DEFINITION 2 (SWITCHING COST FORMULATION). The
local cost function of each ParMod M; is defined over a pre-

diction horizon of h control steps (with h > 1):

k+h—1 k+h—1 k+h—1

Ji(k) = Z a; Tp,(g+1)+ Z Bi - ni(q) + Z vi - Ai(g)?
q=k q=k q=k

performance cost resource cost switching cost

(10)
where A;(k) = ni(k) —ni(k — 1). The switching cost term
binds control decisions between consecutive steps allowing to
express formulations with a parametric horizon length.

The main goal of this formulation is to discourage recon-
figuration with large amplitude (i.e. involving a great num-
ber of released/provisioned computing nodes), that we can
assume to be more expensive (both economically as well as
from a performance viewpoint). The switching cost acts as
a break to reconfigurations: it avoids fluctuating behaviors
due to disturbance with high variance and, unlike the for-
mulation described in (5), makes it possible to consider a
MPC strategy with an arbitrary horizon length.

In order to understand the importance of this alterna-
tive formulation, we extend the example described in Sec-
tion 4.1.3 by applying a cooperative formulation using the
local costs introduced in Definition 2. The convergence to
the social optimum is proven by the fact that the local cost
functions with the switching cost maintain the convexity
property.

To highlight the importance of the switching cost, we con-
sider a different time-series of probability p(k) which ex-
hibits several small phases characterized by trend compo-
nents (Figure 6). Also for this disturbance series, we apply
a multiple step-ahead Holt-Winters forecasting technique,
which gives a relative error of 8.92%, 9.22%, 9.49% and
9.69% using horizons of 1, 2, 3 and 4 control steps.
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Probability

0 100 200 300 400 500 600
Control step

Figure 6: Second experiment: probability p(k).

As we use longer horizons, controllers can more precisely
evaluate if the release/acquisition of computing resources is
effectively useful (e.g. avoiding to re-acquire/release them
nearly in the future). This has important implications for
the reconfiguration stability of the adaptation strategy, more
formally defined as follows:

DEFINITION 3 (MEAN STABILITY INDEX). Mean Sta-
bility Index (shortly MSI) is the average number of control
steps for which no change in the parallelism degree occurs.

In this example we apply the same cost parameters de-
fined in Table 1 (we apply the same switching cost coeffi-
cient for the three modules, i.e. v, = 3.5). Table 3 out-
lines the global simulation results. The completed tasks is
the number of tasks that leave the system. The formula-
tion using the local cost functions defined in (5) (referred as
Non-Switching Cost for brevity) produces 434 reconfigura-
tions and completes 80,063 tasks. Such a high number of



reconfigurations is justified by the fact that this strategy pre-
cisely adapts to disturbance predictions without any break
that slows down the allocation/release of resources. With
the switching cost and a horizon of one step, we are able to
drastically reduce the number of reconfigurations (43% less)
with a small performance loss of 9.5%. If we consider longer
prediction horizons we reach even more satisfying trade-offs
between performance and reconfiguration stability (longer-
horizon strategies respond more quickly to a pronounced
change in the disturbance trend). With a horizon of four
steps we loose only 0.69% of tasks but decreasing the recon-
figurations of 21% w.r.t the Non-Switching Cost strategy.

Reconf. MSI Tasks
Non Switching Cost 434 3.93 80,063

Switch. Hor=1 247 8.46 72,451
Switch. Hor=2 328 6.51 75,074
Switch. Hor=3 331 712 77,788
Switch. Hor=4 341 7.32 79,503

Table 3: Completed tasks and reconfiguration stability.

The MSI gives a quantitative measure of the reconfigura-
tion stability. Without the switching cost, ParMods apply
a parallelism degree variation every 4 control steps on aver-
age. By introducing the switching cost the reconfiguration
stability increases significantly.

S. CONCLUSION

This paper presents an overview of our methodology [12].
Performance models of structured parallelizations can be
used for applying finite-horizon MPC procedures based on
statistical predictions of disturbances. The methodology is
amenable to model complex situations in which controllers
communicate pursuing their self-interest or cooperate in or-
der to reach optimal reconfigurations in a system-wide sense.
Specific formulations can be properly tuned in order to im-
prove significant aspects of adaptation strategies. We claim
that our methodology is sufficiently flexible to model adapta-
tion strategies with different goals (e.g. control optimality,
reconfiguration stability, little reconfiguration amplitude).
The impact on real Cloud platforms is an important argu-
ment that still requires further investigations in the future.
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