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ABSTRACT
The ubiquity of data streams in different fields of computing has led

to the emergence of Stream Processing Systems (SPSs) used to pro-

gram applications that extract insights from unbounded sequences

of data items. Streaming applications demand various kinds of opti-

mizations. Most of them are aimed at increasing throughput and

reducing processing latency, and need cost models used to ana-

lyze the steady-state performance by capturing complex aspects

like backpressure and bottleneck detection. In those systems, the

tendency is to support dynamic optimizations of running applica-

tions which, although with a substantial run-time overhead, are

unavoidable in case of unpredictable workloads. As an orthogonal

direction, this paper proposes SpinStreams, a static optimization

tool able to leverage cost models that programmers can use to detect

and understand the inefficiencies of an initial application design.

SpinStreams suggests optimizations for restructuring applications

by generating code to be run on the SPS. We present the theory

behind our optimizations, which cover more general classes of ap-

plication structures than the ones studied in the literature so far.

Then, we assess the accuracy of our models in Akka, an actor-based

streaming framework providing a Java and Scala API.
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1 INTRODUCTION
Data Stream Processing is gaining momentum and has received a

great deal of attention owing to the diffusion of systems generating

high-speed massive sequences of data items [3]. These systems
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are characterized by different organizations (ranging from central-

ized to highly distributed ones) and goals (e.g., real-time analytics

that extract insights from raw data, software supporting decision-

making processes, environmental monitoring, and many others).

Many different StreamProcessing Systems (SPSs), such as Apache

Storm [23] and Apache Flink [12], have been conceived, designed

and developed across the years. They allow programmers to express

applications as topologies (i.e. directed graphs) made of operators
consisting in entities dealing with data processing and transforma-

tion [3], which are interconnected by unidirectional data streams.

The design of a topology is performed by programmers according to

their initial knowledge of the problem. Operators can be either de-

veloped on purpose or chosen among already existing ones, possibly

adopted in other topologies. As a consequence of the heterogeneous

origin of the different operators, the granularity characterizing the

topology resulting from their composition may not be the optimal

one, leading to the creation of bottlenecks. Moreover, such topology

may be very tangled, composed of too many operators, resulting in

a substantial overhead without actually improving performance.

To address these issues, some optimizations have been proposed

so far. Two of the most promising solutions are: operator fission [37]
(a.k.a. data parallelism) and operator fusion [19]. Fission has been

largely and deeply studied. It consists in the replication of stateless

operators or stateful ones having a partitionable state. Operator fu-
sion is less common and consists in merging underloaded operators

to save communication latency and reducing scheduling overhead.

How to apply these optimizations is non-trivial. As an example,

the choice of the degree of replication, in case of fission, is often

in the hands of the programmer who hardly knows the optimal

degree to adopt. A possible approach to address this problem is

to employ adaptive mechanisms (such as elasticity) that dynami-

cally change the degree of replication to efficiently manage variable

workloads [17, 22, 35]. Despite their potential, adaptivity and elas-

ticity mechanisms are usually intrusive and require sophisticated

strategies to avoid downtimes of running operators [40].

The idea underpinning this paper follows a different approach.

We aimed at providing a tool (SpinStreams) able to re-engineer

streaming applications statically. To achieve this goal, SpinStreams
applies cost models in the form of algorithms driven by profile-based

measurements related to processing costs of operators and the prob-

ability distributions that model the frequency of data exchange

between operators. Thus, by means of our tool, programmers are

supported in the complex task of amending the initial topology

of the application. SpinStreams shows the suggested optimiza-

tions along with the predicted outcome, computed by means of

the cost models. The initial topology is provided as input using an

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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XML-based formalism and, after the optimization phase, the tool

automatically generates the code for a target SPS.

Synthetically, SpinStreams provide the following features:

• for each application imported through theGUI, SpinStreams
allows the user to perform a set of analyses: i) the evaluation
of the steady-state performance in terms of throughput of

the streaming application before running it; ii) a bottleneck
elimination algorithm able to find the most appropriate de-

gree of replication for each operator aimed at balancing the

overall performances of the application; iii) evaluation of the

opportunity to fuse operators: operators that can be fused

without hampering the overall performance;

• when the user is satisfied with an optimized topology, the

tool automatically generates the code for a target SPS. Al-

though our ambition is to generalize the tool to support a

large class of SPSs in the future, in this paper we focus on

Akka [2], a widely utilized open source framework.

In presenting SpinStreams, this paper also provides the follow-

ing research contributions:

• the definition of performance models and optimization algo-

rithms driving the steady-state analysis of the throughput

achieved by complex topologies in presence of backpres-
sure [9, 10]: a flow control mechanism used in SPSs to stall

an upward sending operator until a downward receiver is

ready to process new items. Starting from this analysis, the

tool provides algorithms to drive operator fission and fusion;

• an extended experimental phase in which SpinStreams has

been tested under different conditions, using different kinds

of (real-world) operators and constraints.

It is worth pointing out that SpinStreams is not intended to

be a replacement of adaptivity supports, which are of paramount

importance to deal with variable workloads. Instead, our claim is

that SpinStreams can effectively support application designers

to find the initial best configuration of their applications before

starting the execution on a SPS. The paper is organized as follows.

Section 2 introduces the motivating scenarios to clarify the extent

and the goals of SpinStreams. Section 3 describes the cost modes

and the optimization strategies leveraged by SpinStreams. Sec-
tion 4 describes our proposed tool and its features. Section 5 reports

the results of the evaluation in Akka. Section 6 reviews the rele-

vant scientific literature comparing some key contributions against

SpinStreams. Finally, Section 7 draws the conclusion of this paper

and presents our ideas about future works.

2 MOTIVATING SCENARIOS
In this section, we describe the process followed by SpinStreams by
showing two scenarios of restructuring and optimization strategies

applied to streaming topologies.

Operator fission. Pipelining is the simplest form of parallelism.

It consists of a chain (or pipeline) of operators. In a pipeline, every

distinct operator processes, in parallel, a distinct item; when an

operator completes a computation of an item, the result is passed

ahead to the following operator. By construction, the throughput

of a pipeline equals to the throughput of its slowest operator that

represents the bottleneck. A technique to eliminate bottlenecks is

to apply the so-called pipelined fission [16], i.e. to create as many

replicas of the operator as needed to match the throughput of faster

operators (possibly adopting proper approaches for item scheduling

and collection, to preserve the sequential ordering). Figure 1 shows

an example of pipelined fission applied to the second operator.

OP1 OP2 OP3 OP1 OP3

OP2

OP2

emitter

collector

E C

Figure 1: Pipelined fission of the second operator: original topology
(left), re-designed topology (right). Depending on the SPS, schedul-
ing and collecting entities can be visible in the runtime only.

The fission technique can be easily applied to any stateless op-

erator by adopting a load-balanced distribution of items among

the replicas (e.g., shuffle routing), whereas with stateful operators

there are some specific caveats to take into account. Fission can be

applied when the state of the original operator can be partitioned,

with each partition accessed and modified only by a single replica.

This case is known as partitioned-stateful operators [14]. Pipelined
fission is often applied by programmers by hand, typically by spec-

ifying the replication degree through the API provided by the SPS

(e.g., the setParallism()method in Apache Flink). To do that, cost
models, in the form of analytical expressions related to specific per-

formance metrics (such as processing times and scheduling costs),

can be leveraged by programmers to study the overall expected

performance by their applications [32], or other parameters like

the overall memory usage [4] and power consumption [25].

Operator fusion. A streaming application could be character-

ized by a topology aimed at expressing as much parallelism as

possible. In principle, this strategy maximizes the chances for its

execution in parallel, however, sometimes it can lead to a misuse of

operators. In fact, on the one hand, the operator processing logic

can be very fine-grained, i.e. much faster than the frequency at

which new items arrive for processing. On the other hand, an oper-

ator can spend a significant portion of time in trying to dispatch

output items to downstream operators, which may be too slow

and could not temporarily accept further items (their input buffers

are full). This phenomenon is called backpressure [9, 10] and recur-

sively propagates to upstream operators up to the sources. Figure 2

shows an example where the topology (left-hand side of the figure)

consists of five operators.

OP1

OP2 OP3

OP4 OP5

OP1

OP2 OP3

OP4,5

Figure 2: Fusion of OP4 and OP5: original topology (left), re-
designed topology (right).
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As an example, consider the following scenario. If the second

operator (OP2) is a bottleneck, at steady state its input buffer will

run out of space; when this happens OP1 will be delayed due

to backpressure. As a consequence, the arrival rate to operator

OP4 and thus to OP5 will be slower than expected making these

operators underutilized (i.e. spending most of time waiting for new

input items). If there is no parallelization scheme to apply in order to

resolve the bottleneck (OP2), then an optimization is to fuse OP4

and OP5 together (right-hand side of the figure). The new operator,

resulting from the fusion, receives items from OP1, OP2 or OP3,

namely the operators in its input neighborhood. In case of items

from OP1 or OP3, the business code associated with operators

OP4 and OP5 are applied sequentially. In case of items from OP2,

only the logic of OP5 (the original target) is applied, ensuring the

semantic equivalence with respect to the initial topology.

As discussed in Section 6, operator fusion is less explored than

fission. Most of the existing solutions apply fusion at a different se-

mantics level than SpinStreams [18]. In fact, SpinStreams works

at the programming model level: once operators are fused as a

result of an optimization decided by the user, such operators are

deployed and executed by the runtime system which is no longer

aware that they were originally decomposed in some fine-grained

operators. In COLA [24] instead, multiple operators can be mapped

onto the same deployment unit to reduce communication costs, but

they remain logically separated entities in the runtime system with

a non-null, though small, intra-unit communication latency.

For the sake of completeness, it is worth noting that backpres-

sure is not the only possible communication semantics in stream

processing. A common alternative is to apply load shedding [33] to

prevent the streaming buffers to indefinitely grow by discarding

input items. However, data loss is not always acceptable in every

context (e.g., for applications requiring the exactly-once seman-

tics [1]). Therefore, backpressure is definitely the most diffused

approach to deal with traffic spikes in SPSs.

3 PERFORMANCE MODELS
This section presents the cost models adopted by SpinStreams
to analyze streaming topologies. Their ultimate goal is to study

the performance in terms of throughput (number of input items

ingested by the topology per time unit) achieved at steady state, i.e.

when the system has worked for a sufficiently long period so that

initial conditions do not longer affect the actual performance.

SpinStreams leverages specific algorithms that work on an ab-

stract representation of streaming application topologies modeled

as queueing networks. Each operator of the original topology is repre-
sented by a sequential entity (single replica) working as a queueing

station, i.e. it receives input items by ingoing edges (modeling data

streams) from antecedent operators, and performs a user-defined

function on each received item by delivering zero, one or many

output items to its outgoing edges. For the sake of presentation, we
start assuming that each operator produces one output item per input
item consumed. Then, we remove this constraint to model more

general computations. We assume that backpressure is controlled

by adapting the operators’ throughput. In the Queueing Theory

literature this approach is called Blocking After Service (BAS) [31]:
when an output item attempts to enter into a full queue, that item is

blocked until a free slot becomes available in the buffer. During this

phase the sending operator is unable to process any other input

item until the backpressure is deasserted.

3.1 Steady-State Analysis
Let G = (⟨V, E⟩) be a graph representing the topology. Each vertex

is an operator OPi characterized by a service rate µi , i.e. the average
number of input items that the operator can serve per time unit

assuming that there are always items to process. This value can

be obtained by measuring the average computation time per input

item and the communication latency spent to send the result.

Goal. The goal of steady-state analysis is to design an algorithm

that having G produces a new graph G′ where each vertex OPi ∈

V is labeled with its steady-state departure rate δi . The departure
rate is the average number of results delivered per time unit onto

any output edge at steady state, but unlike the service rate it takes
into accounts also bottlenecks slowing down the overall perfor-

mance of the operator via backpressure.

Assumptions. As a matter of fact, this problem is complex to be

solved in the general case as the steady-state behavior of the graph

depends on many factors like the statistical distributions of the

operators’ service rates and of the external arrivals to the stream-

ing application, the size of the buffers implementing the streams

and the topological properties of the graph. As a consequence,

SpinStreams makes the following assumptions:

• only rooted acyclic graphs can be analyzed, that is graphs

with a single source (i.e. a vertex without input edges). Fur-

thermore, we assume that every vertex is reachable from the

source (the graph is a flow graph);
• when an operator has multiple input edges, items are re-

ceived and processed in FIFO order
1
. In case of multiple

output edges, each output item is delivered to one of the

possible destinations according to a given probability. Such

probability depends on the application semantics and it is

assumed to be known and measurable;

• all the buffers of an operator have a fixed maximum capacity

and are used according to the BAS semantics.

These assumptions allow a simple but precise performance mod-

eling based on an intuitive flow conservation principle: at steady

state the rate at which input items arrive at an operator is the same

rate at which results leave the operator. This condition is always

valid regardless of the statistical distributions of the service rates

(e.g., Poisson, Normal or Deterministic). Furthermore, while the

single source assumption can be circumvented by adding a ficti-

tious source operator in the topology linked to the real sources, the

acyclicity assumption is presently needed by our cost models. Of

course, solutions to extend the generality of SpinStreams are our

primary future research direction. The cost model is implemented

as an algorithm shows in the next part.

Algorithm. The steady-state analysis requires an ordered visit

such that when a particular vertex (operator) is visited, all the

1
FIFO is the most widely used policy. Other semantics, like the one with priorities, are

possible but not modeled by SpinStreams yet.
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operators sending items to it have been explored and their steady-

state departure rate computed. Such ordering is topological and is

obtainable through a depth-first search of the graph.

Let OPi be the i-th vertex in the input topological ordering and

OP1 is the unique source operator. The vertices are visited from

the source by following that ordering. When a generic vertex OPi
is visited, the algorithm computes its arrival rate λi as the sum of

the departure rates of the vertices in its incoming neighborhood,

each properly weighted by the probability of the corresponding

edge. The utilization factor ρi ∈ [0, 1] is computed as λi/µi and it

is used to determine whether the vertex is a bottleneck or not:

• if ρi ≤ 1 the operator is not a bottleneck. Its departure rate
equals the arrival rate and we proceed with the next vertex;

• if ρi > 1 the operator is a bottleneck. At steady state, its

input buffer grows reaching the maximum capacity and the

upstream operators are delayed due to backpressure.

In queueing networks with blocking, ρi > 1 is a transient con-
dition [31]. When ρi > 1, at steady state the departure rates of

the other stations adapt to the rate of the bottleneck, leading its

utilization factor to be not greater than one. This condition reflects

in the following invariant:

Invariant 3.1. When the algorithm visits the i-th vertex, all the
operators OP j such that j < i have ρ j ≤ 1.

The idea is to correct (lower) the departure rate from the unique

source in order to take into account the backpressure generated by

the bottleneck operator. To do that we use the following result:

Theorem 3.2. Let OPi be the bottleneck with ρi > 1 and δ1
the departure rate from the source computed before visiting OPi .
The departure rate δ ′

1
capturing the backpressure caused by OPi is

computed as δ ′
1
= δ1/ρi .

Proof. By invariant, all the vertices OP j with j < i have ρ j ≤ 1,

thusδj = λj . This allows us towrite the arrival rate to the bottleneck
operator as a function of the current departure rate from the source

by taking into account all the possible paths from OP1 to OPi .

Figure 3 shows an example where there exist two paths π1 and π2.

source
bottleneck

OP1

OPj

⇡1

⇡2

OPi

Figure 3: Correction of the source departure rate when a new bottle-
neck is discovered in the analysis.

We denote by P(i) the set of all the paths from the source to

OPi , and a path π is a set of pairs (u,v) such that an edge from

OPu to OPv exists in E. The arrival rate to OPi is:

λi = δ1 ·
∑

π ∈P(i)


∏
(u,v)∈π

p(u,v)

 (1)

where p(u,v) is the probability of the edge. We lower the departure

rate from the source to account for the backpressure caused by

OPi . By flow conservation, the new departure rate δ ′
1
is such that

the new arrival rate to the bottleneck equals its service rate:

δ ′
1
·

∑
π ∈P(i)


∏
(u,v)∈π

p(u,v)

 = µi (2)

The new departure rate can be written as δ ′
1
= δ1 · α , that is the

product of the previous departure rate with a corrective factor 0 <
α < 1. We obtain:

δ1 α ·
∑

π ∈P(i)


∏
(u,v)∈π

p(u,v)

 = µi

δ1 ·
∑

π ∈P(i)


∏
(u,v)∈π

p(u,v)

 =
µi
α

λi =
µi
α

(3)

Therefore, the corrective factor is the inverse of the utilization

factor of the bottleneck operator, i.e. α =
1

ρi
. □

With a single source, there is a unique way to tune the departure

rate of such source by respecting the flow conservation property.

Instead, in case of multiple-source graphs, there would be infinite

ways to change the departure rates of the sources, and the final

steady-state graph would depend on the statistical distributions

of the service rates. This further explains the importance of the

single-source constraint to ease the evaluation without knowing

the statistical distributions modeling the behavior of the operators.

By applying Theorem 3.2 the invariance is maintained as ex-

plained below:

Proposition 3.3 (Invariant Maintenance). By applying the
result of Theorem 3.2 the Invariant 3.1 is preserved.

Proof. The algorithm corrects the departure rate of the source

as stated by Theorem 3.2 and restarts the graph traversal from the

beginning. After the correction, when vertex OPi is visited again,

its utilization factor is ρi = 1. □

Algorithm 1 takes as input the graph G and a topological order-

ing, and returns the graph labeled with the steady-state utilization

factors and departure rates. We denote by IN (i) the set of the indices
of vertices inV having an output edge directed to OPi .

Proposition 3.4 (Complexity). The worst-case time complexity
of Algorithm 1 is O(|V| · |E |).

Proof. The algorithm runs several partial traversals of the graph.

In the worst-case scenario, the algorithm finds a bottleneck every

time a vertex is visited for the first time. Therefore, the number of

partial traversals in the worst case is |V| = n. At the very beginning,
the algorithm visits two vertices, the source and the first bottleneck.

In the second, according to Proposition 3.3, the algorithm visits

three vertices, and so forth. The total number of times the operators

are visited is:

Nvisited = 2 + 3 + . . . + 2n =
n2 + 3n − 2

2

∼ O(n2) (4)
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Algorithm 1: Steady-State Analysis
Input: a graph G = (⟨V, E⟩) and a topological ordering {OP1, . . . , OP |V| }
Result: the graph G′ with the final departure rate per operator

1: δ1 ← µ1
2: ρ1 ← 1

3: i ← 2

4: while i ≤ |V | do
5: λi ←

∑
j∈IN (i)

(
δj · p(j,i )

)
6: ρi ← λi /µi
7: if ρi ≤ 1 then ▷ no bottleneck

8: δi ← λi
9: i ← i + 1
10: else ▷ bottleneck

11: δ1 ← δ1/ρi
12: ρ1 ← δ1/µ1
13: i ← 2

Consequently, each vertex is visited O(n) times in the worst case

and the algorithm scans the list of its input edges (line 5) to compute

the arrival rate. Therefore, each edge (i, j) is traversed every time

OP j is visited and so the worst-case complexity is O(|V| · |E |). □

An interesting and intuitive result can be derived by analyzing

the departure rates of the source and of the sink operators, i.e. the

vertices without output edges:

Proposition 3.5. In the output graph provided as result by Algo-
rithm 1, the departure rate from the source operator equals the total
departure rate from the sinks.

Proof. From Invariant 3.1 follows that at the end of Algorithm 1,

for each operator OPi , the utilization factor is less or equal than 1.

Let S ⊆ V be the set of the sinks as shown in Figure 4.

source

sinks

�1

�GOP1

Figure 4: Steady-state behavior of the source and the sink operators.

The throughput of the whole topology is the sum of the departure

rates from the sink operators, i.e. δG =
∑
OPi ∈S δi . Since at the

steady state each operator has utilization factor less or equal than 1,

the departure rate from each sink can be determined as a function

of the departure rate of the source:

δG =
∑
OPi ∈S

δ1 ·
∑

π ∈P(i)

©­«
∏
(u,v)∈π

p(u,v)
ª®¬


= δ1 ·
∑
OPi ∈S


∑

π ∈P(i)

©­«
∏
(u,v)∈π

p(u,v)
ª®¬
 (5)

The second term of the product, that is the summation

∑
OPi ∈S[·],

is the sum of the probabilities of all the paths from the source to

the sinks, which according to our assumptions (every vertex is

reachable from the source) is equal to 1. □

3.2 Bottleneck Elimination
Bottlenecks are eliminated via operator fission. We can determine

the minimum degree of replication to unblock the bottleneck:

Definition 1 (Optimal Replication Degree). Given an opera-
tor OPi such that ρi > 1, the optimal number of replicas is computed
as nopti = ⌈ρi ⌉.

The optimal degree of replication is computed under the assump-

tion that the input flow of items can be evenly split among replicas;

a condition easy to achieve with stateless operators. For partitioned-

stateful operators [3], each replica is in charge of processing all the

input items having the same value for a partitioning key attribute.

Therefore, an even distribution can be achieved if the key domain is

sufficiently large and the key frequency distribution not so skewed.

Goal. We want to design a systematic procedure to analyze a

topology by: i) visiting the vertices and unblocking bottlenecks

through operator fission; ii)when a bottleneck cannot be eliminated,

the procedure evaluates the induced backpressure on the graph to

adjust the replication degree of other vertices, accordingly.

Algorithm. Algorithm 2 proceeds by visiting the vertices in the

input topological ordering. For each operator, the arrival rate and

utilization factor is computed similarly as in Algorithm 1. If the op-

erator is not a bottleneck (line 29), the algorithm passes to the next

vertex. Otherwise, we properly react distinguishing among three

different cases: stateless, partitioned-stateful or stateful operators.

If the operator is stateless (line 8), the optimal replication degree

is computed in line 9 unblocking the bottleneck and the algorithm

moves to the next operator.

If the operator is partitioned-stateful (line 13), to each replica is

assigned a subset of the partitioning keys. This logic is encapsulated

in the call KeyPartitioning() that gets as input the set of keysK

and their distribution frequencies {pk }
|K |

k=1. The call assigns keys to

replicas such that the most loaded replica receives a fraction of the

input items as close as possible to 1/n
opt
i . To do that, some heuristics

can be used to make the problem tractable like the ones in [14] (e.g.,

based on consistent hashing and its variants for addressing skewed

distributions). As a result, the operator is parallelized withni ≤ n
opt
i

replicas where the most loaded one receives a fraction pmax
of

the incoming items (hopefully, 1/n
opt
i ). Once the parallelization is

applied, it is possible that the operator is still a bottleneck (line 17).

This may happen when the probability distribution is too skewed.

For example, if the operator needs to be parallelized with n
opt
i = 3

replicas and 50% of the items have the same key, the bottleneck can

bemitigated but not removed. In that case, the algorithm usesni = 2

replicas and corrects the departure rate of the source according

to Theorem 3.2 by restarting the analysis. Otherwise, when the

bottleneck can be completely removed, the departure rate matches

the arrival rate and the algorithm proceeds with the next vertex.

Finally, the last case is when the operator is stateful (line 24)

and so fission cannot be used. We proceed as in Algorithm 1 by

correcting the source’s departure rate and restarting the visit from

the beginning. In conclusion, the algorithm follows the same rea-

soning of the steady-state analysis and restarts the analysis from

the source only when a bottleneck cannot be eliminated. Therefore,

the worst-case time complexity is the same of Algorithm 1.
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Algorithm 2: Bottleneck Elimination

Input: a graph G = (⟨V, E⟩) and a topological ordering {OP1, . . . , OP |V| }
Result: the graph G′ with the departure rate and the repl. degree per operator

1: δ1 ← µ1
2: ρ1 ← n1 ← 1

3: i ← 2

4: while i ≤ |V | do
5: λi ←

∑
j∈IN (i)

(
δj · p(j,i )

)
6: ρi ← λi /µi
7: if ρi > 1 then ▷ bottleneck

8: if OPi is stateless then
9: ni ← ⌈ρi ⌉
10: ρi ←

λi
(µi ·ni )

11: δi ← λi
12: i ← i + 1
13: if OPi is partitioned-stateful then

14: (ni , pmax ) ← KeyPartitioning
(
K, {pk }

|K |

k=1, ρi
)

15: ni ← ni
16: ρi ←

(λi ·p
max )

µi
17: if ρi > 1 then ▷ still bottleneck

18: δ1 ← δ1/ρi
19: ρ1 ← δ1/µ1
20: i ← 2

21: else
22: δi ← λi
23: i ← i + 1
24: if OPi is stateful then
25: ni ← 1

26: δ1 ← δ1/ρi
27: ρ1 ← δ1/µ1
28: i ← 2

29: else ▷ no bottleneck

30: ni ← 1

31: δi ← λi
32: i ← i + 1

Hold-off replication. Before the bottleneck elimination phase,

the user can indicate a maximum boundary in terms of total amount

of replicas to parallelize the topology. SpinStreams adopts a heuris-
tic solution since the problem of mapping graphs onto graphs is

generally NP-hard. Let N =
∑
i ∈V ni be the total number of repli-

cas used in the optimized topology after the running of Algorithm 2,

and let Nmax be the maximum upper bound provided by the user.

If Nmax < N , SpinStreams computes a reduction factor r > 0 as

r = Nmax/N and each replication degree is multiplied by r in order

to obtain the degree to be used. Of course, this simple heuristics

works well with large values of N and Nmax and small rounding

effects can lead to some anomalies, that can force adjustments of

few units to the replication degrees.

3.3 Operator Fusion
As mentioned above, a too tangled and fine-grained structure of

the streaming application may lead to inefficient exploitation of

resources and cause notable scheduling overheads. When this hap-

pens, we try to merge different operators into a single functionally-

equivalent operator.

Goal and assumptions. Given a topology G = (⟨V, E⟩), a sub-

graph of operators G = (⟨Vsub, Esub⟩) hasVsub ⊆ V and the set

of all the edges Esub ⊆ E connecting only those vertices inVsub
.

The objective is to replace the sub-graph with a single operator OP

semantically equivalent and evaluate the resulting performance.

This problem is very complex to solve in the general case, thus

SpinStreams makes some assumptions limiting the applicability

of the fusion operation. However, such solutions are more general

than most of the approaches presented so far in the literature [19].

The sub-graphs candidates for fusion must respect the following

constraints:

• they must have a single front-end vertex: a unique operator
in Vsub

having at least one input edge originated from a

vertex inV \Vsub
;

• the new topology obtained by replacing the sub-graph Gsub

with OP must still be acyclic.

Our goal is to evaluate the service rate of the new operator in order

to run the steady-state analysis (cf. Algorithm 1) and check whether

the operator fusion hampers performance.

Algorithm. The first step is to evaluate the service rate of the

new operator OP. This is done by the function fusionRate() in

Algorithm 3, which takes as inputs the sub-graph Gsub and its

unique front-end vertex.

As hinted in Section 2, each input item arriving at the sub-graph

will travel a path from the front-end vertex up to one of the ending

vertices in the subgraph, which delivers the result out to the rest

of the topology. The service rate of OP can be computed as the

weighted average of the aggregate service rates of all the paths

where the weight is the path probability computed as the product

of the probabilities of the traveled edges. The aggregate service rate

of a path is defined as follows:

Definition 2 (Aggregate Service Rate). Letπ = (OPi ,OPi+1,
. . . ,OPn ) be a path starting from the front-end operator OPi and
reaching an ending vertex OPn of the sub-graph. The aggregate
service rate of π is µπ = (

∑n
j=i µ

−1
j )
−1.

This idea is applied in Algorithm 3, where we use Ti to denote the

service time of OPi defined as Ti = µ−1i and OUT (i) is the set of the
indices of the vertices ofVsub

having an input edge originated from

OPi . In the worst-case the complexity is exponential in the number

of vertices because we have to enumerate all the possible distinct

paths. However, since most of the stream processing topologies

have usually tens of operators [20], this does not represent a real

practical concern.

Algorithm 3: fusionRate() function

Input: the sub-graph to be fused Gsub
and one of its vertices OPi

Result: the service time Top of the operator OP replacing Gsub

1: Top ← 0

2: for each j ∈ OUT (i) do
3: Top ← Top + p(i, j ) · fusionRate

(
Gsub, OP j

)
return Top

The algorithm is initially invoked with the sub-graph and its

front-end vertex as input parameters, and it is used to estimate the

service rate of OP. Then, the new topology is built where Gsub is

replaced byOP. In this phase, it is possible that some edges directed

to the same operator in the new topology had starting vertices that

have been replaced by the operator OP. In that case, those edges

are fused and their joint probability computed. Finally, the steady-

state analysis (cf. Algorithm 1) is run to evaluate the performance,
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Figure 5: Conceptual workflow of SpinStreams: input topology (XML file and .class files based on the SStoAkka API), optimizations of the
topology and generation of the code to be run by the Akka run-time system.

and the user is informed whether fusion impairs performance or

not (i.e. if the new operator is a bottleneck).

Operator fusion leaves some aspects open. In particular, the code

of the new operator should be automatically generated from the

code of the original operators. This will be discussed in Section 4.

3.4 Extensions
So far, we assumed that operators produce one output item per input

item consumed. Although this holds for a large set of operators

like map and projection, it is not suitable to model operators like

selection, joins and windowed operators where the relationship

between items received and items consumed is more general.

In the stream processing literature, this relationship is controlled

by two parameters of an operator, that is its input and output selec-
tivity [3]. Input selectivity is the number of input items consumed

before returning a new output item. This is the case of sliding-

window computations [13] (e.g., aggregates), where the operator

applies an internal processing function over the lastw > 0 items

received and repeats the processing every s > 0 new items. In-

stead, the output selectivity is a parameter stating the number of

output items produced per input item. For example, in case of op-

erators like flatmap, selection and joins either zero, one or more

items are produced per input. These two cases can be covered in

Algorithms 1, 2 and 3 as follows:

• input selectivity: let OPi be an operator with input se-

lectivity s > 0, measured as the average number of input

items to consume before producing a new output result.

The departure rate from the operator can be computed as

δi = min{λi , µi }/s while the utilization factor is still com-

puted as ρi = λi/µi ;
• output selectivity: let OPi be an operator with output

selectivity s > 0, that is the average number of output

items produced per input item. The departure rate is δi =
min{λi , µi } · s with utilization factor sill equal to ρi = λi/µi .

All the SpinStreams algorithms can be easily generalized to the

case of operators with different selectivity parameters by computing

the departure rate as discussed before.

4 SPINSTREAMS
In this section, we describe the general workflow followed by a

programmer using SpinStreams and how our tool generates the

code to be run on Akka2.

4.1 Optimization Workflow
The entire workflow is summarized in Figure 5. The first step is to

start the GUI by providing as input the application topology. We

expect that the user knows some profiling measures, like the pro-

cessing time spent on average by the operators to consume input

items, the probabilities associated with the edges of the topology,

and the operator selectivity parameters. This information can be

obtained by executing the application as is for a reasonable amount

of time and by instrumenting the code to collect profiling measures.

To do that, some libraries exist to profile stream processing topolo-

gies in various languages, such as Mammut [36] for C++ programs

and DiSL for Java [28, 34]. The main inputs to SpinStreams are:

• the structure of the topology and the profiling measurements

expressed in an XML file. The syntax provides tags to specify

the operators, with attributes for their name, the service rate

(specifying the time unit), the pathname of the class file, the

type (stateless, stateful, partitioned-stateful with the num-

ber of keys and the file with their probability distributions).

Other tags specify the output edges and their probability,

and the input/output selectivity;

• along with the XML file, the user provides, for each operator,

a .class file obtained by compiling a source code written

using a specific API. Such API is provided to allow the auto-

matic code generation from the abstract representation used

in SpinStreams to the code to be run on the target SPS. For

Akka this API is called SS2Akka.

SpinStreams checks if the input topology satisfies the con-

straints (acyclicity and rooted graph) before creating a new im-
ported entry that will contain all the versions prototyped for the

topology. As a first step, the user can run the steady-state analysis

(cf. Algorithm 1) which produces further annotations for the oper-

ators (their departure rates) and the predicted throughput of the

2
The source code of the project will be made available at https://github.com/ParaGroup

https://github.com/ParaGroup
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application. After, the user can request SpinStreams to introduce

some specific optimizations:

• identify and remove bottlenecks by means of Algorithm 2.

The GUI is updated by opening a new tab with the result

of the optimization–a new topology where operators are

shown with the needed degree of replication;

• try a fusion optimization by selecting sub-regions of the

graph. SpinStreams proposes a set of candidates after the
steady-state analysis, ranked by their utilization factor in

order to ease the process of selection of the sub-graph to

be fused. Once chosen, the user starts the fusion optimiza-

tion that produces a new topology whose performance at

steady state is predicted and reported to the user. All the

integrity checks are performed automatically before starting

this process (i.e. single front-end operator and acyclicity).

After these steps, if the user is satisfied with one of the proposed

optimizations, the code generation phase can start, the code for

Akka is generated and eventually executed on the local machine.

Real performance results are delivered to the user in a console

opened by the SpinStreams GUI in order to provide an immediate

feedback.

4.2 SS2Akka and Code Generation
SS2Akka is written in Java using generic programming. For each

operator the user provides a class extending the Operator abstract

class by overriding the operatorFunction()method. The method

takes as input a data item of type Item (a template parameter) and

returns an object of type WrappedItem. Other overloaded defini-

tions take as input a collection of Item objects and return a collection
of WrappedItem instances to model operators with different selec-

tivity. The methods are non-static, so they can use an internal state

(based on the operator type passed to the constructor).

The API decouples the abstract topology from the real implemen-

tation. Akka [2] is a framework for concurrent programs in Java and

Scala. It is based on the actor-based model, where the computation

is a graph of actors whose execution is triggered by the arrival of

new messages in their mailboxes (finite buffers). Actors exchange

messages asynchronously and are executed by a pool of threads

in the run-time system, which guarantees that different invoca-

tions of an actor (for different messages) can never be executed

concurrently. In SpinStreams, to further raise the abstraction level,

actors in Akka are treated as executors of our operators, as shown
in Figure 6. In the following of this section are listed the different

cases taken into account for the code generation.

Generation of standard operators. In the standard case (i.e.

operators with a single replica or stateful ones), an operator is exe-

cuted by a dedicated actor in Akka. For each input item received in

its mailbox, the actor calls the operatorFunction()method of the

Operator instance to which it was assigned during the construction.

The result data type WrappedItem is a template class encapsulating

an object of type Item (the real massage) and the unique identifier

of the destination operator. After the processing, the actor is re-

sponsible for forwarding the result message to the proper mailbox

of the actor executing the destination operator.

Generation of parallel operators. In case of operators with

replication degree greater than one, an actor is created for each

fission fusion

actors

operators

Figure 6: Abstraction layer on top of the Akka programming model.
Actors are executors of abstract operators of the topology.

replica working as described at the previous point. Furthermore,

two additional actors are created to do the scheduling of input items

(emitter) to the replicas and to collect their results (collector). For
stateless operators, items are distributed in a circular manner. In

case of partitioned-stateful operators, the emitter actor does the dis-

tribution using the hash function provided to the constructor of the

corresponding Operator instance. Such actors are in general fast

as they execute single point-to-point communications. However, in

principle with very fast input rate, they could become bottlenecks.

When this happens, Algorithm 2 can be extended to check this

condition in order to prevent new replicas to be uselessly added.

Generation with operator fusion. The decoupling between

operators and actors allows the code generation of fused opera-

tors, which incorporate original fine-grained operators of the ini-

tial topology. This operator is represented in SpinStreams as a

meta-operator, which includes the references to the original op-

erators of the fused sub-graph. The meta-operator is executed

by a single actor whose pseudo-code is shown in Algorithm 4.

Since in the sub-graph there must be a unique front-end oper-

ator, each input message in the actor’s mailbox is processed by

executing the operatorFunction() method of that operator. If

the result is headed to another operator in the same sub-graph,

its operatorFunction() method is called by the actor and the rea-

soning process is re-iterated. Once the result is headed outside the

sub-graph, the actor sends the data item to the mailbox of the cor-

responding actor. A similar behavior, although more complex to be

shortly described, is likewise performed by operators with input

and output selectivity greater than one.

Algorithm 4: Akka actor executing a meta-operator

1: for each item in the actor’s mailbox do
2: < dest, msg >← frontEndOp.operatorFunction(item)

3: while dest is a vertex of the sub-graph Gsub do
4: < dest, msg >← dest.operatorFunction(msg)
5: enqueue msg in dest’s mailbox

We recall that the sub-graph is acyclic by construction, so the

algorithm always terminates. Furthermore, in SpinStreams is not

possible to apply fission to meta-operators, since the user is inter-

ested in merging under-utilized operators and this is effective if

this does not introduce a new bottleneck.
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It is worth noting that SpinStreams generates code using the

akka-actor library, which represents the common layer shared by

several other libraries provided by the Akka toolkit for specific pur-

poses. One of these is akka-streams, a library aimed at reducing

the programming effort in writing streaming applications. Like our

SS2Akka, the library decouples processing stages and actors in the

runtime. Interestingly, in akka-streams all the processing stages
are by default executed by a single actor, unless this behavior is not

explicitly changed by adding proper asynchronous boundaries to sep-
arate groups of stages to execute concurrently. In SpinStreams we

did not make use of akka-streams since the execution semantics

of stage fusion is different than the one expected by our steady-

state algorithms. In fact, in akka-streams the processing stages

assigned to the same actor are executed and process input items

in any order that preserves the data dependencies. In contrast, in

our semantics, for each input item popped from the actor’s mail-

box, the execution in Algorithm 4 is functionally equivalent to the

sequential composition of the processing functions called along the

path followed by the item in the sub-graph, a semantics that allows

the service rate of the meta-operator to be easily predicted by static

cost models.

5 EVALUATION
In this final part of the paper, we will evaluate SpinStreams by

using a set of streaming topologies made of real-world operators

with user-defined functions. The goal of this analysis is to assess the

accuracy and the viability of the cost models and the optimizations

presented in Section 3, which are the core part of the methodology

proposed by SpinStreams.

5.1 Experimental Setup
To comprehensively evaluate SpinStreams and its cost models, we

need a large set of applications having heterogeneous features in

terms of topologies (connections among operators), and bottlenecks

with various choices of where they are located in the graph (closer of

farther from the source). To this end, we developed 20 different real-

world operators. Some of them are stateless operators like filters

and maps, which apply transformations on a tuple-by-tuple basis

(a tuple is an item representing as record of attributes). We also

implemented stateful operators based on count-based windows

for aggregation tasks (i.e. weighted moving average, sum, max,

min and quantiles), spatial queries (i.e. skyline and top-k [38]) and

join operators performing band-join predicates on count-based

windows. We shuffled and randomly connected subsets of those

operators turning out into 50 acyclic topologies which represent our

testbed. It should be noted that, although operators are connected

randomly, their workload and computational features are fully

realistic and based on existing operators.

Algorithm 5 presents the procedure used to randomly generate a

topology and that will be used to build our testbed. It takes as inputs

the amount of verticesV and the expected number of edges E to be

generated. The algorithm may generate a slightly greater number

of edges than E, as it will described shortly. The value V is chosen

randomly in the interval [2, 20]. E is set equal to (V − 1) · β , where
β is the connecting factor randomly generated in the range [1, 1.2]

according to the discrete uniform distribution in order to obtain

quite sparse graphs that result in topologies of loosely coupled

operators. Indeed, to the best of our knowledge, this is the most

common type of topologies for streaming applications.

The algorithm starts generating theV vertices that are numbered

with a progressive identifier starting from zero. This ordering will

be a topological one of the final graph. The first vertex (index 0) is

the source. In the first phase (line 5), V − 1 random edges are gen-

erated by respecting the topological ordering, i.e. a generated edge

(i, j) will have i < j. Then, the algorithm generates the remaining

number of edges (line 8) up to E connecting random pairs of vertices

respecting the topological ordering in order to not introduce any

cycle. In the pseudo-code the call randInt(a,b) returns a random

integer uniformly distributed in the interval [a..b].
Following the aforementioned algorithm, it could happen that

a certain set of vertices S , not intended to be the source, will end

up without any input edge. When this happens, additional edges

(line 13) are added to the graph, connecting the source with the

vertices belonging to S . This can increase the number of edges that

may be slightly greater than E.
In the last step, vertices are assigned to real-world operators

(line 16). Except for the source operator that is in charge of gener-

ating the input stream, operators are assigned randomly but taking

into account possible constraints limiting the compliance with cer-

tain assignments, e.g. joins can be assigned only to vertices with

more than one input edge. Once the topology is built, a discrete

probability distribution is assigned to each vertex having multiple

output edges (not shown in the pseudocode for brevity). We gener-

ate those probabilities using a power-law model (ZipF distribution)

with a scaling exponent α > 1 generated randomly in order to

obtain distributions with different skewness.

Target machine and software used. The experiments have

been executed on a machine equipped with two Intel Xeon E5-

2695 @2.40GHz CPUs, running CentOS Linux release 7.2.1511. We

use Akka version 2.5.12, configured to implement the communi-

cation semantics modeled by SpinStreams. Each actor uses the

Algorithm 5: Generation of a random topology

Input: the number of vertices V and of expected edges E to be generated

Result: a random topology G respecting the SpinStreams’s constraints

1: if E >
V (V − 1)

2

then
2: raise_an_error ("too many edges")
3: if E < (V − 1) then
4: raise_an_error ("too few edges")

▷ create edges

5: for i ← 0 to V − 2 do
6: v ← randInt(i + 1, V − 1)
7: Edges.addEdge(i, v)
8: while Edges.size() < E do
9: u ← randInt(0, V − 1)
10: v ← randInt(0, V − 1)
11: if u < v and (u, v) < Edges then
12: Edges.addEdge(u, v)

▷ obtain a single source

13: for i ← 1 to V − 1 do
14: if (∗, i) < Edges then
15: Edges.addEdge(0, i)

▷ assign operators to vertices

16: Vertex[0] ← createSource(. . .)
17: for i ← 1 to V − 1 do
18: Vertex[i] ← assignRandomOperator(. . .)

return G = (Vertex, Edges)
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Figure 7: Accuracy of the SpinStreamsmodel to estimate the backpressure in streaming topologies. Predicted throughput vs. real onemeasured
on Akka (a) and relative prediction error (b).

BoundedMailboxwhich, besides having a fixed capacity, blocks the
sending actor if the destination mailbox is currently full. The length

of this blocking phase can be controlled by setting a timeout after

that the item is discarded by the sending operator. In order to avoid

dropping of items, we set the timeout to be significantly higher than

the maximum operators’ service time (we use five seconds in the

experiments of this section). Furthermore, in order to have stable

results, the machine is exclusively used by our experiments and

each actor is associated with a dedicated thread (the Akka runtime

is configured to fully use all the 24 hyperthreaded cores of the ma-

chine). We repeat 10 times each experiment. In all cases, wemeasure

a very small standard deviation, thus we will avoid showing error

bars in the plots. Before running SpinStreams, we performed an

initial profiling of all the operators. For sliding-window operators

we consider three different window lengths and slide parameters

(chosen randomly during the topology construction): 1000, 5000

and 10000 tuples sliding every 1, 10 or 50 new items received. The

average service time per input tuple is in the fastest case of some

hundreds of microseconds while in the worst case it is up to few

hundreds of milliseconds. The source’s service rate has been set to a

properly high value such that the source is never a bottleneck, and

so some operators act as bottleneck and the effect of backpressure

can be appreciated in every topology.

5.2 Accuracy of the Backpressure Model
The first question that we pose is: does SpinStreams really pro-
vide an accurate estimation of the backpressure effect? To give
an answer to this question, we evaluate SpinStreams in our test-

bed of 50 topologies. Our goal is to compare the effective topology’s
throughput estimated by SpinStreams with the one really mea-

sured by running the application in Akka. Throughput is defined
as the average number of input tuples that the topology is able

to ingest per second in the long running. It is measured as the

departure rate of the source at steady state. The results of this set

of tests are reported in Figure 7a. As can be easily realized, the

SpinStreams model (cf. Algorithm 1) is able to precisely estimate

the long-running performance of the topologies as the predicted

throughput is very close to the measured one for all the topologies

in the testbed. Namely, backpressure was properly detected and its

effects precisely predicted. Figure 7b shows the relative error which

is, on average, less than 3%. To perform a more in-depth analysis,

we conducted a very fine-grained experiment in order to measure,

for each operator, the relative error between the predicted depar-

ture rate and the real one. The main aim was to assess the ability

to predict the backpressure for all the 678 operators composing the

50 random topologies. The results are reported in Figure 8 showing

a prediction error that is 6.14% on average (standard deviation of

5%).
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Figure 8: Relative error between the predicted departure rate and
the measured one per operator in the tested topologies.

There are a few cases in which the error is higher than 20%

(24.9%). A more in-depth analysis showed that this happens with

operators that are not in their steady-state yet. This is a side-effect of

the process used for generating the probabilities associated with the

edges. In fact, some paths in the topology can be characterized by

very low probabilities. As a consequence, this may result in a long

time requested for reaching the steady-state, leading to a substantial

error between the measured departure rate and the predicted one

for operators along those paths. However, as a consequence of

the very low probability, the contribution of such edges to the

aggregate throughput of the whole topology is minimal and thus

the prediction error for those operators has a limited effect.

5.3 Removing Bottlenecks
A second question that we pose is: does the bottleneck elimi-
nation phase of SpinStreams really result in an effective ap-
proach for optimizing throughput? To give an answer to this
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Figure 9: Analysis of the topologies after the bottleneck elimination phase of SpinStreams. No. of operators and total no. of additional replicas
used (a), and accuracy of the backpressure model evaluated on the parallelized topologies (b).

question, we run the parallelization phase of SpinStreams. In the

process dealing with the generation of topologies (cf. Algorithm 5),

the createRandomOperator() function assigns operators to ver-

tices. In case of partitioned-stateful operators, we also generate

a random set of key groups with a distribution frequency gener-

ated by a random ZipF law. Furthermore, in order to guarantee

that bottlenecks exist and the current throughput attained by the

topologies is sub-optimal, the speed of the source is set to be 33%

higher than the service rate of the faster operator in the topology.

The results of the parallelization phase are reported in Figure 9a,

where we show for each topology in the testbed the initial number

of operators and the total number of additional replicas used in

each topology (an operator with n > 0 replicas has n − 1 additional
replicas). Figure 9b shows the accuracy of the backpressure model

for the optimized topologies. As it can be observed, the relative

error is similar to the one characterizing the previous evaluation

focusing on non-optimized topologies (about 3 − 3.5% on average).

Furthermore, we conducted an in-depth analysis on the parallelized

version of each topology in the testbed:

• for 43 out of 50 topologies the ideal throughput has been

reached after the parallelization step. This means that all the

bottlenecks have been removed and the application through-

put is equal to the generation rate of the source (we point out

that in each topology the source has a different generation

rate);

• for 7 out of 50 topologies the ideal throughput cannot be

reached as some bottlenecks still remain. These bottlenecks

are operators that have been marked with the stateful flag
during their generation, i.e. they cannot be replicated (this

is to mimic cases where operators cannot be parallelized).

In that case, the aggregate throughput of the whole appli-

cation is the one imposed by the backpressure generated

by the bottleneck, which has been accurately predicted by

SpinStreams.

In all cases, partitioned-stateful operators have been successfully

parallelized when they were bottlenecks of the topologies, and

emitter/collector actors, whenever they have been introduced, are

not bottlenecks (their service time lasts few microseconds at most).

Sometimes, it can be useful to limit the effects of the bottleneck

elimination phase since the optimal replication degree of certain

operators might be very high. In this way the application designers

can control the total amount of operators and replicas taking into

account the amount of resources they plan to have available for

processing. To this end, SpinStreams gives the possibility to add a

maximum bound to the total amount of replicas (cf. Section 3.2). As

matter of fact, using bounds that are lower than the optimal replica-

tion degree, the expectation is to obtain a proportional de-scalability

of the performance with respect to the one could be achieved by

the optimal topologies. To confirm this expectation we conducted

specific tests; Figure 10 shows the results of an experiment using

three random topologies. We compared the throughput of the initial

topologies against the one after the bottleneck elimination phase,

where we applied three different bounds: 30, 35 and 40 total replicas.

Furthermore, we show the throughput achieved by parallelizing

without any bound.
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Figure 10: Application of different maximum bounds in the paral-
lelization phase performed by SpinStreams.

As we can see, a proportional de-scalability is quite clear in

the results. Interestingly, in the third topology the performance

achieved with the highest bound is equal to the one without bounds.

This happens because the topology needs fewer than 40 replicas to

sustain the ideal generation rate of the source without bottlenecks.
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5.4 Application of Operator Fusion
The last question that we pose is: does SpinStreams accurately es-
timate the outcome obtained by fusing a complex sub-graph
in the topology?. We first notice that fusion is not yet an automa-

tized process in SpinStreams as the users are manually involved

in selecting the candidate sub-graph used to apply fusion. Without

pretending to be exhaustive, and in order to exemplify the appli-

cation of this optimization, we present an example of a topology

with six operators interconnected as in Figure 11(left).

1
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0.5
0.35

0.65

0.7

0.3

Figure 11: Example of operator fusion in SpinStreams. Original
topology (left) and topology after the fusion of operators 3, 4 and
5 (right).

Table 1 reports the predicted performance obtained by running

SpinStreams (cf. Algorithm 1). Operators 3, 4 and 5 have a quite

low utilization factor (i.e. they are underutilized). As a consequence,

the user proposes to fuse such operators by generating the topology

in Figure 11(right). SpinStreams predicts the service time T of the

new operator (F) (cf. Algorithm 3) which is of 2.80 milliseconds on

average. The analysis predicts that the fusion does not introduce

any bottleneck as also confirmed by running the original and the

modified topologies in Akka to collect the real measurements. In-

terestingly, a slight increase of throughput is measured by running

the optimized topology in this particular case.

We run another experiment where we changed the functions

used by some operators. The new service times are in Table 2

and the three operators 3, 4 and 5 are slightly slower now, with a

predicted service time for the new operator F of about 4.42 millisec-

onds. Again, the user asks the outcome of the fusion but this time

SpinStreams generates an alert stating that such fusion would im-

pair the performance (a bandwidth degradation of 20% predicted

before running the modified topology), as it has been also confirmed

by the real execution.

6 RELATEDWORK
A catalog of stream processing optimizations has been proposed [19]

to provide a comprehensive survey of the existing techniques devel-

oped over the years. Operator placement allows for trading off com-

munication cost against resource utilization by mapping operators

onto computing resources. This can be done either statically [5] or

dynamically [27], with the latter involving complex state migration

activities to enforce replacement decisions while the application

is running. SpinStreams does not deal with placement decisions,

which are responsibility of the SPS once the optimized topology

has been built (e.g., out from our tool).

Operator fission is by far the most studied optimization. A large

volume of papers presented state migration techniques to reduce

Original

topology

Metric 1 2 3 4 5 6

µ−1 (ms) 1.00 1.20 0.70 2.00 1.50 0.20

δ−1 (ms) 1.00 1.42 3.33 4.93 6.67 1.00

ρ 1.00 0.83 0.21 0.40 0.23 0.20

Throughput (tuples/sec) 1,000 (predicted) 961 (measured)

Topology

after fusion

Metric 1 2 F 6

µ−1 (ms) 1.00 1.20 2.80 0.20

δ−1 (ms) 1.00 1.42 3.33 1.00

ρ 1.00 0.83 0.84 0.20

Throughput (tuples/sec) 1,000 (predicted) 970 (measured)

Table 1: The proposed fusion of the sub-graph is feasible and does
not impair performance.

Original

topology

Metric 1 2 3 4 5 6

µ−1 (ms) 1.00 1.20 1.50 2.70 2.20 0.20

δ−1 (ms) 1.00 1.42 3.33 4.93 6.67 1.00

ρ 1.00 0.83 0.45 0.55 0.33 0.20

Throughput (tuples/sec) 1,000 (predicted) 961 (measured)

Topology

after fusion

Metric 1 2 F 6

µ−1 (ms) 1.00 1.20 4.42 0.20

δ−1 (ms) 1.33 1.90 4.42 1.33

ρ 0.75 0.63 1.00 0.15

Throughput (tuples/sec) 760 (predicted) 753 (measured)

Table 2: The proposed fusion of the sub-graph introduces a new bot-
tleneck in the topology.

the overhead for changing the replication degree of partitioned-

stateful operators. Some papers [35] studied this problem for single

operators only. Other works [17, 39] applied fission to pipelines

of stateless or partitioned-stateful operators that can be replicated

as a whole. A recent paper proposes an elastic support on top of

Heron [11]. The replication degree is adjusted by moving Heron

instances in different containers to deploy on available resources.

When the application is a complex topology, there is a stability
problem in the changes performed on distinct operators due to the

interplay among their steady-state performance [29, 30]. Another

work [16] defines a cost model for backpressure used for dynamic

adaptation. However, it assumes topologies with specific structures

(e.g., linear sequences of operators).

As stated in this paper, operator fusion is less explored than fission.
Some papers have applied fusion at compile-time. StreamIt [18] ap-

plies fusion to coarsen the granularity of the topology by adapting

it to the number of available cores. Frameworks like Aurora [6, 7]

fuse operators as long as the fused sub-graph performs less work

than the maximum capacity provided by the machine executing

it. COLA [24] is a compiler for System S [15] that fuses operators

into run-time software units called Processing Elements, which
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correspond to dedicated processes to run on the Operating Sys-

tem. Communications between operators mapped onto the same

PE are replaced by function calls to avoid inter-process commu-

nications. Their algorithm follows a top-down strategy starting

from a unique PE containing all the operators that is recursively

split until a right granularity is reached. It is quite different from

SpinStreams. COLA is a complier that finds the best application of

fusion through heuristics, while SpinStreams is a tool supporting

the users in a constructive way step-by-step. From a modeling view-

point, SpinStreams overcomes some actual limitations of COLA,

such as giving a precise modeling of the aggregate service rate of

the fused operator that is not explicitly modeled in COLA. It is im-

portant to observe that such aforementioned approaches to fusion

merge a set of operators into a single thread in the run-time system,

i.e. they are tailored with a specific SPS. In contrast, the approach

to fusion proposed in SpinStreams works at a higher abstraction
level, as logical operators are fused into logical entities of the target

SPS (e.g., actors in Akka), which are in turn executed by a pool of

processes or threads at the system level. This decoupling allows

for a general support for fusion, which can be generalized to any

SPSs instead of being bounded to a specific runtime. This is one of

the ambitions of our future work in generalizing SpinStreams to a
variety of SPSs in addition to Akka.

Finally, there are relevant papers applying fusion dynamically.

Flextream [21] applies fusion by stopping the application execution,

recompiling the code with the new topology, and restoring the

processing. Although interesting this may cause a long downtime

that may not be always tolerated. Other approaches [26, 39] apply

fusion while the application is running without pausing it. However,

they actually limit fusion to operators along the same pipeline with

constraints on their selectivity. SpinStreams can fuse much more

general sub-graphs although it is a static tool.

7 CONCLUSIONS AND FUTUREWORK
This paper presented SpinStreams, a tool supporting the program-

mer during the design phase of data stream processing applications.

SpinStreams accurately models the backpressure effect in complex

topologies by leveraging appropriate cost models and optimiza-

tion algorithms. Topologies are provided to SpinStreams as XML

files along with files with actual implementations used to generate

the final code for a target SPS. In the current release SpinStreams
generates code for Akka, and extensive experiments have been con-

ducted to show the accuracy of our approach in a set of random

topologies of operators performing real-world computations.

Our work can be extended in several directions. First, we plan

to conduct experiments in distributed environments (e.g., using the

Remoting library of Akka) and to extend the models in order to

cover cyclic topologies and multiple sources. Second, we would like

to automatize the operator fusion process by making SpinStreams
able to automatically choose the best sub-graph suitable for fusion

without manual intervention by the user. Finally, we would like to

extend the code generation part for other agent-based frameworks

like CAF [8, 41] and SPSs like Apache Storm [23] and Flink [12], and

we aim at studying the joint combination of static and dynamic op-

timizations (e.g., elasticity) in the future, to assess the full potential

of the most popular stream processing optimizations.

REFERENCES
[1] Lorenzo Affetti, Riccardo Tommasini, Alessandro Margara, Gianpaolo Cugola,

and Emanuele Della Valle. 2017. Defining the execution semantics of stream

processing engines. Journal of Big Data 4, 1 (26 Apr 2017), 12. https://doi.org/10.

1186/s40537-017-0072-9

[2] Jamie Allen. 2013. Effective Akka. O’Reilly Media, Inc.

[3] Henrique Andrade, Buğra Gedik, and Deepak Turaga. 2014. Fundamentals of
Stream Processing. Cambridge University Press. Cambridge Books.

[4] C. Bertolli, G. Mencagli, and M. Vanneschi. 2010. Analyzing Memory Re-

quirements for Pervasive Grid Applications. In 2010 18th Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing. 297–301. https:

//doi.org/10.1109/PDP.2010.71

[5] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, andMatteo Nardelli. 2016.

Optimal Operator Placement for Distributed Stream Processing Applications. In

Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems (DEBS ’16). ACM, New York, NY, USA, 69–80. https://doi.org/10.

1145/2933267.2933312

[6] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and

Mike Stonebraker. 2003. Operator Scheduling in a Data Stream Manager. In

Proceedings of the 29th International Conference on Very Large Data Bases - Volume
29 (VLDB ’03). VLDB Endowment, 838–849. http://dl.acm.org/citation.cfm?id=

1315451.1315523

[7] Uğur Çetintemel, Daniel Abadi, Yanif Ahmad, Hari Balakrishnan, Magdalena

Balazinska, Mitch Cherniack, Jeong-Hyon Hwang, Samuel Madden, Anurag

Maskey, Alexander Rasin, Esther Ryvkina, Mike Stonebraker, Nesime Tatbul,

Ying Xing, and Stan Zdonik. 2016. The Aurora and Borealis Stream Processing
Engines. Springer Berlin Heidelberg, Berlin, Heidelberg, 337–359. https://doi.

org/10.1007/978-3-540-28608-0_17

[8] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2014. CAF -

the C++ Actor Framework for Scalable and Resource-Efficient Applications. In

Proceedings of the 4th International Workshop on Programming Based on Actors
Agents &#38; Decentralized Control (AGERE! ’14). ACM, New York, NY, USA,

15–28. https://doi.org/10.1145/2687357.2687363

[9] X. Chen, Y. Vigfusson, D. M. Blough, F. Zheng, K. L. Wu, and L. Hu. 2017.

GOVERNOR: Smoother Stream Processing Through Smarter Backpressure. In

2017 IEEE International Conference on Autonomic Computing (ICAC). 145–154.
https://doi.org/10.1109/ICAC.2017.31

[10] A. Destounis, G. S. Paschos, and I. Koutsopoulos. 2016. Streaming big data meets

backpressure in distributed network computation. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communications. 1–9.
https://doi.org/10.1109/INFOCOM.2016.7524388

[11] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-

masamy. 2017. Dhalion: Self-regulating Stream Processing in Heron. Proc. VLDB
Endow. 10, 12 (Aug. 2017), 1825–1836. https://doi.org/10.14778/3137765.3137786

[12] Ellen Friedman and Kostas Tzoumas. 2016. Introduction to Apache Flink: Stream
Processing for Real Time and Beyond (1st ed.). O’Reilly Media, Inc.

[13] Buğra Gedik. 2014. GenericWindowing Support for Extensible Stream Processing

Systems. Softw. Pract. Exper. 44, 9 (Sept. 2014), 1105–1128. https://doi.org/10.

1002/spe.2194

[14] Buğra Gedik. 2014. Partitioning Functions for Stateful Data Parallelism in Stream

Processing. The VLDB Journal 23, 4 (Aug. 2014), 517–539. https://doi.org/10.

1007/s00778-013-0335-9

[15] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol

Doo. 2008. SPADE: The System s Declarative Stream Processing Engine. In

Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’08). ACM, New York, NY, USA, 1123–1134. https://doi.org/10.

1145/1376616.1376729

[16] B. Gedik, H.G. Ozsema, and O. Ozturk. 2016. Pipelined fission for stream programs

with dynamic selectivity and partitioned state. J. Parallel and Distrib. Comput. 96
(2016), 106 – 120. https://doi.org/10.1016/j.jpdc.2016.05.003

[17] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014. Elastic

Scaling for Data Stream Processing. IEEE Trans. Parallel Distrib. Syst. 25, 6 (June
2014), 1447–1463. https://doi.org/10.1109/TPDS.2013.295

[18] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and

Saman Amarasinghe. 2002. A Stream Compiler for Communication-exposed

Architectures. SIGARCH Comput. Archit. News 30, 5 (Oct. 2002), 291–303. https:

//doi.org/10.1145/635506.605428

[19] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.

2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

[20] Christoph Hochreiner, Michael Vagler, Stefan Schulte, and Schahram Dustdar.

2017. Cost-efficient enactment of stream processing topologies. PeerJ Computer
Science 3 (Dec. 2017), e141. https://doi.org/10.7717/peerj-cs.141

[21] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke. 2009.

Flextream: Adaptive Compilation of Streaming Applications for Heterogeneous

https://doi.org/10.1186/s40537-017-0072-9
https://doi.org/10.1186/s40537-017-0072-9
https://doi.org/10.1109/PDP.2010.71
https://doi.org/10.1109/PDP.2010.71
https://doi.org/10.1145/2933267.2933312
https://doi.org/10.1145/2933267.2933312
http://dl.acm.org/citation.cfm?id=1315451.1315523
http://dl.acm.org/citation.cfm?id=1315451.1315523
https://doi.org/10.1007/978-3-540-28608-0_17
https://doi.org/10.1007/978-3-540-28608-0_17
https://doi.org/10.1145/2687357.2687363
https://doi.org/10.1109/ICAC.2017.31
https://doi.org/10.1109/INFOCOM.2016.7524388
https://doi.org/10.14778/3137765.3137786
https://doi.org/10.1002/spe.2194
https://doi.org/10.1002/spe.2194
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1145/1376616.1376729
https://doi.org/10.1145/1376616.1376729
https://doi.org/10.1016/j.jpdc.2016.05.003
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1145/635506.605428
https://doi.org/10.1145/635506.605428
https://doi.org/10.1145/2528412
https://doi.org/10.7717/peerj-cs.141


Conference’17, July 2017, Washington, DC, USA Mencagli et al.

Architectures. In 2009 18th International Conference on Parallel Architectures and
Compilation Techniques. 214–223. https://doi.org/10.1109/PACT.2009.39

[22] Waldemar Hummer, Benjamin Satzger, and Schahram Dustdar. 2013. Elastic

Stream Processing in the Cloud. Wiley Int. Rev. Data Min. and Knowl. Disc. 3, 5
(Sept. 2013), 333–345. https://doi.org/10.1002/widm.1100

[23] Ankit Jain. 2017. Mastering Apache Storm: Real-time Big Data Streaming Using
Kafka, Hbase and Redis. Packt Publishing.

[24] Rohit Khandekar, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Joel Wolf, Kun-

Lung Wu, Henrique Andrade, and Buğra Gedik. 2009. COLA: Optimizing Stream

Processing Applications via Graph Partitioning. In Middleware 2009, Jean M.

Bacon and Brian F. Cooper (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

308–327.

[25] Yunbo Li, Anne-Cécile Orgerie, Ivan Rodero, Betsegaw Lemma Amersho, Manish

Parashar, and Jean-Marc Menaud. 2018. End-to-end energy models for Edge

Cloud-based IoT platforms: Application to data stream analysis in IoT. Future
Generation Computer Systems 87 (2018), 667 – 678. https://doi.org/10.1016/j.

future.2017.12.048

[26] Björn Lohrmann, Daniel Warneke, and Odej Kao. 2014. Nephele Streaming:

Stream Processing Under QoS Constraints at Scale. Cluster Computing 17, 1

(March 2014), 61–78. https://doi.org/10.1007/s10586-013-0281-8

[27] K. G. S. Madsen, Y. Zhou, and J. Cao. 2017. Integrative Dynamic Reconfiguration

in a Parallel Stream Processing Engine. In 2017 IEEE 33rd International Conference
on Data Engineering (ICDE). 227–230. https://doi.org/10.1109/ICDE.2017.81

[28] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter Binder, and

Zhengwei Qi. 2012. DiSL: A Domain-specific Language for Bytecode Instru-

mentation. In Proceedings of the 11th Annual International Conference on Aspect-
oriented Software Development (AOSD ’12). ACM, New York, NY, USA, 239–250.

https://doi.org/10.1145/2162049.2162077

[29] G. Mencagli and M. Vanneschi. 2011. QoS-control of Structured Parallel Computa-

tions: A Predictive Control Approach. In 2011 IEEE Third International Conference
on Cloud Computing Technology and Science. 296–303. https://doi.org/10.1109/

CloudCom.2011.47

[30] G. Mencagli, M. Vanneschi, and E. Vespa. 2013. Control-theoretic adaptation

strategies for autonomic reconfigurable parallel applications on cloud environ-

ments. In 2013 International Conference on High Performance Computing Simula-
tion (HPCS). 11–18. https://doi.org/10.1109/HPCSim.2013.6641387

[31] Harry G. Perros. 1994. Queueing Networks with Blocking. Oxford University Press,
Inc., New York, NY, USA.

[32] Constantin Pohl, Philipp Goetze, and Kai-Uwe Sattler. 2017. A Cost Model

for Data Stream Processing on Modern Hardware. In ADMS Workshop. http:

//www.adms-conf.org/2017/camera-ready/adms2017_final.pdf

[33] Nicoló Rivetti, Yann Busnel, and Leonardo Querzoni. 2016. Load-aware Shedding

in Stream Processing Systems. In Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems (DEBS ’16). ACM, New York,

NY, USA, 61–68. https://doi.org/10.1145/2933267.2933311

[34] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2016. Profiling Actor Utilization

and Communication in Akka. In Proceedings of the 15th International Workshop
on Erlang (Erlang 2016). ACM, New York, NY, USA, 24–32. https://doi.org/10.

1145/2975969.2975972

[35] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. Wu. 2009. Elastic scaling of

data parallel operators in stream processing. In 2009 IEEE International Symposium
on Parallel Distributed Processing. 1–12. https://doi.org/10.1109/IPDPS.2009.

5161036

[36] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. 2017. Mammut:

High-level management of system knobs and sensors. SoftwareX 6 (2017), 150 –

154. https://doi.org/10.1016/j.softx.2017.06.005

[37] B. Shinde and S. T. Singh. 2016. Data parallelism for distributed streaming

applications. In 2016 International Conference on Computing Communication
Control and automation (ICCUBEA). 1–4. https://doi.org/10.1109/ICCUBEA.2016.

7859983

[38] Julien Subercaze, Christophe Gravier, Syed Gillani, Abderrahmen Kammoun, and

Frédérique Laforest. 2017. Upsortable: Programming Top-k Queries over Data

Streams. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1873–1876. https://doi.org/10.

14778/3137765.3137797

[39] Y. Tang and B. Gedik. 2013. Autopipelining for Data Stream Processing. IEEE
Transactions on Parallel and Distributed Systems 24, 12 (Dec 2013), 2344–2354.
https://doi.org/10.1109/TPDS.2012.333

[40] Quoc-Cuong To, Juan Soto, and VolkerMarkl. 2018. A survey of statemanagement

in big data processing systems. The VLDB Journal (02 Aug 2018). https://doi.

org/10.1007/s00778-018-0514-9

[41] M. Torquati, T. Menga, T. DeMatteis, D. De Sensi, and G.Mencagli. 2018. Reducing

Message Latency and CPU Utilization in the CAF Actor Framework. In 2018 26th
Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP). 145–153. https://doi.org/10.1109/PDP2018.2018.00028

https://doi.org/10.1109/PACT.2009.39
https://doi.org/10.1002/widm.1100
https://doi.org/10.1016/j.future.2017.12.048
https://doi.org/10.1016/j.future.2017.12.048
https://doi.org/10.1007/s10586-013-0281-8
https://doi.org/10.1109/ICDE.2017.81
https://doi.org/10.1145/2162049.2162077
https://doi.org/10.1109/CloudCom.2011.47
https://doi.org/10.1109/CloudCom.2011.47
https://doi.org/10.1109/HPCSim.2013.6641387
http://www.adms-conf.org/2017/camera-ready/adms2017_final.pdf
http://www.adms-conf.org/2017/camera-ready/adms2017_final.pdf
https://doi.org/10.1145/2933267.2933311
https://doi.org/10.1145/2975969.2975972
https://doi.org/10.1145/2975969.2975972
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1109/IPDPS.2009.5161036
https://doi.org/10.1016/j.softx.2017.06.005
https://doi.org/10.1109/ICCUBEA.2016.7859983
https://doi.org/10.1109/ICCUBEA.2016.7859983
https://doi.org/10.14778/3137765.3137797
https://doi.org/10.14778/3137765.3137797
https://doi.org/10.1109/TPDS.2012.333
https://doi.org/10.1007/s00778-018-0514-9
https://doi.org/10.1007/s00778-018-0514-9
https://doi.org/10.1109/PDP2018.2018.00028

	Abstract
	1 Introduction
	2 Motivating Scenarios
	3 Performance Models
	3.1 Steady-State Analysis
	3.2 Bottleneck Elimination
	3.3 Operator Fusion
	3.4 Extensions

	4 SpinStreams
	4.1 Optimization Workflow
	4.2 SS2Akka and Code Generation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Accuracy of the Backpressure Model
	5.3 Removing Bottlenecks
	5.4 Application of Operator Fusion

	6 Related Work
	7 Conclusions and Future Work
	References

