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Abstract—Data Stream Processing (DaSP) is a paradigm
characterized by on-line (often real-time) applications working
on unlimited data streams whose elements must be processed
efficiently “on the fly”. DaSP computations are characterized
by data-flow graphs of operators connected via streams and
working on the received elements according to high throughput
and low latency requirements. To achieve these constraints,
high-performance DaSP operators requires advanced parallelism
models, as well related design and implementation techniques
targeting multi-core architectures. In this paper we focus on the
parallelization of the window-based stream join, an important op-
erator that raises challenging issues in terms of parallel windows
management. We review the state-of-the-art solutions about the
stream join parallelization and we propose our novel parallel
strategy and its implementation on multicores. As demonstrated
by experimental results, our parallel solution introduces two
important advantages with respect to the existing solutions: (i) it
features an high-degree of configurability in order to address the
symmetricity/asymmetricity of input streams (in terms of their
arrival rate and window length); (ii) our parallelization provides
a high throughput and it is definitely better than the compared
solutions in terms of latency, providing an efficient way to perform
stream joins on latency-sensible applications.

Keywords—Data Stream Processing, Window-based Stream
Joins, Continuous Queries, Throughput, Latency, Multicores

I. INTRODUCTION

Data Stream Processing (DaSP) is a recent and highly
active research field. In a DaSP computation data are not
modeled as traditional permanent data structures or relations,
but as continuous streams whose elements must be processed
“on the fly”, with critical performance requirements in terms
of throughput and latency. Several important on-line and real-
time applications can be modeled as DaSP [18], [6], including
network traffic and sensor data analysis, financial trading, data
mining and many others.

The topic of DaSP emerged from the execution of database
queries on systems supplied by potentially infinite streams of
data (continuous queries). The semantics of blocking operators
(e.g. sorting, grouping, skylines, aggregate functions) and of
stateful ones (e.g. joins, intersection) requires a special atten-
tion when input data sets are continuous streams. Blocking
operators require to process the entire input before an output
can be delivered, whereas stateful operators may require to
buffer all the received elements leading to unbounded mem-
ory occupancy. In both the cases the common solution is
to perform the computation on a finite subset of the input
(named window), representing the most recent portion of the
stream. Several software infrastructures for continuous queries

have been proposed in the past [2], [11], [10], [8], [5], [15],
extending the SQL syntax to support window-based variants
of the common operators.

High-performance DaSP applications need high throughput
and low latency implementations of continuous query oper-
ators. Latency is especially critical in many data intensive
applications, e.g. notably in algorithmic trading and environ-
mental monitoring [6], [11]. The problem of designing and
implementing efficient DaSP computations is a quite complex
one, given the presence of multiple streams, with unlimited or
unknown length and different arrival rates. Furthermore, the
presence of complex correlations between stream elements and
the dynamic management of windows exacerbates the problem
of writing efficient parallelizations.

The aim of this paper is to study the design issues of
parallel implementations for window-based stream joins [14].
Stream joins are very important operators, needed whenever
data from different streams have to be combined to calculate
correlations. For this reason, parallel solutions have been
already proposed in the past. In this work we describe the
original sequential algorithm devised by Kang [16] and we
investigate the parallelization issues posed by the window
distribution and management. We review the existing ap-
proaches, in which windows are partitioned among cores. Data
distribution is performed in a centralized fashion, in the case of
CellJoin [12] (an implementation explicitly developed for the
IBM Cell processor), and with a fully decentralized approach
in Handshake Join [20] (a more recent parallelization targeting
general-purpose multicores).

Our contribution consists in a different approach with
respect to existing solutions. We design a scalable, low latency
parallelization obtained by making use of both partitioning
and replication (sharing on shared-memory architectures) of
window data across cores. The degree of partitioning and
replication of each window depends on the topology (also
called layout), a configurable feature of our parallelization.
To increase the scalability, data is distributed in a partially
decentralized way, by exploiting core-to-core communications.
To prove the effectiveness of our parallelization in terms of
throughput and latency we present a wide range of experi-
ments:

e we compare the throughput of our parallelization with
the one achieved by the most recent existing solu-
tion [20]. The results show that our approach provides
better throughput with the same number of cores;

e we propose a novel latency analysis which has not



been discussed in the previous works [12], [20]. To
provide a comparison, we have adapted the source
code of Handshake Join [20] to collect the latency
measurements. In particular the results show that our
parallel solution outperforms Handshake Join, provid-
ing a significantly lower latency;

e we analyze the behavior of our parallelization with
different layouts, showing that the best one optimizing
latency and throughput depends on the characteristics
of the windows and the stream rates;

e  we study the parallel behavior in symmetric and asym-
metric scenarios (depending on the arrival rates and
window lengths of the streams).

The outline of this paper is as follows. Sect. II presents
related works for parallel DaSP and window-based stream
joins. Sect. III reviews the existing solutions and presents our
parallel proposal. Sect. IV presents throughput and latency
results on an Intel multicore. Finally, Sect. V states the
conclusion of the work and the future research directions.

II. RELATED WORK

Several software infrastructures (Data Stream Management
Systems - DSMSs) enabling continuous query execution have
been proposed over the last years. Examples are Borealis [2],
System S [11], GigaScope [10], NiagaraCQ [8] and, more
recently, StreamCloud [15]. One of the main issues of DSMSs
is the performance of the continuous queries. A first solution
relies on exploiting parallelism among operators of the same
query or among different queries (inter-operator and inter-
query parallelism), by properly scheduling operators or entire
queries on the available computing resources. This approach
has been followed by System S [4], in which graphs of queries
are partitioned into sub-queries assigned to a set of parallel
processing elements. A similar approach has been adopted
in [23], with special attention to load balancing mechanisms
able to adapt the mapping between operators and resources
according to the current stream rates. On Cloud infrastructures
the same problem has been addressed in [15], with special
attention on the use of nodes also by taking into account the
virtualization overhead and the economic cost of the cloud.

A different approach consists in exploiting parallelism
inside critical operators (intra-operator parallelism), i.e. for
hot spot operators in the query graph. As an example, par-
allelizations of stateful operators have been described in [22]
using locks to access shared data, and in [21] for computations
amenable to be parallelized using MapReduce-like frame-
works. However, the application of parallelism paradigms to
DaSP can be much more complicated, especially when state-
ful operators involve a sliding (overlapping) window seman-
tics [9]. A study of window distributions has been proposed
in [7], by referring to tumbling and sliding windows and
providing optimizations (i.e. pane-based distributions) when
operators are based on associative functions.

Stream join operators are critical in DaSP applications.
They can be used to detect trends and to find correlations
between streams [16], [14]. Such computations are difficult to
be parallelized efficiently: because of the symmetric semantics
of joins, effective distribution strategies must be taken into ac-
count when designing an efficient parallelization. Furthermore,

it is important to be aware of the effect of a parallelization not
only on throughput, but on latency too. Some parallel solutions
have been proposed in the literature. Two notable works are
CellJoin [12] and Handshake Join [20]. The former has been
evaluated only on a low-parallelism architecture (IBM Cell),
while the latter provides good scalability but has limitations
for latency-sensible applications. Other parallelizations exist
(as a small example [3], [19]), but they operate on static
relational tables and are not designed for performing joins over
unbounded streams.

III. PARALLEL STREAM JOINS ON MULTI-CORE
ARCHITECTURES

In this paper we are interested in parallel solutions to apply
join operators on streams. Join is one of the most common
database operators, used to combine records from multiple
tables. In its basic definition only two relations are used (binary
Jjoins); this, however, represents a meaningful case because it is
possible to evaluate joins over more than two tables (multi-way
joins) by using trees of binary join operators. For this reason
we will refer to the problem of binary join throughout the
paper, without losing generality. When we present the parallel
solutions, we will just note whether or not multi-way joins can
be natively supported by adapting the specific parallelizations.

The execution of joins poses semantics problems when
input data come from unbounded streams [13], [7], [9]. Joins
are stateful operators that require to store the entire input
to produce outputs. In the case of unlimited streams, this
would require unbounded memory and processing resources.
An approximate solution is to apply these operators on a finite
portion of each stream, named window, which dynamically
changes over time. Conceptually a window represents a “slice”
of the stream containing the most recent tuples, and thus a lim-
ited portion of it. According to the application requirements,
various types of windows can be defined, with a different
semantics in terms of boundaries and movement strategy of
the window along the stream.

In analogy with CellJoin and Handshake Join, in this
paper we focus on sliding windows that cover all the stream
elements received from an earlier point up to the most recent
tuple. Sliding windows can span over a fixed number of
tuples, i.e. the last k tuples arrived (count-based windows) or
over a fixed amount of time, i.e. tuples received within the
last T, time units (time-based windows). Our parallelization
proposal can be applied both for time-based and count-based
sliding windows. Time-based windows, however, are the most
interesting case, since they retain a variable number of tuples
during the execution based on the arrival rate of the stream
and the window length T,. In the sequel we refer to the case
of sliding windows with a time-based semantics.

Given two streams Y and X, a pair of tuples must be
compared if the following conditions are satisfied:

Definition 1 (Time-based Sliding Window Semantics). Given
two tuples x € X and y € Y the join predicate w, will
be evaluated on the pair if and only if the following time
conditions are satisfied:

e if x is older than vy, then the timestamps of the
two tuples (denoted by t, and t,) must respect the
following condition: t, > t, —T7;
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e otherwise, y must be in the current Y -window when
x arrives, i.e. ty, > t, —TY.

We denote by T}, and TY the windows lengths (in time units)
of the two streams.

To compute the join we adopt the general procedure
devised by Kang [16]. It consists in the following sequence
of actions performed at each new arrival of a tuple x from X
(the actions are symmetric for the other stream Y'):

1) scan the tuples in Y-window, evaluate the join predicate
with x and propagate the results on the output stream R;

2) insert the new tuple z into the X-window;

3) remove all the expired tuples from the Y -window.

This version of the algorithm applies the invalidation in a lazy
mode, i.e. expired tuples are removed when the corresponding
window is probed to find matching tuples with the arrived
element from the other stream. As described in [16], this
solution optimizes the join processing cost (it scans only one
window at each new arrival). In this paper we will assume this
version of the algorithm in our description.

The general procedure used by Kang’s algorithm is a
nested-loop evaluation, in which the join predicate is evaluated
for all tuples satisfying the window constraints. For certain
predicates (e.g. equi-joins) the procedure can be optimized
using efficient data-structures (e.g. hash tables and tree indices)
in order to avoid to enumerate all the possible pairs. In the fol-
lowing we suppose a generic join problem on streams without
specifying the predicate and which kind of data structures are
effectively used. In fact, as we will see, all the parallelizations
will be completely agnostic w.r.t the specific implementation
of Kang’s algorithm.

In many applications stream joins must be performed
by respecting strict throughput and latency constraints. To
evaluate parallel solutions we introduce two metrics:

Definition 2 (Throughput). The throughput is the average
number of output results (joined pairs of tuples) per time unit
produced onto the output stream R.

Definition 3 (Latency). Let us suppose that two tuples x € X
and y € Y joins and the output result r = (x,y) is produced
at time t,. The latency l, of this pair is given by:

l, =t, —max {t;, t,} €))

i.e. the time from the reception of the most recent tuple of the
pair to the time at which the result is ready to be transmitted
to the output stream.

In Sect. III-A and III-B we will review different paralleliza-
tion strategies applied by existing research works. In Sect. III-C
we will describe our parallel proposal that represents the
contribution of this paper.

A. Centralized Solution

The idea of this parallelization is to have a centralized
Emitter functionality in charge of distributing stream elements
to a set of parallel Workers. Each time a new tuple is received
from one of the two streams (e.g. x; € X) we need to
apply the join predicate between z; and all the elements

in the Y-window, which is well defined: it contains all the
elements of stream Y received in the last 7)Y time interval. The
Emitter must: (i) insert the element x; in the X-window; (ii)
remove the expired tuples from the Y-window; (iii) determine
a partitioning of the Y-window in N segments, where N is
the parallelism degree (the number of Workers); (iv) scatter the
Y -window to the set of Workers; (v) multicast the element x;
to all the Workers. The actions are performed symmetrically
at each reception of a tuple from the other stream Y. Each
Worker applies step 1 of Kang’s algorithm to evaluate the joins
between the received element and the window partition. The
idea of this parallelization has been used in CellJoin [12].

This solution, conceptually applicable to more than two
input streams, is able to optimize throughput and latency
provided that the Emitter has a sufficiently low service time to
sustain the input streams rate. The data distribution overhead
(actions iv, v) can be mitigated on shared-memory architectures
by allocating windows contiguously and sending memory
pointers to the correct areas, instead of actual values. If
determining a balanced partitioning at each arrival becomes a
problem (action iii), the Emitter can use the same partitioning
on subsequent elements (of the same stream) and adapt it
periodically to re-balance the amount of elements per partition.
Nevertheless, actions i and ii cannot be further optimized and
can possibly make the Emitter a bottleneck with a high number
of Workers and very fast input streams. In the implementation
proposed in [12] the authors exploit the heterogeneous nature
of the IBM Cell (from which the name derives) by placing
the Emitter on the single PPE and the Workers on the 8
SPEs. In this case, due to the very limited number of Workers,
the Emitter does not become a bottleneck and the application
scales for low parallelism degrees.

B. Pipeline-based Solution

To solve the scalability problems of the centralized solu-
tion, alternative parallelization models can be defined in order
to perform the data distribution in a decentralized manner. The
pipeline-based model is a potential candidate, with a fully
decentralized window partitioning and management among
the pipeline stages. In order to efficiently meet pipelining
features and joining requirements, an interesting variant to the
pure pipeline solution has been proposed in [20] with the so-
called Handshake Join parallelization, valid for the case of two
streams (binary joins) that flow in the opposite directions as
depicted in Fig. 1. In this way each element of one of the two
stream will encounter, sooner or later, any element of the other
stream. In the figure we denote by X-i and Y'-j the i-th and
the j-th partition (also called segment) of the X-/Y -window.

Worker 1 Worker N
x—— ] — —
-~ Y-(N-1 le—— <~ je——Y

' ' '

joined tuples Joined tuples joined tuples

Worker 2

Fig. 1: Abstract scheme of the Handshake Join parallelization.

To scale efficiently, this parallelization scheme needs a
distributed load balancing mechanism between Workers. In



order to keep the size of the partitions as similar as possible,
neighboring Workers exchange tuples (from left to right for
stream X and vice-versa for Y) when they detect a local
unbalance of their partition sizes. Thank to this mechanism,
tuples will be pushed in the pipeline and become evenly
distributed over all the Workers throughout the execution
(see [20] for further details).

As it is quite evident in this case, the throughput and
scalability advantages are achieved at the expense of a too
long latency. In fact, a new tuple = before being compared
with all the tuples in the Y-window, needs to cross a subset
of the stages of the pipeline whose number depends on the
speeds of the two streams and the window (time) lengths. As
it will be experimentally proved in Sect. IV-C, this solution is
not acceptable for latency-sensitive applications.

C. A Low-Latency Stream Join Parallelization

In both the previous approaches the rationale is to partition
the windows to execute each join in parallel among the set
of Workers. Our proposal is based on a different approach
in which the windows are both partitioned and replicated
among a set of Workers to execute the joins on each received
tuple and between multiple arrived tuples in parallel. The
degree of partitioning and replication can be changed by
exploiting different topologies (layouts). Furthermore, as it will
be discussed in Sect. III-D2, on shared memory architectures
replication can be efficiently implemented by using shared data
among Workers.

In the case of two streams, bidimensional matrix-like
layouts of Workers can be arranged (Fig. 2), with the window
of stream Y partitioned among Workers on different columns
and each partition replicated on the corresponding column. The
situation is symmetric for the other stream X as depicted in
Fig. 2. Tuples are assigned to a set of Workers at their arrival;
in this way each Worker maintains its own window partition
for each stream and: (i) the ownership of a tuple is held by a
subset of the Workers (a row/column, based on the topology);
(ii) each Worker executes all the steps of Kang’s algorithm, by
removing expired tuples in their partitions independently. This
second point represents an important difference with respect to
the previous approaches, since in CellJoin window updates are
performed by the centralized Emitter, whereas in Handshake
Join tuples are inserted/removed by flowing in the pipeline.

To implement the layout, proper data distribution activities
must be performed. To avoid the issues of the centralized
approach, we devise a partially decentralized data distribution
performed in a collaborative fashion by the Emitter and the
Workers. The distribution, outlined in Fig. 2 for a generic
layout of m x n Workers, is performed as follows:

e atupley €Y is sent to a Worker W7 ; in the first row
selected by the Emitter. The tuple is forwarded to all
the Workers on the i-th column (the Emitter transmits
y to Wy ;, that forwards it to W5 ;, and so on up to
Worker Wi, :);

e symmetrically, at each new arrival of a tuple z € X
the Emitter selects a Worker W; 1 in the first column.
The tuple is multicasted to all the Workers in the j-th
row using the same approach as before.

Emitter
A Yis1 Yin
Worker 1,1 Worker 1,2 Worker 1,n
X; X; X; X:
N ", RN
i ¥ Vi ¥ Yien
l Yi l Yint lem
Xism Worker m,1 Xism Worker m,2 Xiem Xism Worker m,n
) [ IR
[xm | [xm |

Fig. 2: General layout of m x n Workers. We denote by X-i and Y-j
the ¢-th and j-th partition of X-window and Y-window respectively.

Given the fact that the ownership of each tuple is fixed
throughout the execution, a critical point is to provide a load-
balanced partitioning. If the join processing time is constant,
or with a small variance, then load balancing can be achieved
by maintaining, for each window, the same number of tuples
on each Workers. In this case a simple yet effective policy
is to distribute tuples in a round-robin fashion, e.g. upon the
reception of a tuple y; € Y, the Emitter forwards it to a
Worker W1 ;. in the first row such that £ = (¢ mod n) + 1,
and symmetrically for the other stream. In this way new tuples
are evenly distributed to Workers and evenly removed from
their partitions at their expiration time. It is worth noting that
the windows are not partitioned in contiguous segments, but
each Worker has its own set of tuples that span over the
entire window length. Other strategies, such as on-demand
distribution, can be adopted to provide better load balancing
if the join processing time has a high variance.

Proposition 1 (Correctness). The window-based stream join
parallelization with a layout of m x n Workers outputs all the
pairs of tuples satisfying the join predicate %, and respecting
the timing constraints of Definition 1.

Proof sketch: to have an idea of the proof, let us consider
the situation at moment ¢,,, when a tuple y; € Y is received by
the Emitter (the situation is symmetrical for the other stream).
The tuple is multicasted to the k-th column of the layout such
that & = (¢ mod n)+1. Tuples from each stream are received
and processed by each Worker in-order (i.e. y; is evaluated
before the evaluation of y; if and only if ¢,, < t,.). Each
Worker W, ;. scans its X-window partition and evaluates for
each pair (z,y;):

1) the timing constraints, i.e. x will be removed from the
partition if ¢, + T3 < t,,. It is worth noting that with
this action we will not lose time-compatible pairs because
tuples from the same stream are received in timestamp
order;

2) for all the tuples x satisfying the timing constraints the
Worker evaluates = X, y;. If the join condition holds, the
pair (x,y;) is transmitted onto the output stream R.

Since the union of the partitions of Workers W, ; is the
full window of stream X, all the time-compatible pairs are



analyzed and the results produced onto the output stream. M

Using matrix-like topologies we can decide a proper allo-
cation of Workers to rows and columns. We can identify three
notable cases: (i) linear layouts, in which m =1 or n = 1,
resulting in the partitioning of a window and the replication
of the other; (ii) square layouts, in which m =n = VN , SO
that windows are equally partitioned and replicated, or (iii) a
general rectangular layout, where m # n.

Although the degree of parallelism in term of total number
of Workers (i.e. N = nm) is an important aspect to optimize
throughput, the layout plays a decisive role to minimize
latency. At each reception of a tuple = (y) from stream X (Y),
the average latency depends on the number of Workers in a row
(column) of the layout. In other words, the smaller the window
partitions, the smaller the latency of the joins on x (y). The
intuitive result is that in a symmetric scenario, with streams
having the same arrival rate and window length (A\; = A, and
T: =TY), the size of the two windows in terms of tuples is
the same, and the layout optimizing the latency is a square one,
i.e. with the same number of Workers per column and per row.
In the case of asymmetric streams, the size of the two windows
can be in general different, and a proper rectangular (or even
linear) layout can be the best solution to provide low latency.
Both the situations will be studied in more detail in Sect. IV.

We point out that our parallelization and the distribution
strategy have a regular structure with Workers having two
input and two output neighbors. This structure is amenable to
be efficiently executed on NUMA-like shared-memory parallel
architectures such as multi-processors of multi-core CPUs (e.g.
Intel multi-processors with the QuickPath interconnect).
Neighbor Workers can be easily mapped onto cores in order
to exploit short-distance communications (resulting in a higher
probability to find data in shared levels of cache). The Emitter
is a little price to pay: it performs only point-to-point commu-
nications with a sub-set of the Workers (the ones in the first
row and in the first column of the layout).

Finally, our approach can be easily extended to more than
two input streams (multi-way joins). As an example, in the
case of three streams we can arrange a cube of Workers each
one maintaining a window partition for each stream. Now
the Emitter is responsible to distribute tuples over Workers
lying on three adjacent faces of the cube. Hypercubes can be
imagined with more than three streams. In this paper we do
not discuss this extension, that will be covered in our future
work.

D. Implementation and Optimizations

Starting from the the abstract parallelization model de-
scribed in Sect. III-C, several optimizations can be introduced
to target general-purpose shared-memory multicores. The most
important points discussed here are: (1) how data structures
are organized in memory; (2) how replication has been really
implemented.

1) Attribute-oriented organization: each received tuple
consists of a set of attributes {a;}¥_,. Two different ways
to store tuples in memory can be identified [12]: (1) tuple-
oriented (row-oriented) organization: different tuples are stored

contiguously in memory; (2) attribute-oriented (column ori-
ented) organization: we use k separated data structures to
contiguously store the same attribute of different tuples.

As stated in [12], [20], the second approach should be
preferred to reach better performance. It can reduce the amount
of cache lines transferred to evaluate the join predicate over
the entire window (in general the join predicate applies on
a limited set of attributes). Furthermore, according to the
specific definition of the join operator, such organization can be
useful to exploit the SIMD capability of modern CPUs without
overhead in arranging temporal structures for the operands of
SIMD instructions. In analogy to the works [12], [20], we use
this organization in our parallel stream join implementation.

Our parallel solution exploits both replication and partition-
ing of the two stream windows onto a generic matrix topology
of Workers. Workers belonging to different rows/columns
operate on different segments of the same stream window
(e.g. conventionally X-window is partitioned among Workers
on different rows and Y-window among Workers on different
columns). The opposite is for replication: Workers on the same
row/column have a replica of the corresponding segment of
X-/Y-window. An example of such organization is shown in
Fig. 3 with a square layout of nine Workers: by supposing
only two attributes a; and ay per tuple, each window segment
consists of two attribute-oriented data structures denoted by
X.Al, XA2 and Y.Al, YAQ

Y
l l l segment 1 of X-window
Worker Worker Worker (shared by Worker 1, 2 and 3)
—>] > > X.A1
1 2 3
X.A2
A\ A A segment 2 of X-window
shared by Worker 4, 5 and 6)
Worker Worker Worker | ¢ cd '
X —> - - xa1 [(TTTTT]
4 5 6
X.A2
y y y segment 3 of X-window
hared by Worker 7, 8 and 9)
Worker Worker Worker [
— - > xa [TT111]
7 8 9
X.A2

segment 1 of Y-window segment 2 of Y-window segment 3 of Y-window
(shared by Worker 1, 4 and 7) (shared by Worker 2, 5 and 8) (shared by Worker 3, 6 and 9)

var [TTTTT] va [OITITT] v Q111111
vaz[ TTTTT] wa[ITTTT] w2[11T11T1

Fig. 3: Attribute-oriented data organization. X-/Y-windows are
replicated (actually shared) and partitioned among Workers.

2) Support to replication: replication yields to a higher
memory occupation. On today’s multicores, replication can be
implemented efficiently from the memory occupancy view-
point by exploiting sharing instead of pure replication of
data-structures, provided that the functionalities of the parallel
program share part of their logical address space (e.g. they are
implemented as threads). Let us focus on how replication of
X-window segments is realized (the same principle applies to
Y -window). Workers belonging to the same row access the
same segment of the X-window (see Fig. 3). By relying on
shared memory, the segment is physically shared by Workers



on the corresponding row: they have the address to the initial
portion of the same X-window segment.

Using shared window segments, communications between
Workers have a different nature. Once the Emitter receives a
tuple z, it firstly selects the destination row in a round-robin
fashion, then the tuple is transmitted to the first Worker of
that row. The Worker is responsible to physically modify its
X-window segment by adding the new tuple. All the other
Workers on the same row only require to be notified of the
presence of the new tuple to start the join evaluation with
their segment of Y-window. The notification is performed
exchanging special messages of the minimum size as possible
according to the underlying architecture specifications (usually
messages of one word). Such optimization has two important
consequences on our parallelization:

e by avoiding real replicas of window segments, the
memory occupancy of the parallel program will be
roughly equal to the sequential version;

e sharing makes it possible to exchange smaller mes-
sages between Workers instead of real tuples. This
leads to further improvement in latency, since Workers
on the same row/column can start the join evaluation
earlier compared with a version with pure replication
and communication of entire tuples by value.

Such way to perform replication has important impacts on
the way in which expiring tuples are identified and removed
from the two windows. In the abstract parallelization model
shown in Sect. III-C, each Worker is responsible to remove
expired tuples in its window segments. When sharing of
window segments is applied, this activity must be performed in
a careful way. Each expired tuple must be physically removed
by only one Worker if and only if it is no longer necessary
to any Worker sharing the same window segment. We manage
this with a low complexity procedure:

e  each Worker maintains a counter to the first valid tuple
for each of its two window segments;

e  Workers mark their expired tuples locally, by increas-
ing the corresponding counter (tuples are maintained
ordered w.r.t the timestamp attribute);

e  expired tuples are physically removed periodically by
one of the Worker sharing that window segment, by
identifying expired tuples for all the Workers sharing
the same window segment (i.e. by taking the minimum
between the Worker counters).

IV. EXPERIMENTS

In this section we provide an experimental evaluation of
throughput and latency achieved by our parallel solution,
referred to as DP-Join in the sequel'. Furthermore, we compare
our approach with the most recent existing parallelization [20]
- Handshake Join?. In Sect. III-A we saw that CellJoin [12] is
an example of centralized implementation with low parallelism
designed for a special-purpose architecture (IBM Cell), while

'The source code of DP-Join is available at the address

http://www.di.unipi.it/~mencagli/DP-Join.zip

current

2We thank the authors of [20] for having made available their source code at the
current url: http://dbis.cs.tu-dortmund.de/cms/de/publications/201 1/soccer-players/

in this section we are interested in studying solutions for
general-purpose CPUs without parallelism degree constraints.

A. Experimental Setup

In this section we study the join problem with a band-join
predicate. We use the band-join for two reasons: (i) for a fair
comparison with Handshake Join, since it is the same predicate
discussed in their work; (ii) it is a type of join predicate applied
in realistic applications that require low latency joins over
continuous domains such as time and distance [16] (e.g. to
find events occurring nearly in time and space). The band-
join predicate introduced in [20] applies the following join
condition over two tuples x € X and y € Y:

WHERE x.a BETWEEN y.a — 10 AND y.a + 10
AND x.b BETWEEN y.b - 10 AND y.b + 10

where a and b are the two join attributes. In our experiments
we use the same tuple generators used in [20] that generates the
attribute values with a join probability (hit rate) p = 3.6-1075.
Because of the predicate, we use the general nested-loop join
algorithm, where each window is implemented by a dynamic
array for each attribute (see Sect. III-D1). Tuples and their
timestamps are pre-generated according to the input stream
rates and read from file before each test execution.

DP-Join is evaluated on an Intel multiprocessor composed
of two Xeon E5-2650 Sandy-Bridge CPUs for a total of
16 cores and 32 SMT thread contexts (Simultaneous Multi-
Threading). Each core has a private L1 and L2 cache of size
32 KB and 256 KB. Each group of 8 cores share a L3 cache of
20 MB. Communications are implemented by passing pointers
to shared data (as described in Sect. I1I-D2) through efficient
lock-free queues made available by the FastF1low library [1].

B. Throughput Analysis

In the case of the stream join operator the maximum
throughput (also referred to as bandwidth) By, .. is expressed
as a function of the input stream rates A, and Ay, the window
lengths T, TY and the hit rate p. For simplicity we refer to
the case of two streams with the same window length T,
but the reasoning can be easily generalized to the case of
different lengths. For each received tuple from X in a time
interval [to, ¢1] we compute the join with all the tuples in the
Y-window and vice-versa. By denoting W, = A, - T}, and
Wy = Ay, - T, the average window size (in terms of tuples) of
stream X and Y at steady state, the number of output pairs in
that time interval is given by:

Qto,t, = [/\w (t1 —to) Wy + Ay (t1 —to) Wa| xp  (2)
=2)\; /\y(tl — to)Twp

Therefore, the steady-state maximum bandwidth (number
of outputs per time unit) can be evaluated as follows:

B:’ww = —=2 - =2\ N\ Ty 3)
(t1 — o) yiwP

This concept is important to understand that the maximum
throughput achieved by any parallelization cannot exceed



B .. because of the limitation imposed by the stream configu-
ration. For example, we expect that by increasing the number
of Workers (i.e. parallelism degree) we are able to increase
the bandwidth; however, once BY, . is reached, adding more
Workers will not produce further improvements. On the other
hand, if an implementation is producing outputs at a rate
lower than B ., this means that it is not able to sustain the
input rates, representing a bottleneck. Therefore, it is important
to find the minimum parallelism degree n®" such that the

achieved throughput is equal to B,

mazx*

1) Parallelism degree and scalability: we perform exper-
iments in a symmetric scenario (Fig. 4): each stream has
an input rate of 2100 t/s (tuples per second) and a window
length T, of 300 seconds. By applying Expr. 3, we are
able to estimate the maximum bandwidth of the module as
BY .. = 9526 t/s. We compare the achieved bandwidth of
Handshake Join and of several DP-Join layouts; each one
is characterized by a different minimum parallelism degree
n® able to achieve BY, .. Fig. 4 shows that the square
and the rectangular layouts have slightly greater minimum
parallelism degrees (8 and 9 Workers) compared with the
linear one (7 Workers), because they can not be used with
any parallelism degree (e.g. a square layout exists only for
perfect square parallelism degrees). Furthermore, the results
confirm the accuracy of Expr. 3: the measured B} . and the
predicted one differ less than 2%.

Output rate per parallelism degree (2100 t/s, 5min. windows).

T T T T T T T T

2x4 2x5 3x4 3x5 2x8
9500 5% K —————F—N |

8000

6200
5000

Output rate (tuples/sec)

3100 DP-Join Linear. —o— |
DP-Join Square. ---3¢--
DP-Join Rect.

Handshake Join. s
ngimum ?andwid‘th_ .........

1 2 4 6 8 10 12 14 16
Parallelism degree

Fig. 4: Output rates of DP-Join and Handshake Join with a symmetric
stream configuration. For the rectangular layout we show the number
of Workers per row and column.

In the previous experiment our DP-Join does not scale
beyond 9 Workers only because, with the used input rates and
window length, 9 Workers are enough to reach the maximum
bandwidth with any layout. A complete scalability analysis is
depicted in Fig. 5a in a symmetric scenario with an input rate
per stream of 6000 t/s and T;, = 300 seconds. By definition,
the scalability with n x m Workers is S(™*™ = B% /B¢, |,
where B ... is the achieved bandwidth with n x m Workers
and BY,; with one Worker. For brevity we show the results
for a linear layout of Workers (similar results are achieved
by the other layouts). With the used configuration in terms of
input rates and window length we have not sufficient cores
to reach By, ... Therefore we are able to study how DP-Join
scales up to the maximum number of cores of the architecture.
With 15 and 16 Workers we exploit the SMT capabilities of

the two CPUs by allocating the Emitter and the Collector

threads on the same cores of two Workers. In general this
could limit the scalability because of a reduced performance
of these two Workers; in our case the problem is exacerbated
by the FastFlow synchronization mechanisms (based on an
aggressive busy-waiting [1]); to avoid this problem, we adopt
a SMT-aware synchronization (based on busy-waiting with a
slight delay) able to mitigate the overhead of the Emitter and
Collector threads reaching a good scalability up to 16 Workers.

To provide a fair comparison, we have executed our
parallelization and the Handshake Join on the Intel multi-
processor using the same data-set of input tuples with identical
timestamps. Compared with Handshake Join, DP-Join is char-
acterized by a more optimized sequential algorithm: in the case
of one Worker the difference is of 24%. Given that from the
scalability viewpoint (Fig. 5a) the two implementations behave
very similarly with a near-optimal scalability, a similar gain
is maintained with the increasing of the parallelism degree.
The performance loss of Handshake Join using 15 and 16
Workers is due to the presence of two support threads, the
Collector and the Driver ones [20] (the first collecting results
from Workers and the latter in charge of pushing newly arrived
tuples and pulling expired ones) and the use of synchronization
not optimized for using multiple SMT contexts per core.

In Sect. IV-C we will see that different layouts have very
important effects on the latency. In principle, we expect that,
layouts with the same parallelism degree are characterized by
the same offered bandwidth:

mn

Bin = 7P )
where T, is the average time to evaluate the join predicate on
a pair of tuples, i.e. each Worker evaluates the join predicate
every Ty and produces a result every Ty /p on average. It
is important to note that this estimation is valid when the
parallelization does not reach the maximum throughput (i.e.
B ., < By .. and it is independent from the stream param-
eters, since it represents the maximum number of predicates
that the parallelization can evaluate in a time unit. Tab. I shows
the offered bandwidth using the same stream configuration of
Fig. 5a (stream rates and window length) and three parallelism
degrees equal to 6, 9 and 16 Workers for which several linear,
rectangular and square layouts can be used. With 6 and 16
Workers we use a 2 X 3 and a 2 x 8 rectangular layout.

Parallelism  Square  Rectangular  Linear
Degree Layout Layout Layout
6 - 9,301 8,529
9 14,047 - 13,599
16 21,740 21,700 21,659

TABLE I: Offered bandwidth (t/s) by different layouts.

Due to the efficiency of the communication mechanisms
there are small differences between layouts (in particular, the
linear one provides a slightly lower performance), because of
propagation delays along a longer sequence of Workers.

2) Sustainable input rate and multithreading: we propose
a different bandwidth analysis by reproducing the experiment
described in [20]. For each parallelism degree we measure
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Fig. 5: Throughput analysis of DP-Join (linear layout) and Handshake Join: (a) scalability; (b) maximum sustainable input rate (per stream)

using different parallelism degrees.

the maximum input rate (per stream) that the parallel imple-
mentation can sustain without being a bottleneck. Results are
depicted in Fig. 5b, also exploiting SMT multithreading with
the linear layout using up to 32 Workers. We consider this
layout because all the possible parallelism degrees can be used.
We analyze two experiments: in the first we use symmetric
streams with a window length of 300 seconds, in the second
we use a longer window length of 900 seconds (the maximum
length discussed in [20] and [12]).

The general result is that DP-Join outperforms Handshake
Join, by providing higher maximum sustainable rates. We can
notice a slowdown when we start to allocate multiple Workers
on the same cores using SMT contexts, i.e. with more than
16 Workers in our parallelization (two contexts are used for
the Emitter and the Collector threads). As we use higher
parallelism degrees, the performance slowly increases, roughly
reaching the same input rate sustainable by 16 Workers. In
conclusion, while useful to efficiently support the Emitter and
the Collector threads, SMT is ineffective to further increase
the performance of our DP-Join, which is a positive signal on
the efficiency of our code.

In Fig. 5a and 5b we can note a drop in performance using
15 or 16 Workers with Handshake Join, due to the presence
of the Emitter and the Driver processes. Differently to our
parallelization, Handshake Join exhibits a slight performance
improvement by using more contexts per core. The reason is
probably due to the performance inefficiency with 15 and 16
Workers. If the parallelization had been efficient with those
parallelism degrees, probably the slight advantage of using
more Workers per core would have been completely vanished.

C. Latency Analysis

Although the layout of DP-Join does not influence the
offered throughput, it is of great importance to minimize the
average latency (see Definition 3).

We consider an approximation of the average latency of a
generic m X n layout, that allows us to qualitatively understand
the effects on the latency. At each reception of a tuple x € X,
the Emitter distributes it to a row of Workers. Each Worker
evaluates in parallel the joins on its Y-window segment. By

assuming that joining tuples are uniformly distributed, the
average latency can be approximated as follows:

Wy /n
;T
L _ izz:ll MpNWyqu (5)
mxmn pWy/n —  2n

where L7 . .. denotes the average latency of tuples received
from X. Similarly we can compute LY ., where the X-
window segment is of size W, /m. The average latency is:

men :pm Lfnxn +py L;ynx'n, (6)

In a symmetric scenario, in which the two streams have
the same arrival rate A\, = Ay, = A and window length T’,,, we
can assume the same probability p, = p, = 0.5. In this case
the previous expression can be rewritten in the following way:
AT Tyy(m+n)p

(N

4dmn
By comparing layouts using the same number of Workers
(mn), we observe that the layout with the lowest latency is
the one that minimizes the numerator of Expr. 7: m + n, i.e.
the square one. This observation states an intuitive fact: in the

case of symmetric scenarios, to minimize the average latency
it is important to equally lower both the terms of Expr. 6.

Lpxn >~

1) Symmetric scenarios: we provide an evaluation using
streams with the same rate of 2500 t/s and T, = 300 seconds.
In this scenario the amount of work needed for the elements
received by the two streams is the same. The latency evaluation
is meaningful when the system is not a bottleneck, i.e. the
offered bandwidth equals the maximum one (B, .,, = B ..)-
Fig. 6a shows the average latency of different layouts (with the
same parallelism degree of 16 Workers) during an execution of
three times the window length. We reach the steady state after
300 seconds, i.e. when the two windows reach their maximum
size in terms of tuples. The square layout provides the best
latency (0.95 ms on average). The latency is 60% better
than the linear layout (2.42 ms), while the rectangular one
provides a latency between the other two layouts confirming
the intuition presented in Expr. 7.

Fig. 6b presents a more complete evaluation using different
parallelism degrees. We consider streams of 1000 t/s and we
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Fig. 6: Latency analysis in a symmetric scenario: (a) average latency over the execution; (b) average latency with different layouts and

parallelism degrees.

take into account only the layouts with a number of Workers
able to reach the maximum bandwidth. For each parallelism
degree we show the average latency with the possible layouts.
As confirmed by our analysis, the square layout is the best one.
The best result is achieved using a 4 x 4 layout (the latency is
slightly better than the 2 x 8 rectangular one). We can observe
that the average latency is monotonically decreasing with the
parallelism degree except with 15-16 Workers. In that case two
Workers are executed on the same core of the Emitter and the
Collector threads resulting in worse latency results.

In [20] the authors of Handshake Join have not ana-
lyzed their parallelization in terms of latency. To provide a
comparison we have slightly modified their source code in
order to collect such measurements. The latency comparison
is summarized in Fig. 6a and 6b by showing the results of
Handshake Join (67 sec on average) and different layouts
of DP-Join, which provides an average latency at least four
orders of magnitude smaller, and a minor standard deviation
(0.33 msec wrt. 1.46 sec). For the sake of clarity, we show
the Handshake Join latency using a different logarithmic scale
(in seconds) represented in the right part of the plots. The
reason for this great difference is related to the rationale behind
Handshake Join. A tuple x (y) assigned to a Worker leaves its
partition only when: (i) it becomes the oldest one in its window
partition, and (ii) that Worker detects a local unbalance with
its right (left) neighbor and the tuple is exchanged to balance
the partition sizes as described in Sect. III-B. If you assume
that the number of arrived tuples is uniformly distributed in
time, after an initial filling phase of the window (equal to 73,)
each tuple stays in a window partition for a time interval equal
to T, /N where N is the number of Workers, independently
from the arrival rate. Therefore the joins with the last arrived
element will be performed in a time proportional to the window
length. In contrast, in our approach, at each reception of a new
tuple all the comparisons are performed simultaneously.

2) Asymmetric scenarios: we show two experiments in
which the window size of the two streams is different. The
first experiment (Fig. 7a) shows two streams with different
rates A\, = 1000 t/s and A, = 3000 t/s, and the same
window length 7), = 300 seconds. In this case Expr. 7 is
no longer valid since the two windows have different sizes
at steady-state; intuitively, a proper rectangular layout is the
best solution to minimize latency on both windows because it

is important to partition the larger window among a higher
number of Workers. The results of Fig. 7a confirm this fact:
the rectangular layout gives the best latency (0.26 ms with
3 x 5 Workers compared with 0.30 ms which is the best result
obtained by the 4 x 4 square layout). Finally, it is interesting
the behavior of the linear layout, where the latency increases
as we use higher parallelism degrees (a similar behavior can
be observed also in the symmetric scenario, Fig. 6b). This fact
can be justified by the propagation delay of received tuples
along the pipeline. This aspect deserves to be investigated more
deeply in our future work. As discussed before, the average
latency of Handshake Join is again several orders of magnitude
higher than our DP-Join parallelization.

To conclude our discussion, we show a different asymmet-
ric scenario by using the same input rate A = 1000 t/s for the
two streams and different window lengths equal to 7)) = 150
seconds and 7Y = 300 seconds. Conceptually, this is only a
different source of asymmetricity, and can be handled again
by selecting a rectangular layout that balances the size of each
Worker partition. This experiment is reported in Fig. 7b. The
qualitative results are very similar to the previous example,
with the rectangular layout outperforming the others.

V. CONCLUSIONS

In this paper we investigate the problem of designing and
implementing efficient parallel solutions for window-based
stream joins, an important class of operators for continu-
ous query applications. We present the sequential algorithm
devised by Kang [16]. We introduce the main concepts of
two existing parallelizations referred to as CellJoin [12] and
Handshake Join [20]. Both the approaches are based on a pure
partitioning of the stream windows among parallel Workers.

We introduce a parallelization based on a more complex
partitioning and replication scheme, with Workers organized
in bidimensional layouts. In order to alleviate the Emitter
workload, a partially decentralized distribution is designed. We
describe the optimizations for an implementation on multi-
cores, by addressing the problems about how tuples are stored
in memory, and the effective implementation of the replication
scheme through sharing of window partitions among Workers.

The experiments show a deep analysis in terms of through-
put and latency of our parallelization compared with Hand-
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Fig. 7: Latency analysis in asymmetric scenarios: (a) streams with
different arrival rates and the same window length; (b) streams with
the same arrival rate and different window lengths.

shake Join, the other existing solution targeting general-
purpose multicores. In terms of bandwidth our parallel version
features a higher throughput (24% greater) and a near optimal
scalability up to 16 cores. In terms of latency the comparison
is novel and interesting. The results show a great advantage
of our solution that maintains the average latency within few
milliseconds, i.e. several orders of magnitude smaller than the
latency provided by Handshake Join.

Improvements can be developed in the future, to study
the behavior of our parallelization with more than two input
streams (a case not addressed in Handshake Join). Finally,
considering highly variable input rates, the approach is worth
to be studied in terms of dynamic adaptiveness, i.e. providing
adaptation strategies [17] to change the parallel structure in
terms of distributions methods and layouts.
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