January 24, 2017 22:8 The International Journal of Parallel, Emergent and Distributed Systems
” Articolo STAP”

The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, Month 2011, 1-42

RESEARCH ARTICLE

Performance Analysis and Structured Parallelization of the STAP
Computational Kernel on Multi-core Architectures

Daniele Buono, Gabriele Mencagli*, Alessio Pascucci and Marco Vanneschi
Department of Computer Science, University of Pisa
Largo B. Pontecorvo, 3, I-56127 Pisa, Italy
(Received 00 Month 200z; in final form 00 Month 200z)

The development of radar systems on general-purpose off-the-shelf parallel hardware repre-
sents an effective means of providing efficient implementations with reasonable realization
costs. However, the fulfillment of the required real-time constraints poses serious problems of
performance and efficiency: parallel architectures need to be exploited at best, providing scal-
able parallelizations able to reach the desired throughput and latency levels. In this paper we
discuss the implementation issues of the computational kernel of a well-known radar filtering
technique - the Space-time Adaptive Processing (STAP) - on today’s general-purpose parallel
architectures (multi-/many-core platforms). In order to address the performance constraints
imposed by the real-time implementation of this filtering technique, we apply a structured
approach (Structured Parallel Programming) to develop parallel computations as instances
and compositions of well-known parallelization patterns. This paper provides a thorough de-
scription of the implementation issues and discusses the performance peaks achievable on a
broad range of existing multi-core architectures.

Keywords: Space-time Adaptive Processing, Tile Algorithms, Multi-core Architectures,
Structured Parallel Programming, Performance Evaluation.

1. Introduction

Space-time Adaptive Processing (STAP) [1-4] was originally proposed to suppress
clutter and jamming interferences received by radar sensors on board moving plat-
forms, e.g. aircrafts. The central point is that the radar optimum performance is
achieved if a vector of adaptive weights is available for each range cell; in the real
world, this stringent requirement can be relaxed considering the stationarity of the
clutter plus directional interference processes which allows the weight vectors to
be maintained constant for a set of nearby range cells (training data).

STAP is especially useful for applications of next-generation radar systems (e.g.
for Homeland Security and I-Transportation), oriented towards the fast and accu-
rate detection of very slow targets like men, small boats and vehicles. In this case
STAP gives a unique and not questionable advantage, being capable of achiev-
ing strong clutter cancellation while allowing the detection of slow targets whose
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Doppler falls near to the mainbeam clutter Doppler.

However, the performance benefit of this technique needs to be traded-off with
its computational cost. In fact, the STAP processor goal is to solve a large set of lin-
ear systems for calculating the adaptive weights. For this reason high-performance
implementations, able to efficiently exploit special-purpose or general-purpose par-
allel computing architectures, are of great importance for meeting the real-time
constraints imposed by the real-life radar applications.

In this context, existing research works [5-10] do not provide a comprehensive
analysis of the STAP parallelization issues. Some of them present throughput-
oriented parallelizations that consist in a straightforward replication of the en-
tire computational chain onto special-purpose processing elements (e.g. FPGAs).
Although FPGA is a successful technology, there are many circumstances where
it is not efficient, mainly for cost, flexibility and expandability reasons. On the
other hand, developing efficient STAP implementations on general-purpose hard-
ware (e.g. multicores) is not free of difficulties, especially for defining highly-scalable
versions able to achieve acceptable results on a broad range of parallel platforms
like the ones available today (i.e. the so-called performance portability).

In this paper we study high-performance implementations of the computational
kernel of the STAP algorithm, i.e. the calculation of the weight vectors. We design
and develop parallel computations by instantiating well-known parallelism schemes
(e.g. task-farm and data-parallel patterns) whose effects on throughput and com-
putation latency can be clearly analyzed. This approach, known as Structured Par-
allel Programming (SPP), besides offering a large-degree of programmability and
compositionality, is an interesting technique for performance portability. Further-
more, structured parallelism schemes can be nested and composed in complex and
potentially hierarchical structures.

This work describes the application of structured parallelizations to accelerate
the STAP computational kernel. We propose several parallelizations based on dif-
ferent parallelism patterns. We evaluate our implementations on three multi-core
architectures: a flagship Intel platform based on the Xeon family, an AMD Opteron
multiprocessor and an IBM architecture composed of four Power7. The goal is to
provide a wide overview of the effectiveness of our implementations on architectures
that cover the entire field of the most important commercially available general-
purpose machines.

The paper provides the following contributions:

e this work is targeted to practitioners in the field of radar systems. The pa-
per shows experimental results which are an interesting description of the peak
performance reachable by STAP implementations on today’s multi-core archi-
tectures. In particular, for the broad set of architectures used, we claim that
this work is of relevance to understand the potential of general-purpose archi-
tectures, and provides the basis for a comparison with future implementations
on emerging hardware technologies;

e the paper has a meaningful content targeting experts in the parallel programming
field. Structured parallelism patterns and their combination are extensively used
in this work, by identifying their effect on the throughput and latency compo-
nents of the overall performance. This represents a notable example of applying
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SPP design principles on a significant real-life application;

e we present an integration between structured parallelism patterns and existing
linear algebra libraries. Although such libraries already provide parallel imple-
mentations of the most costly routines (e.g. for matrix decomposition), to solve
the STAP scenario we need to apply parallelizations at different levels of the
problem. In this paper we discuss the use of task-farm and data-parallel pat-
terns in order to minimize the completion time. Furthermore, for the typical
problem size of STAP, we show that our data-parallel implementation achieves
a better performance compared to parallel matrix decompositions recognized in
the literature as de-facto standard for their performance on multicores.

In the past, the authors of this paper have already studied the problem of pro-
viding efficient implementations of linear algebra kernels on multicores using struc-
tured parallelism patterns [11-13]. This paper represents an extension of our previ-
ous work, and it is focused on the STAP use-case. The semantics of this algorithm
and the presence of an input stream of computational tasks, notably the calcula-
tion of a set of matrix decompositions, fosters the optimization process by relying
on parallelism patterns and their composition, representing a concrete application
of the SPP design methodology.

The organization of this paper is the following. In the next section we give a brief
overview about the STAP technique. In Section 3 we describe the main features
of the existing approaches to the STAP parallelization and SPP. In Section 4 we
discuss the importance of a proper selection of the most suitable sequential algo-
rithms for designing high-performance solutions. In Section 6 and 7 we describe our
parallelization approach, the basic properties that a portable (in the performance
sense) implementation should have, and the results achieved on the three test-bed
multicore architectures. Section 8 gives the conclusion of this paper.

2. Space-time Adaptive Processing

STAP is a well-known technique for suppressing clutter and jamming effects in
airborne environments. The procedure operates in the spatio-temporal domain and
assumes the presence of an array of D antennas, which transmit a coherent burst
of P radar pulses every PRT seconds (Pulse Repetition Time). Echoed signals
are received during a coherent time period of P - PRT seconds, namely Coherent
Processing Interval (CPI). Data samples for each CPI are collected in N range
samples or range cells, where N is the product of PRT and the sampling frequency.
Data received during a CPI can be represented as a tri-dimensional cube, i.e. N
different matrices of M = D x P complex numbers, that can be alternatively
represented as N space-time vectors X € CM of complex elements. A representation
of a CPI data-cube is depicted in Fig. 1.

A radar is aimed at ascertaining whether targets are present in the input sam-
ples from echoed signals. Given a primary range cell (also called cell under test)
where the target is expected to be located, the STAP algorithm establishes the
presence of the target by calculating an optimal weight vector and applying it to
the samples from the range cell of interest. To do that, an interference covariance
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Figure 1.: CPI data-cube: primary range cell and secondary range cells used to
estimate the interference covariance matrix.

matriz Q € CM*M must be estimated using directly the sample data. One method
is to compute and average this for many range cells surrounding but excluding the
primary range cell. The covariance matrix is defined as follows:

. 1<
Q:E[xi'xfl]:;inxf{ (1)
i=1

where the estimation involves o training cells (called secondary range cells) close
to the cell under test. To achieve a good estimate, specific rules must be followed.
In particular, for the matrix being invertible we need at least M training cells.
Moreover, in order to obtain a sufficiently small SINR, we need at least ¢ > 2 M
training cells (according to the Brennan’s rule [14]).

After the covariance matrix estimation, the weight vector w € CM is calculated
by solving the following system of linear equations:

Qw =s (2)

where s € CM is the steering vector identifying the target, formed by the vector
product of the vector representing the Doppler frequency and the vector repre-
senting the antenna angle of elevation and azimuth. The system is solved using a
decomposition of the covariance matrix (e.g. QR or Cholesky decompositions) and
performing the substitutions to calculate the final weights.

The final step is to determine the presence of the target. This is performed by
calculating the inner product between the weight vector and the data from the cell
under test, i.e. z = w! - x. The result is a scalar z which will be compared against
a specific threshold which depends on the used false alarm probability.

Although the same covariance matrix can be used with multiple targets at the
same range, more generally I" different covariance matrices (from few tens to hun-
dreds depending on the radar configuration) must be estimated for each CPI data-
cube, in order to cover the entire range of the radar.
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2.1 STAP computational requirements

There are two fundamental issues arising from the application of STAP to real
scenarios: the computational load to compute the weight vectors, and the number
of training samples required for a correct estimation of the interference covariance
matrices. To solve these issues, several sub-optimal techniques have been proposed
over the last years (called partially-adaptive STAP [15]), that reduce the size of
the problem. In terms of computational cost, the covariance matrices estimation
and the calculation of the weight vectors are the most computationally demanding
phases of the entire algorithm. In particular the calculation of each weight vector
requires to solve a linear system of equations which needs O(M?3) floating-point
operations (where M is the size of the coefficient matrix).

Radar devices are configured to meet precise real-time constraints. Notably la-
tency and throughput represent a classical dichotomy that drives the system design.
General requirements can be summarized as follows:

e CPI cubes arrive from the antenna elements with a frequency that depends on
the radar characteristics. A first design requirement consists in a throughput-
oriented constraint: the system should be able to produce the filtered results at
the same frequency of the inputs;

e an optimal implementation from the throughput standpoint might be not ef-
fective to accurately track moving targets: e.g. albeit the results are produced
at the same frequency of the arrivals, we further need that results completed
at a time instant refer to data received not so far in the past. To this end a
latency-oriented constraint is usually required.

Nowadays, to get close to such real-time requirements, it is possible to exploit
the recent trend in general-purpose computer technology, in which the degree of
parallelism became significant even inside single on-chip platforms. In this paper
we consider the optimal STAP technique (also referred in the literature as fully-
adaptive STAP) and the implementation of its computational kernel on general-
purpose multicore architectures.

3. Related Work

STAP has been introduced in detail in [1, 2, 4], in which the rationale of this
technique has been presented discussing real-world applications. As stated in these
works, the STAP applicability is hampered by the computational burden required
for estimating the covariance matrices and the weight vectors. During the 1990s,
STAP parallelizations on multiprocessor architectures such as the Intel Paragon
and the Cray T3E machines [5-8] were of special interest, especially because STAP
was considered a benchmark for measuring the peak performance level of those ar-
chitectures. Interesting parallelizations for massively parallel multicomputers were
described in [16], providing the implementation details of ad-hoc optimizations on
those special-purpose environments. We claim that, besides approaches based on
FPGAs, GPUs and other special-purpose technologies, a study of portable STAP
parallelizations on general-purpose architectures can be of great importance to un-
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derstand whether such architectures may represent potential candidates to execute
real-life radar applications or not.

Recently, STAP parallelizations have mainly faced throughput-oriented con-
straints, by replicating the computation on different parallel units exploited at
best through efficient scheduling strategies [8, 9]. There are two critical aspects of
such parallelizations: (i) they do not provide sufficient details of how the paral-
lelization is performed inside each computation phase; (ii) it is not clear how these
approaches deal with latency-oriented constraints that, to our knowledge, are much
more difficult to meet and can significantly influence the parallelization design.

As stated in the literature [4], the most compute-intensive phase of STAP is the
calculation of the weight vectors, which requires efficient implementations operat-
ing on streams of linear algebra kernels (matrix multiplication and linear system
resolution). Two interrelated aspects deserve special attention when designing a
highly scalable parallelization: (i) a design approach which helps in defining paral-
lelizations by reasoning about their effect on throughput and latency metrics; (ii)
routines and libraries to perform an efficient execution of linear algebra kernels.
These two aspects will be the subject of the next two parts of this short review.

Structured Parallel Programming. The rationale of SPP [17-19] is the vision
of parallel programs as instances of a limited set of parallelism paradigms with
a well-defined semantics. Basic typical paradigms are task-farm, pipeline, data-
parallel (available in several variants, notably map, reduce and stencils), divide-
and-conquer and so on. SPP implies a high-level reasoning on parallel program-
ming, by separating the computation part with the coordination scheme expressed
in terms of interconnections between parallel entities performing specific function-
alities, e.g. emitter, collector, workers, gather, scatter, multicast.

Over the last years, a lot of frameworks and programming environments have
adopted the SPP approach. Some of them consist in coordination languages used
by the programmer to instantiate parallelism paradigms (more properly called
skeletons) through specific high-level constructs. Examples are SkiE [20], P3L [21]
and SCL [22]. ASSIST [23] extends this vision by providing a more general concept
of skeleton (called ParMod), able to be specialized to capture irregular or more
complex patterns for which pre-defined skeletons have not been provided.

Especially for flexibility reasons, skeleton-based frameworks have been recently
presented as libraries in established languages. Examples of skeleton libraries for
Java are Calcium [24], Muskel [25], JaSkel [26] and Skandium [27]. They provide
a rich set of skeletons (at least task-farm, map and reduce are common in all the
libraries) and the possibility to define complex hierarchical structures in order to
exploit the combination of different paradigms on the desired evaluation metrics
(service time, latency and memory usage). Eden [28], Muesli [29], SKELib [30],
FastFlow [31] and SkeTo [32] are examples of libraries written in C/C++.

By exploiting the decoupling between computation and coordination, SPP rep-
resents a software engineering method to develop parallel programs which entails
important and desirable properties. Firstly, code portability can be highly improved
using skeletons: by focusing on the coordination scheme, different implementations



22:8 The International Journal of Parallel, Emergent and Distributed Systems

Parallel, Emergent and Distributed Systems 7

of run-time support mechanisms for cooperation among threads/processes can be
defined to port the same program on different architectures. Furthermore, high-level
skeletons foster the development of parallel programs portable in the performance
sense: by enabling the static/dynamic selection of the most suitable implementa-
tion variants of each skeleton.

In this paper we adopt the SPP approach in the definition of our STAP parallel
solutions. Nevertheless, instead of using a specific framework, we prefer to be in-
dependent and general by using SPP as a design concept rather than exploiting a
concrete framework. Therefore, we implement the parallelism paradigms necessary
for our STAP parallelization by hand, using the separation of concerns between
computation and coordination and the nesting of skeletons to achieve our goals.

Linear algebra libraries and tools. In the last twenty-five years a lot of expe-
rience has been gained by several research groups in the development of highly
efficient libraries for solving linear algebra problems such as matrix decomposition,
least-square algorithms and eigenvalues calculation. LINPACK [33] is a collection
of Fortran sub-routines to solve basic problems using mainly level-1 Basic Linear
Algebra Sub-Programs (BLAS) (vector-vector operations).

LaPack [34] improves the performance of LINPACK on shared-memory architec-
tures. On these machines, LINPACK operations use inefficiently the memory hierar-
chy, spending a large fraction of the execution to move data between different levels
of the hierarchy. The main goal of LAPACK is to run efficiently on shared-memory
architectures featuring multi-layered memory hierarchies. To do that, LAPACK rou-
tines exploit cache-aware algorithms designed to reduce the amount of memory
traffic by maximizing data reuse in higher level caches. The rationale is to maxi-
mize the usage of level-3 BLAS calls (matrix-matrix operations) that can be highly
optimized in order to exploit to the full the memory hierarchies. LAPACK also offers
parallel implementations of the most critical routines and functions. The general
idea consists in a fork-and-join pattern, in which the execution flow alternates se-
quential phases involving small regions of the matrix and parallel ones operating
on a large set of data. Nowadays, many LAPACK implementations optimized for
different architectures exist, e.g. the MKL library [35] for Intel and GotoBLAS [36]
for x86 and IBM Power architectures. ATLAS [37] is an open-source portable im-
plementation of BLAS and some LaPack routines on shared-memory platforms. Its
main feature is the possibility to automatically generate optimized code through
an iterative compilation. Portability is at the detriment of performance, as ATLAS
is slower than specialized implementations (MKL and GotoBLAS are usually two or
more times faster).

On modern multi-/many-core architectures the fork-and-join parallelism pattern
reveals unacceptable performance by limiting the maximum exploitable parallelism
degree. To overcome these limitations, the PLASMA library [38] introduces a new set
of algorithms (named tile algorithms [39-41]) in which parallelism is not bounded
inside the BLAS kernel, but it is described at a higher level modeling the computa-
tion as a directed graph of tasks. Similar concepts have been applied to heteroge-
neous systems (CPU-GPU) using the MAGMA library [42].
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On distributed-memory architectures, ScaLAPACK [43] is the reference library.
The fundamental building blocks of ScaLAPACK are the distributed implementa-
tion of level-1 and level-2 BLAS and a set of Basic Linear Algebra Communication
Subprograms (BLACS) for communicating tasks among distributed nodes.

4. STAP Computational Kernel

The estimation of covariance matrices and the calculation of weight vectors are the
most compute-intensive parts of the STAP. Other phases, though potential and
interesting candidates for a parallelization (e.g. Doppler Filtering, Beamforming
and Pulse Compression), are less computationally demanding and can be efficiently
implemented according to optimized sequential algorithms and libraries [5-10].

As we have seen in Section 2, the calculation of each covariance matrix involves
a certain number of independent outer products and the sum of the partial results.
The simple structure of this computation is amenable to being implemented di-
rectly at the hardware level, by exploiting dedicated FPGAs, SIMD co-processors
and GPUs [44, 45]. On the other hand, the calculation of weight vectors is more
interesting, leading to problems that are difficult to parallelize efficiently. For this
reason we focus on this part of the STAP algorithm.

4.1 Weight vectors calculation

The calculation of a weight vector consists in solving a system of linear equations.
A classic approach is based on performing a decomposition of the covariance matrix
and then solving systems typically with sparse matrices. In principle the choice of a
decomposition algorithm depends on the properties retained by the matrices. Most
of the existing research work [5, 6, 9, 10] discusses parallel implementations of the
QR decomposition, due to the generality of this method that requires no particular
constraint on the input matrix. Nevertheless, the QR decomposition is not always
the best candidate, and other techniques can be more efficient.

Along this line the Cholesky decomposition is a relevant example. It requires
a smaller number of operations than the QR method, i.e. its time complexity is
O(M?/3). However, it is limited to Hermitian and positive-definite input matrices.
In our case we can assume that these properties are satisfied since:

e each covariance matrix is certainly Hermitian by construction;
o if the set of secondary range cells is sufficiently large (of the same order of
magnitude as M), the covariance matrices are also positive-definite (see [46]).

In the following section we investigate different variants of the Cholesky algorithm
and their impact on shared-memory parallel architectures.

4.2 Improving cache utilization and parallelism

Working with parallel programs, the number of operations to be executed is not
always the most meaningful metric. Given the memory hierarchy of any computer
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Algorithm 1 Scalar algorithm. Algorithm 2 Tile algorithm.

1: for k:=1 to M do 1: for k:=1 to N, do

20 A= Ak 2: Ak, k) := Chol (A(k, k))

3: forji=k+1to Mdo 3. forj:=k-+1to N, do

h Ajei=Ajx Ark 4 A(G k) = AG, k) * Ak, k)T

5:  end for 5.  end for

6: forj:=k+1to M do 6: for j:=(k+1)to N, do

7 for i := j to M do 7 for i := j to N do

8: Aiji=Aij— Aik* Ajk 8: A(i,§) = A(i, ) — A4, k) * A(j, k)T
9: end for 9: end for

10: end for 10:  end for

11: end for 11: end for

Figure 2.: Traditional (scalar) and Tile Cholesky decomposition algorithms.

architecture, it is of paramount importance to write algorithms that explicitly
consider the presence of fast but small memories and their efficient exploitation.
In the field of numerical algorithms this concept is well-known [47-50].

A 7 de-facto” standard for solving dense linear algebra problems is represented by
the LaPack library [34]. The main goal of this library is to run efficiently on modern
shared-memory architectures featuring multi-layered memory hierarchies. To do
that, LaPack routines exploit block algorithms to reduce the amount of memory
traffic by maximizing data reuse in higher level caches. The rationale is to recast
the computations in a way that the most part is performed using matrix-matrix
operations that can be highly optimized to exploit fully the cache hierarchy.

The resulting computational scheme can be parallelized by applying a fork-and-
join pattern, in which parallelism is expressed inside matrix-matrix operations.
This approach produces poor results on modern multicores [39]. To overcome this
fact, the PLASMA library [38] introduces a new set of algorithms (named tile algo-
rithms [39]) in which parallelism is expressed at a higher level, by re-organizing
block algorithms using finer-granularity tasks operating on square tiles (blocks) of
the matrix. As demonstrated in the literature, this approach makes it possible to
achieve powerful trade-offs between cache locality and parallelism.

For our STAP parallelization purpose, we propose a comparison between the
traditional Cholesky algorithm and the tiled variant. To have a better idea of the
advantages of this class of algorithms, it is important to compare distinct versions
in terms of number of operations and memory transfers. For the latter, we assume
blocks (hereinafter we use block as a synonym of tile) of By x By scalar elements.
Given N, = M/ Bs, the input matrix is composed of N, x N, blocks. The traditional
and the tile versions of the right-looking Cholesky decomposition are described in
Fig. 2. In the pseudo-code, A;; indicates the element at row ¢ and column j,
whereas we denote with A(7,j) the block with coordinates ¢,j. The structure of
the algorithms is the same, except that in the tile version the operations involve
sub-matrices instead of single complex values.

The algorithms work with the lower triangular part of the matrix A, and create
the resulting L (i.e. L- L™ = A) in place of A. At each iteration of the outermost
loop, a single column of L is calculated. We start with the analysis of how many
times each line of code is executed. We restrict our analysis to the execution of the
innermost loop (lines 7-8), which determines the time complexity of the algorithms.
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Expression (3) shows the number of times line 8 is executed, where n corresponds
to the number of rows M for the traditional algorithm and the number of block
rows IV for the tile variant:

DD D IEED D SEENIED DIERIEE s

k=1 j=k+1i=j+1 k=1 j=k-+1 k=1

" [n? k2 P n? n
S Nl RASY VDA N G L
;[2 ”+2] 6 112 ®)

In terms of the number of complex operations, the traditional version executes
a multiplication and a sum at row 8. Things get more complicated with the tile
version. At the same row we have a multiplication and a sum between sub-matrices,
that we can estimate in the order of B2 and B? operations. The total number of
operations can be approximated as follows:

M3 M? M M3
Nﬁﬁad:2<6‘4+u>w<3) (4)

Nblock‘ (B3+B ) <]VI? _ Nb2 ]Vb> ~

M3 M3
6 4 12 _O<6 6BS> 5)

For the tile algorithm (5) we have substituted NV with its definition M/B;. These
results allow us to appreciate that the size of the input matrix and the block size
play a decisive role. With M relatively large compared to By, the tile algorithm
performs in a similar way w.r.t the traditional version, having almost the same
number of complex operations. On the other hand, with sufficiently large block
sizes, the tile algorithm has a better multiplicative factor.

The second analysis consists in studying the two algorithms in terms of the
memory hierarchy utilization: i.e. measuring the number of cache lines transferred
from memory to caches during the execution. To this end we consider an abstract
architecture featuring a single fully-associative cache with a line size of C bytes. Al-
though this abstract view is far from the complexity of the current shared-memory
architectures (featuring several levels of set-associative caches), this analysis is use-
ful to understand the rationale behind the tile algorithm.

In the traditional algorithm, at each execution of line 8 we need to read three
complex numbers (i.e. A; ;, A; 1 and A; ;) and write the first one. We consider each
complex number represented by a pair of single-precision floating-point values, for
the real and the imaginary parts, for a total of 8 bytes. In terms of cache lines
this means that at the worst case we need to access three cache lines. For the tile
version the behavior is exactly the same, except that now elements are sub-matrices
of Bs x By values. The access to a block not in cache requires an approximate
number of transferred cache lines of B2/C. In order to have a better estimation
we need to account for temporal locality. At line 8 of the scalar algorithm, all the
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elements of the k-th column and of the k-th row of the original matrix are used
for the iterations of the loop at line 7. With small enough matrices, we can assume
that the entire column k and row k can stay completely in cache. Although this
is a reasonable assumption for the traditional algorithm, for the tile version this
could not be true anymore, as we are working with columns/rows of blocks. For
this reason, for the traditional algorithm we suppose that each access to A;j and
A; i, never produces additional cache line transfers (except for the first access). For
the tile algorithm we make a pessimistic assumption in which no temporal locality
is exploited. The number of transferred cache lines can be approximated as follows:

8 (M3 M? M M3
Nirad _ 2 (2 7 4 )\~ 6
3.8B2 [N} NZ N, M3
Nblock _ s b _ % b) ~
miss C < 6 4 + 12 0 C B, (7)

As we can see, the tile algorithm reduces the theoretical number of cache misses
by a factor Bs which is the square root of the block size. This reduction is negligible
if we have large matrices and relatively small blocks. However, considering the size
of existing caches and the fact that we only need a working set of few blocks, we can
use relatively large block sizes that significantly reduce the amount of transferred
data.

In conclusion, a proper selection of the block size is extremely important to have
a decisive reduction in terms of number of operations and cache misses. However,
finding the right block size for the target architecture is not obvious, but it de-
pends on the structure of the cache hierarchy and the specific properties of the tile
algorithm. Although attempts to define analytical models have been proposed over
the last years [51], a common approach is to use heuristics or iterative compila-
tion techniques [52], in which implementations using a limited set of various block
sizes are compared in order to find the best configuration. In this paper, we will
discuss the impact of different block sizes on the performance results achieved by
our parallel implementations.

5. Test-bed Multi-core Architectures

In this section we describe three multi-core architectures that we have used to
evaluate our parallelizations of the STAP computational kernel. For each architec-
ture we focus on the most relevant hardware features, such as the organization in
multiple chips and the interconnection networks, the number of cores and thread
contexts, and the structure of the memory hierarchies.

Quad-CPUs Intel Xeon multi-processor. The first architecture is an Intel plat-
form (Fig. 3) composed of four Xeon E7-4820 CPUs. Each CPU is a Westmere-Ex
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architecture consisting in a multicore featuring 8 cores operating at 2 GHz clock
rate. Each core supports two thread contexts (Hyper-Threading), and has access
to a private L1 and L2 cache of size 32 KB (data) and 256 KB. The eight cores
have access to a shared on-chip L3 cache of 18 MB. The four CPUs (for a total of
32 cores, 64 thread contexts) are interconnected in a complete fashion using the
QuickPath network. Each CPU is equipped with a single memory controller using
4 different DDR3 channels.

Xeon E7-4820

intol jotol

Xeon Xeon
QuickPath

o SRR O------ O------ O--,

i L | Memory f—— memory

l‘ Shared L3 Cache '0—' Controller = channels

~-Q------ O------ Q------ o--'

( )

a B I s e
Xeon Xeon z

Figure 3.: Abstract representation of the Quad-CPUs Intel multi-processor.

Quad-CPUs IBM Power7 multi-processor. The IBM platform is a 8236-E8C
Power server architecture composed of four Power7 CPUs as outlined in Fig. 4. Each
Power7 is a multi-core architecture composed of eight out-of-order cores working
at 3.3 GHz clock rate and equipped with a dedicated L1 and L2 cache of 32 KB
(data) and 256 KB respectively. Each core features 4 thread contexts. The eight
cores have access to a shared L3 cache of 32 MB. The four CPUs are interconnected
by a complete crossbar network (for a total of 32 cores corresponding to 128 thread
contexts). Each Power7 is equipped with two 4-channel DDR3 memory controllers
for a total of 8 channels per CPU.

Power7
PR
—— —— i
IBM IBM " —
emory  —n
Power7 Power7 Controller ——
e —
Y 0
E 1 memory
i PowerBus { channels
—
Memory L
~ ~ Controller f——
IBM IBM {
Power7 Power7 i

1BM 8236-E8C Server

Figure 4.: Abstract representation of the Quad-CPUs Power7 multi-processor.

Dual-CPUs AMD Opteron multi-processor. The third execution platform is an
AMD multi-processor architecture composed of two ” Magny-Cours” Opteron 6176
CPUs. Each CPU is composed of two multi-core chips featuring six single-threaded
cores bolted together (on two separated dies). Each core operates at 2.2 GHz clock
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rate with a dedicated L1 and L2 cache of size 128 KB (data) and 512 KB per core
and a L3 cache of 6 MB shared among the six cores of a chip. Interconnections be-
tween chips are implemented through several HyperTransport point-to-point links
forming a crossbar network, as shown in Fig. 5. Each chip is equipped with one
integrated memory controller enabling access to two DDR3 channels for a total of
four memory channels per CPU.

[Tl
IS o
; cHip cHi

Shared L3 Cache l E [ —
l Memory Controller l l HyperTransport l E X
' C

CHIP CHIP
Hyper

Transport

memory

channels

Figure 5.: Abstract representation of the Dual-CPUs AMD multi-processor.

6. Parallelization on Multi-core Architectures

STAP implementations require to operate within precise real-time constraints. In
the ideal case, in order to process a number of cubes per time unit equal to the
arrival rate A, we need to replicate p* times the whole weight vectors calculation
phase, where p* = Tyeignt - A and Tyeigns denotes the time to calculate and apply
the weights for each cell under test. Since the Cholesky decomposition dominates
this phase, T'yeight can be approximated as Tyeight == '+ T'qct, Where T'yqq indicates
the time to apply a single decomposition.

Nevertheless, an effective parallelization usually needs to meet latency-oriented
constraints in addition to reach proper levels of throughput. In real radar applica-
tions a computation latency of I' - T4 is not feasible. Therefore, more complex
parallelizations need to be investigated. In the following sections we will describe
different parallelism paradigms and how they can be exploited and composed in
order to address this aspect of the STAP performance.

6.1 Task-farm parallelization

The computation latency to process a single CPI cube can be reduced by exploiting
the fact that the calculation of each weight vector is independent of the others.
The structured parallelism scheme that enables this behavior is the so-called task-
farm pattern. The conceptual scheme (Fig. 6) of a task-farm is composed of: (i) a
set of workers responsible for executing the Cholesky decomposition on different
input matrices; (ii) an emitter responsible for receiving the covariance matrices
and scheduling them to the workers according to a load-balancing strategy; (iii) a
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collector that collects the weight vectors and transmits them to the other STAP
phases.

e 3 -
Linear
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Proﬁ:es_?lﬂg 9 of weights output
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—
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Figure 6.: STAP computational phases and task-farm parallelization.

The task-farm is a parallelism scheme able to reduce the completion time of a
computation operating on a sequence of input tasks. If there do not exist architec-
tural reasons that limit the scalability (such as the available memory bandwidth),
this parallelism scheme is able to calculate, on average, a new weight vector every
Tfact/p, where p is the number of workers. If the set of covariance matrices is much
greater than the parallelism degree (i.e. I' >> p), an approximation of Tieignt is
given by the following expression (the superscript denotes the parallelism degree):

T(P)

Ttact
weight ~T- - (8)

p
Despite its simplicity, this parallelization requires careful implementation to pro-

vide a near-optimal scalability on shared-memory architectures. Important aspects
are:

e the sequential algorithm executed by the workers. As we have seen in Section 4,
several linear-algebra problems can be solved according to algorithms with dif-
ferent computational complexity and cache performance. Acceptable levels of
performance with high parallelism degrees are possible if the memory bandwidth
is exploited at best. To do that, a proper choice of the sequential algorithm is a
first decisive aspect;

e the data structure layout and their allocation in memory. It is important to
organize the data structures such that there is no undesired effect on the mem-
ory hierarchy (e.g. avoiding false sharing), and to efficiently exploit the memory
bandwidth with an equal distribution of accesses to the available memory con-
trollers (our test-bed architectures provide more than one interface - usually one
or two per chip - to the memory).

In this section we evaluate our implementation on different multicores. We instan-
tiate the task-farm scheme by using low-level mechanisms and libraries available in
POSIX-compliant systems. The emitter, collector and the workers are implemented
by a set of pthreads whose affinity is set on a corresponding number of dedicated
cores using the pthread_setaffinity_np function.



January 24, 2017 22:8 The International Journal of Parallel, Emergent and Distributed Systems
” Articolo STAP”

Parallel, Emergent and Distributed Systems 15

Cooperation between threads has been implemented in a portable way by ex-
ploiting single/multiple-producer single-consumer queues protected by a spin-lock
mechanism. Thread communication is performed by reference, i.e. through the ex-
change of memory pointers to shared data structures (e.g. matrices and vectors).
This method has been already applied to stream-based parallel computations on
multicores [31, 53, 54], with efficient performance especially for fine-grain paral-
lel programs. Our communication mechanisms are widely portable, provided that
proper implementations of locking mechanisms are implemented on the single ar-
chitectures (e.g. using standard POSIX spin-locks).

Another aspect of the task-farm portability is the sequential code performed by
workers. We use high-level BLAS and LaPack routines to execute the single phases
of the Cholesky decomposition. Algorithm 3 shows the pseudo-code performed on
each received matrix by a generic task-farm worker. The code can be compiled by
linking any implementation of the standard BLAS and LaPack APIs.

Algorithm 3 Tile Cholesky algorithm.

for k < 1 to Ny do
//A(k,k) = Scalar_Fact(A(k,k))
A(k, k) := cpotf2(A(k, k))
for j <« k+1 to N, do
//AG K = AGG, k) /MG, k)
| A(J, k) := cblas_ctrsm(A(j, k), A(k, k))
for j < k+1 to Ny do
//A(3,3) = AGGL3)-AG,R*AG, K H
A(j, 7) = cblas_cherk(A(j, j), A(j, k))
fori<+ j+1to Ny do
L //A(1,3) = AL, §)-AG,K)*A(, k)T
A(i,j) = cblas_cgemm(A(i, /), A(i, k), A(j,k))

The code can be statically /dynamically linked with the most performant library
available for the target architecture, without modifying our source code, thus en-
abling a high code portability. This allows us to analyze the task-farm performance
using different versions of the libraries on the same architecture, or to compare the
performance reached on different architectures as well.

A general overview of the task-farm in terms of threads and their interconnections
is shown in Fig. 7. The emitter schedules each matrix according to an on-demand
strategy, providing the initial memory address of the data structure of the current
task to an available worker. The availability is explicitly notified through special
messages using a multi-producer single-consumer availability queue.

The next sections are devoted to describing the performance of the task-farm on
our test-bed architectures. In the experiments an important parameter is the size of
the covariance matrices. To be independent from the specific STAP application, in
this paper we focus on four possible sizes (128 x 128, 256 x 256, 512 x 512 and 1024 x
1024 single precision complex elements) in order to evaluate our parallelization in
different conditions of computational grain and memory utilization.
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Figure 7.: Details of the task-farm implementation: threads and queues.

6.1.1 Intel experiments

On the Intel architecture, our task-farm code has been linked with the MKL library
(version 11.0). The library uses the SSE2 SIMD instructions and, on more recent
machines, the AVX instructions enabling up to three 256 bit operands.

As stated in [39], the matrix should be arranged in a block data layout to achieve
the best cache utilization. At the beginning of the execution the input matrix is
copied from the original layout (e.g. column-wise) to the block data layout, and
then copied back when the decomposition has been completed. These phases (which
are part of the decomposition) are not shown in the pseudo-code for brevity.

Tab. 1 summarizes the results of the mean decomposition time T't,cs, averaging
over a large number of executions. For the traditional algorithm we use a block
size equal to the entire matrix (i.e. no tiling is actually used).

Block / Matrix 128 x 128 256 x 256 512 x 512 1024 x 1024

8x8 0.791 5.977 51.56 418.23

16 x 16 0.530 3.314 23.51 180.45
32 x 32 0.461 2.673 17.80 128.02
64 x 64 0.435 2.494 16.16 112.21
128 x 128 0.411 2.46 15.78 106.55
256 x 256 - 2.698 16.37 107.64
512 x 512 - - 17.99 112.94
1024 x 1024 - - - 129.98

Table 1.: Decomposition time (milliseconds) on the Intel multi-processor.

We can observe that there exists an optimal block size depending on the library
implementation and the characteristics of the cache hierarchy. Blocks of 128 x 128
elements give smaller decomposition times for any matrix size. The decomposition
time T4+ has a non-monotonic behavior as a function of the block size: i.e. by
increasing the block size we achieve a reduction of Ty, up to a certain point. After
that, larger block sizes are completely useless and lead to higher decomposition
times.

When applying the tile algorithm it is important to ensure that the working set
fits into the lower levels of the memory hierarchy (L1 and L2 caches). 128 x 128
blocks are the largest size such that the working set is mostly contained in the
second level cache (of 256 KB). With larger blocks the increase in the working set
becomes dominant, and the resulting number of L2 cache misses leads to higher cal-
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culation times. With small blocks the calculation time is significantly higher than
the traditional algorithm. The main reason for this is mostly due to a greater num-
ber of calls to the BLAS and LaPack routines, which induces a significant overhead
w.r.t using larger block sizes.

We evaluate the parallelization using two measures. The first one is the through-
put T, i.e. the average number of processed tasks per second. The second metric
is the scalability, a relative metric of how a parallel version accelerates compared
to the version with a single worker:

7 (P)
() — O (9)

i.e, it is measured as the ratio between the throughput with parallelism degree p
and using only one worker.

In order to study the maximum sustained level of throughput, the arrival rate of
covariance matrices is infinitely fast (high enough) in our experiments.

Fig. 8 shows the scalability results. We compare the task-farm scalability using
the traditional version of the Cholesky decomposition and the tile version with the
best block size measured in Tab. 1. As we can observe, the tile algorithm performs
better when the set of currently calculated matrices by the workers do not entirely
fit in the cache hierarchy. Given the large L3 caches of the Intel multi-processor
(18 MB per CPU, i.e. per 8 cores) this happens with 1024 x 1024 matrices and using
a sufficiently high parallelism degree. In this case it is not possible to fully store
all the matrices on which workers are concurrently operating on the L3 caches,
and the tile algorithm achieves better scalability since it reduces the working set
of the program leading to smaller traffic with the main memory. Conversely, when
the matrices entirely fit the last level cache, the advantage of the tile algorithm in
terms of memory traffic becomes negligible, since the number of L3 cache misses
is nearly the same.

Nevertheless, the scalability is unsatisfactory with large parallelism degrees and
far from the ideal one. To understand the reason, we can make a simple analysis of
the exploited memory bandwidth of our application. The Cholesky decomposition
features a time complexity which is one order of magnitude greater than the space
complexity. This means that we can obtain a better scalability with bigger ma-
trices (up to 512 x 512) because the number of floating-point operations increases
faster than the memory requirement. Suppose that the task-farm is executed with
the maximum parallelism degree. As stated before, the L3 caches are able to store
almost the entire set of currently calculated matrices (except in the 1024 x 1024
case). This means that after the initial load of the matrix cache lines (compulsory
cache misses), the number of main memory accesses is negligible. For each decom-
position we need to load the lower triangular part of the matrix and write the
decomposed matrix back to the memory. Therefore, we need to transfer (M?8)/2
bytes from the memory and the same amount of data back to the memory.

Tab. 2 shows the throughput and the required memory bandwidth to sustain it
for three matrix sizes. We can clearly see that the memory bandwidth required by
the 128 x 128 case to scale 13 is far higher than that required by the 512 x 512 case
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Scalability with 128x128 matrices. Scalability with 256x256 matrices.
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Figure 8.: Scalability of task-farm on the Intel platform.

to scale close to ideal. This demonstrates our expectations: the required memory
bandwidth decreases by increasing the matrix size. Moreover, the tile algorithm
requires a slightly higher bandwidth, since due to a better utilization of the L1
and L2 caches the decomposition time becomes smaller and requests to the main
memory are issued more frequently. It is worth noting that with 128 x 128 and
256 x 256 matrices the required bandwidth is close to 4 GB/s. For this reason
we can suppose that, for the access pattern of our application, this represents the
physical limit of the memory sub-system.

. Throughput - Required
Matrix Block (matrix per sec.) Scalability Mem. Bandwidth.

128 x 128 128 x 128 31,515 12.98 3.85 GB/s

128 x 128 8,701 21.39 4.25 GB/s

256 X 256 956« 256 8.610 23.23 42 GB/s

128 x 128 1,729 27.30 3.37 GB/s

512X512 515« 512 1,500 27.02 2.93 GB/s

Table 2.: Task-farm memory bandwidth requirement using 32 workers.

The table does not show the result of using 1024 x 1024 matrices. In this case,
due to the matrix size (8 MB per matrix, for a total amount of 256 MB using 32
workers) the set of currently calculated matrices can not be completely maintained
in the L3 caches, resulting in a significantly higher number of transfers to the main
memory. In this situation the tile version gives a clear advantage by reducing the
working set and thus the number of cache misses.
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Since the memory bandwidth is the bottleneck to provide scalable implementa-
tions, we exploit a clever allocation of the covariance matrices in main memory.
Previous results are based on a simple allocation policy: the emitter thread receives
matrices from the other STAP phases through high-speed interconnection networks
(e.g. Infiniband or Myrinet). Each matrix is copied into a local buffer of the emitter
thread, that is allocated on the memory controller nearest to the CPU on which
the emitter is executed.

A better utilization of the aggregate bandwidth of the memory controllers can
be achieved by allocating the virtual pages in a round-robin fashion among all
the nodes on the system, i.e. with an equal distribution of accesses among the
four memory controllers of the Intel multi-processor. We call this strategy In-
terleaved Allocation Policy, and it can be easily implemented using the standard
NUMA Library [55, 56]. Fig. 9 shows the importance of this solution that provides
near-optimal results for any matrix size.

Scalability with 128x128 matrices (Interleaved).
T T 32 T T

Scalability with 256x256 matrices (Interleaved).
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Figure 9.: Scalability of task-farm on the Intel platform using the Interleaved Al-
location Policy.

In terms of throughput, the importance of the tile algorithm is much more evident
(see Fig. 10). Using the tile algorithm we start from a better sequential version (a
smaller Ty,.¢) and the interleaved allocation makes it possible to reach near-optimal
scalability levels. Therefore, the task-farm performing the tile algorithm outper-
forms the task-farm using the traditional algorithm, achieving a higher number of
completed matrices per second.

For the sake of completeness, Tab. 3 depicts the behavior of the task-farm us-
ing different block sizes. The table shows the throughput and the corresponding



January 24, 2017 22:8 The International Journal of Parallel, Emergent and Distributed Systems
” Articolo STAP”

20 Taylor € Francis and I.T. Consultant

Throughput with 128x128 matrices. Throughput with 256x256 matrices.
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Figure 10.: Throughput of task-farm on the Intel platform.

scalability using 32 workers (the scalability is indicated in parentheses). Using
more threads than the number of cores (exploiting multiple thread contexts) is
completely useless in this experiment, since the tile Cholesky is a floating-point
intensive workload that does not benefit from HyperThreading.

Using the interleaved allocation policy the scalability is acceptable for any matrix
and block size. However, the block size of 128 x 128 is the best one, providing the
best throughput.

In conclusion, a proper selection of the best block size and a careful allocation
of matrices are decisive aspects in designing scalable task-farm parallelizations of
the weight vectors calculation phase.

Block / Matrix 128 x 128 256 x 256 512 x 512 1024 x 1024
8 x 8 36,941 (29.83) 4,978 (29.94) 565 (29.78) 44 (18.95)
16 x 16 54,794 (29.12) 8,978 (30.03) 1,270 (29,97) 136 (24.21)
32 x 32 62,189 (28.7) 11,025 (29.71) 1,653 (29.57) 206 (26.27)
64 x 64 64,683 (27.99) 11,781 (29.76) 1,759 (28.79) 239 (26.94)
128 x 128 70,472 (28.58) 12,049 (30.05) 1,782 (28.26) 244 (26.01)
256 x 256 - 11,072 (29.59) 1,700 (28.03) 242 (26.38)
512 x 512 - - 1,535 (27.99) 233 (26.60)
1024 x 1024 - - - 140 (18.37)

Table 3.: Maximum throughput and scalability (in parentheses) on the Intel multi-
processor.
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6.1.2 IBM experiments

On the IBM architecture the task-farm code has been compiled by statically
linking the GotoBLAS2 library, a multi-platform BLAS/LaPack implementation pro-
viding comparable results with MKL on Intel. The sequential decomposition times
of the tiled Cholesky are shown in Tab. 4.

Block / Matrix 128 x 128 256 x 256 512 x 512 1024 x 1024

8 x 8 0.665 4.557 34.05 358.16

16 x 16 0.407 2.499 17.32 148.84
32 x 32 0.326 1.909 12.57 97.81
64 x 64 0.315 1.724 10.91 79.45
128 x 128 0.366 1.777 10.62 73.02
256 x 256 - 2.552 12.27 73.85
512 x 512 - - 18.70 87.67
1024 x 1024 - - - 159.33

Table 4.: Decomposition time (milliseconds) on the IBM multi-processor.

On the IBM multi-processor the decomposition time is from 15% to 50% smaller
than using the MKL library. This is due to a more powerful SIMD sub-system com-
pared to the Intel Nehalem. The MKL implementation exploits SSE3 instructions
enabling 128 bit operands (up to 4 single precision floating-point numbers). On the
Power7, the VSX extension features the same operand length, but the architecture
is equipped with four distinct floating-point units able to perform up to two vec-
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Figure 11.: Scalability of the task-farm on the IBM Power7 multi-processor.
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tor operations in parallel. This, coupled with a higher clock frequency, allows the
Power7 to outperform the other considered architectures.

From a qualitative viewpoint, the results are similar to the Intel multi-processor.
For every matrix size there exists an optimal block size. For 128 x 128 and 256 x 256
matrices the best block size is using blocks of 64 x 64 elements. For larger matrices
the best size is the same as the Intel (i.e. 128 x 128 blocks). This difference is
probably due to the different implementation of the BLAS/LaPack routines.

Fig. 11 shows the scalability on the IBM multi-processor. Also on this architec-
ture we have no performance improvement by using more thread contexts per core,
so we consider 32 workers as the maximum parallelism degree.

With 128 x 128, 256 x 256 and 512 x 512 matrices the scalability is near to the
ideal one. Compared to the Intel multi-processor, now satisfactory results can be
achieved without using the interleaved allocation. This is due to a more efficient
memory sub-system, which uses two faster memory controllers per chip; in this
way the memory bandwidth of a single chip is enough to guarantee a near-optimal
scalability.

With 1024 x 1024 matrices the results are extremely interesting (see Fig. 11d).
In this case the scalability is, again, limited by the memory bandwidth. The tradi-
tional algorithm is not able to provide good scalability neither with the interleaved
allocation. On the other hand, the tile algorithm is able to achieve near-optimal
results also with the standard allocation policy.
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Figure 12.: Task-farm throughput on the IBM Power7 multi-processor.

Fig. 12 and Tab. 5 describe the throughput achieved by the task-farm. The block
size achieving the smaller decomposition time also provides the best performance
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Block / Matrix 128 x 128 256 x 256 512 x 512 1024 x 1024
8x8 47,505 (31.59) 7,018 (31.98) 934 (31.81) 29 (10.58)
16 x 16 76,982 (31.37) 12,759 (31.88) 1,802 (31.23) 83 (12.48)

32 x 32 95,057 (31.02) 16,597 (31.68) 2,514 (31.60) 170 (16.72)

64 x 64 96,246 (30.32) 17,834 (30.75) 2,884 (31.46) 321 (25.56)

128 x 128 82,644 (30.24) 17,120 (30.42) 2,942 (31.24) 419 (30.20)
256 x 256 - 12217 (31.18) 2,444 (29.99) 413 (30.98)
512 x 512 - - 1,568 (29.33) 344 (30.19)
1024 x 1024 - - - 59 (9.42)

Table 5.: Maximum throughput and scalability on the IBM multi-processor.

with the maximum parallelism degree.
6.1.3 AMD experiments

On the AMD architecture the task-farm code can be compiled using both the MKL
and GotoBLAS2 library. From our experiments, we achieve slightly better results
using the GotoBLAS2 library, since MKL is optimized only for Intel architectures.
Tab. 6 shows the T, using different block and matrix sizes.

As for the IBM multi-processor, the GotoBLAS2 implementation of the tile
Cholesky provides the best results with blocks of 64 x 64 elements with 128 x 128
and 256 x 256 matrices. For larger matrices, the smallest decomposition times are
achieved using blocks of 128 x 128 elements.

Block / Matrix 128 x 128 256 x 256 512 x 512 1024 x 1024

8x8 1.022 7.246 55.44 476.99

16 x 16 0.550 3.580 26.85 217.14
32 x 32 0.422 2.617 18.61 140.88
64 x 64 0.377 2.308 15.66 114.70
128 x 128 0.437 2.422 15.18 105.91
256 x 256 - 2.823 17.62 110.14
512 x 512 - - 28.35 133.84
1024 x 1024 - - - 228.57

Table 6.: Decomposition time (milliseconds) on the AMD multi-processor.

Fig. 13 shows the scalability and the throughput with different block and matrix
sizes. Similar to the Intel architecture, all the CPUs of the AMD multi-processor
are equipped with one memory controller; consequently, the Interleaved Allocation
Policy is extremely important. In fact, given the relatively small size of L3 cache,
a tile version is required also for matrices of 512 x 512 to obtain good scalability
results. Tab. 7 summarizes the best throughput and scalability results.

We conclude this section by comparing the results achieved on the three test-bed
architectures. Tab. 8 and Tab. 9 summarize the best Ty, and the best throughput.
As we can observe, the best results are always achieved using the IBM architecture
which outperforms the other multi-core platforms.

On the IBM multi-processor our task-farm implementation scales perfectly with-
out using the Interleaved Allocation Policy (the two integrated controllers of a CPU
provide sufficient bandwidth for our application). Besides memory bandwidth, the
level of throughput achieved on the IBM multi-processor is due to a more powerful
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Figure 13.: Task-Farm results on the AMD multi-processor using the Interleaved
Allocation Policy.
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cache hierarchy (featuring larger L3 caches w.r.t the Intel and the AMD architec-
tures) and a higher clock frequency.

Block / Matrix 128 x 128 256 x 256 512 x 512 1024 x 1024
8 x 8 22,517 (23.31) 3,244 (23.49) 409 (22.93) 38 (18.37)
16 x 16 39,432 (21.99) 6,312 (22.76) 824 (22.34) 87 (18.82)
32 x 32 49,285 (21.19) 8,435 (22.36) 1,191 (22.28) 139 (19.68)
64 x 64 52,246 (20.63) 9,496 (22.13) | 1,403 (22.08) 181 (20.74)
128 x 128 47,103 (21.39) 8,998 (22.09) 1,445 (22.13) 203 (21.57)
256 x 256 - 7,836 (22.49) 1,229 (21.79) 199 (21.85)
512 x 512 - - 602 (17.15) 149 (19.88)
1024 x 1024 - - - 22 (5.05)

Table 7.: Maximum throughput and scalability on the AMD multi-processor.

128 x 128 256 x 256 512 x 512 1024 x 1024
Intel 0.411 2.458 15.78 106.55
AMD 0.377 2.308 15.18 105.91
IBM 0.315 1.724 10.62 73.02

Table 8.: Best decomposition times (milliseconds) on the three multi-processors.

128 x 128 256 x 256 512 x 512 1024 x 1024
Intel 70,472 12,049 1,782 243

AMD 52,246 9,496 1,445 203

IBM 96,246 17,834 2,042 413

Table 9.: Best throughput on the three multi-processors (decompositions per sec-
onds).

6.1.4 Limitations of the task-farm approach

As previously demonstrated, with a careful implementation the task-farm
achieves good performance portability on a broad range of multi-core architec-
tures. However, the task-farm behavior can become inefficient when the number of
tasks to compute is not large enough and in general comparable with the available
number of cores (which is in line with the current tendency of multi-core CPUs).
In this regard, two aspects deserve special consideration:

e the number of covariance matrices of a CPI cube limits the maximum theoretical
parallelism degree exploitable by the task-farm;

e the completion time Tyeigns achieved by the task-farm can be greatly influenced
by workers that receive additional tasks (e.g. if the number of matrices is not
perfectly divisible by the number of workers).

Fig. 14 shows the ideal behavior of a task-farm with 4 workers. Let us suppose
that the emitter schedules each matrix according to an on-demand policy with a
constant scheduling time Ts.neq, and each worker applies the decomposition with
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a calculation time T',c;. We can observe that the flow of results is produced in
”batches”: i.e. when the first worker produces a result, the others finish their current
work every Tcpeq. Assuming a scheduling time negligible w.r.t T4, a more precise
estimation of Tyeight is given by:

» o |L
T’weight - ’7-‘ 'Tfact (10)
p
S 3 - I - 2 3 O 3 4 |
T e e I

voyoy vy vovovoy
[ =Tocned [l = Tract 1 2 3 a 5 6 7 8 9 10 11 12

Figure 14.: Ideal behavior of the task-farm with 4 workers.

When the number of matrices I' is a multiple of the parallelism degree p, the two
expressions (8) and (10) give the same result. Otherwise Tieigns is limited by the
workers that receive additional tasks. For instance with 4 workers, computing 5 or
8 matrices requires almost the same time. This behavior is much more important
if we consider parallel architectures featuring a large set of cores.

To exemplify this concept, we consider a numerical example using an abstract
architecture with 32 cores. Let us suppose that we need to compute I' = 100 cells
under test per CPI cube. If T4 is equal to 70 ms, the computation latency of a
CPI cube using 32 workers can be estimated as follows:

~

100
’732-‘ “Tract =4 - Traet =470 ms = 280 ms

Better results can be achieved if we consider a more complex parallelization in
which each task-farm worker, instead of being sequential, implements an internal
parallelization able to reduce the T4 to complete a single decomposition. This ap-
proach exploits one of the most important properties of SPP, i.e. the composability
of parallelism schemes and their capability to be nested in complex and hierarchi-
cal structures. Fig. 15 outlines the nesting between the task-farm scheme and the
internal parallelization of each worker (exploiting a data-parallel paradigm as will
be discussed in Section 6.2).

If we use two cores to halve the calculation time of a single decomposition, we
are able to achieve a Te;gns expressed as follows:

100
z(uleg;ht = [16—‘ T}ilt =7 T]Ez)ct =7-35 ms = 245 ms
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Figure 15.: Nesting of task-farm and data-parallel schemes.

With 16 task-farm workers, each one internally parallelized using two cores, we
are able to improve the computation latency of 12.5% w.r.t the solution with a
pure task-farm scheme exploiting the same number of cores. Greater benefits can
be achieved if we can use a higher parallelism degree inside each decomposition
task. For instance with 8 task-farm workers each one using four cores, we obtain
the following result:

e FOOW @

_ (4)
weight — ? fact — 13-T

Fact = 13-17.5 ms = 227.5 ms

In this way Tyeight is reduced by 18.75% compared to the initial result. In conclu-
sion, the more the integer ratio between the number of covariance matrices and the
task-farm parallelism degree is smaller, the more the additional work to a set of
workers influences the completion time Ty,eigns. In this case a nesting between the
task-farm and the data-parallel scheme can be useful to improve the computation
latency. In the rest of this paper we present our data-parallel parallelization and
we propose a nesting of the data-parallel approach inside our task-farm structure.

6.2 Data-parallel parallelization

Parallelizations of linear algebra problems like LU, QR and Cholesky decompo-
sitions have been extensively studied over the last years. De-facto standards are
represented by optimized libraries providing efficient parallelizations for shared-
memory multicores (notably the PLASMA library [38]) and distributed-memory plat-
forms (e.g. ScalaPack [43, 57]). Such parallel routines exploit tile algorithms to
achieve a finer granularity parallelism, and are essentially based on the data-parallel
paradigm. On multi-core architectures the PLASMA library represents a valuable
work. Linear algebra computations are abstracted by directed acyclic graphs, where
nodes represent computational kernels (tasks) and arcs represent dependencies
among them (the so-called stencil pattern).

The efficiency of a parallelization is greatly influenced by the way in which tasks
are mapped onto real executors. For dense linear algebra problems such as the
Cholesky decomposition, the assignment of tasks to parallel workers is extremely
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challenging: on one hand the adopted scheduling strategy should achieve a load
balanced execution; on the other hand we need to guarantee that parallel workers
have some work to do at every execution instant.

To give a better idea, Fig. 16 sketches the dependencies between blocks during
the steps of the algorithm. The PLASMA library provides two scheduling strategies:
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Figure 16.: Data dependencies between blocks at each step k of the tile Cholesky
decomposition (matrix composed of 4 x 4 blocks).

e a static scheduling, in which the assignment of tasks to workers is predetermined
at compile time. Tasks are grouped into jobs composed of a row of blocks at
a specific iteration index of the computation. Jobs are statically assigned to
workers in a round-robin fashion (more details are available in [40, 41]). The
static scheduling simplifies the run-time support but it is tightly tailored to
the specific algorithm. Grouping tasks in rows also affects negatively the total
amount of parallelism available;

e a dynamic scheduling, in which tasks are scheduled as they become available.
The run-time support requires complex data structures to manage the availabil-
ity of tasks and their data dependencies, and an efficient procedure to explore
the graph searching for new tasks to assign to the available workers. This so-
lution allows more tasks to be executed concurrently at the cost of a heavier
support. Therefore, it is effective only when the computational cost of a single
task is sufficiently greater than the scheduling overhead. Fig. 17 exemplifies the
Cholesky graph of a 4 x 4 blocks matrix.

Also in this case the block size plays an important role. Larger blocks reduce the
scheduling complexity (fewer tasks mean also smaller data structures to manage
the task dependencies and their availability). However, as the size of the blocks
increases, the number of tasks decreases, suggesting that a proper trade-off between
task granularity and scheduling efficiency must be made. Moreover, as we have seen
in the previous sections, the sequential decomposition time increases using smaller
blocks. Consequently, smaller blocks can be used iff the data-parallel parallelization
scales sufficiently to outperform a parallel version using larger blocks. An example
of the PLASMA parallel Cholesky is described in Fig. 18. We show the scalability on
the Intel multi-processor using matrices of different sizes. For the sake of readability,
the results are shown up to 16 data-parallel workers.

We can notice that the scalability is far from the ideal one and it is extremely
poor especially with 256 x 256 matrices. The best result is a scalability of 3.35 using
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Figure 17.: Cholesky’s directed graph of computational kernels and data depen-
dencies (matrix composed of 4 x 4 blocks).

7 cores, which implies an efficiency of 0.47. Slightly better results can be achieved
using 1024 x 1024 matrices (the best case is a scalability of 6 using 10 cores). We
can notice that the dynamic scheduling is effective starting from 64 x 64 blocks.
For smaller blocks the scheduling overhead is too high w.r.t the cost of a single
task, and the static scheduling works better.

From this analysis we can make two important observations:

e as stated in the literature [40, 41], PLASMA parallelizations provide a satisfactory
scalability with relatively large matrices (e.g. matrices of 4096 x 4096 elements or
greater) and using a block size that optimizes the trade-off between task granular-
ity and scheduling complexity. However, in real STAP scenarios the covariances
matrices are formed by few hundreds of rows and the case of 1024 x 1024 matrices
is already a limit case;

e as explained in Section 6.1.4, in order to minimize the completion time of a
CPI cube processing we make a nesting between the task-farm scheme and the
data-parallel pattern. When considering to increase the data-parallel parallelism
degree, we need to account for the fact that fewer cores will be available to instan-
tiate task-farm workers. Therefore, new data-parallel workers should be added iff
the performance gain is well balanced with the reduction of the maximum par-
allelism degree of the task-farm. Since in our cases the scalability of the PLASMA
parallel decomposition rarely reaches the ideal one, even with small parallelism
degrees, our nested approach will use a very small parallelism degree inside each
task-farm worker (up to 4 cores for each task-farm worker).

To address the issues of this particular instantiation of the parallel Cholesky
decomposition, in this paper we propose a novel data-parallel implementation. In
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PLASMA Scalability with 256x256 matrices. PLASMA Scalability with 1024x1024 matrices.
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Figure 18.: PLASMA parallel decomposition: scalability on the Intel multi-
processor.

order to scale as much as possible with a limited degree, we use a static assignment
of blocks to data-parallel workers which is much simpler compared to the static and
the dynamic scheduling strategies adopted by PLASMA parallelizations. With high
parallelism degrees, our data-parallel version will not scale as the corresponding
PLASMA implementation. However, it will be effective using relatively small paral-
lelism degrees and, due to a more limited scheduling overhead, it will improve the
parallel decomposition time compared to PLASMA.

Our implementation adopts a static assignment of blocks to data-parallel work-
ers. Similarly to the PLASMA static scheduling, tasks are assigned to workers by
grouping them in rows of blocks. We apply a task assignment that improves cache
locality at the cost of a lower exploitable parallelism: throughout execution, each
worker is responsible for computing the blocks of a specific, fixed set of block rows.
This differs from the PLASMA static scheduling, where the same block row can be
computed by distinct processors at different iterations.

Since the algorithm operates using the lower triangular part of the matrix, each
row is composed of a different number of blocks. Therefore a contiguous assignment,
consisting in assigning to each worker a set of contiguous rows, does not provide a
balanced workload. As we can see in Fig. 19a, the first worker operates on a smaller
set of blocks; a number that increases as we reach the last row of the matrix.
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Figure 19.: Different assignment strategies of blocks to data-parallel workers.

To partially solve this problem, we apply a static strategy based on an interleaved
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mapping. This strategy is aimed at assigning a similar number of blocks to each
data-parallel worker over the entire execution. It is worth noting that this approach
could be sub-optimal. In fact, data dependencies between block computations may
cause non-negligible waiting times in some cores, and an equal load balancing does
not guarantee an equal computation time. Nevertheless, as we will show with ex-
perimental results, this approach is effective especially for small parallelism degrees
without needing more complex and possibly dynamic scheduling strategies such as
the ones of the PLASMA library.

The strategy identifies a set of pairs of block rows Sp, ..., Sy, 2)-1 each one
defined as follows:

Si = {Auy, ANyp—io1 ) fori=0,2,...,(Ny/2) — 1 (11)

Pairs designed in such way have a very similar number of blocks. To further guar-
antee load balancing, the pairs are assigned to workers in an interleaved fashion:
pair §; is assigned to worker w; iff ¢« mod p = j, where p is the data-parallel par-
allelism degree. Fig. 19b outlines the interleaved assignment of a matrix composed
of 8 rows of blocks to four workers.

To respect the data dependencies, we use an approach similar to the one proposed
in [58], in which the worker synchronization is performed by accessing a shared lock-
free data structure called precedence table. This table contains a boolean flag for
each block, which indicates if it has been definitely calculated or not. A worker that
needs to read a block performs a busy-wait until the corresponding flag becomes
true. Algorithm 4 describes the pseudo-code of our data-parallel implementation.
At each computation step k, each worker operates on a partition of block rows

Algorithm 4 Data-Parallel Tile Cholesky.

for k <+ 1 to Ny, do

foreach row i in My_Partition[k] do

if i == k then

L //A(k,k) = Scalar_Fact(A(k,k))

A(k, k) := cpotf2(A(k, k));
progress_table[i, i| = true;
else
wait_until progress_table[k, II;] == true;
L //A(j,k) = A(j,k)/A(k,k)
A(j, k) := cblas_ctrsm(A(j, k), A(k, k))
foreach row i in My_Partition[k] do
//AGL,3) = AGL I -AG, R *AG, K H
L A(j,J) := cblas_cherk(A(j, ), A(j, k))
for j <+ k+1 to Ny do
wait_until progress_table[j, k] == true;
foreach row i in My_Partition[k] - {k} do
L //A(1,3) = AGLL,3)-AG, K *A(G k) T
A(i,§) = cblas_cgemm(A(i, ), A, k), A, k)

(denoted by My_Partition[k]). The computation correctness is provided by using
the shared flags of the precedence table. The BLAS calls are the same as the sequen-
tial algorithm. Both in the PLASMA versions and in our implementation we start
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the computation with a parallel copy from the original layout to the block data
layout and a copy back at the end of the computation (copies are not shown in the
pseudo-code for brevity).

As for the task-farm pattern, our data-parallel implementation is highly portable
on different architectures by relying on user-space synchronization mechanisms
(i.e. by performing spin-loops on shared boolean flags) [59, 60]. Furthermore, the
core functions invoked by data-parallel workers are BLAS and LaPack routines that
can be linked to the most efficient implementation available for the underlying
architecture, i.e. without modifying our source code during the porting phase.

In the following section we will describe the experimental results of this paral-
lelization and we will compare it with the PLASMA versions.

6.2.1 Data-parallel experiments

In this section we will present the data-parallel results on the Intel multi-
processor (the other architectures are omitted for brevity, but they exhibit the
same qualitative behavior). For the matrix sizes used in typical STAP applica-
tions, the PLASMA dynamic scheduling is not useful since it starts to be effective
with larger matrices. Therefore, we will compare our implementation only with the
PLASMA static scheduling.

Fig. 20 shows the parallel decomposition time using from 1 to 8 cores. As we can
observe, the parallel efficiency stops being ideal very early, justifying the fact that
the data-parallel parallelization can be used only with small parallelism degrees.
We denote with "DP-blocks 128x128” our parallelization using blocks of 128 x 128

Parallel decomposition time with 128x128 matrices. Parallel decomposition time with 256x256 matrices.
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Figure 20.: Parallel decomposition times on the Intel multi-processor.
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elements (and similarly for the other block sizes).

We can appreciate some important features of the data-parallel behavior. Firstly,
the selection of the block size is crucial to extract sufficient parallelism, especially
in our implementation since each core is assigned to a specific set of block rows. For
fixed matrix, larger blocks lead to a smaller set of rows. With 128 x 128 matrices
and 32 x 32 blocks only 4 block rows are available and parallelism degrees greater
than 2 are completely useless. A higher number of cores can be used with smaller
blocks: e.g. with blocks of 16 x 16 elements we double the available number of
rows but we start from a slightly higher sequential decomposition time (from 0.461
ms to 0.530 ms). The same behavior can be observed with the other matrices. In
conclusion the best results can be achieved using a small parallelism degree and
the best block size for the given matrix size.

In terms of comparison between our implementation and the static PLASMA ver-
sion, we can notice that our implementation provides better results with small
parallelism degrees (2 and 4 cores). With small matrices (128 x 128 and 256 x 256)
the performance improvement is evident also with greater parallelism degrees. As
explained, this is due to a more simplified assignment of tasks to workers and a
better exploitation of cache locality. On the other hand, the PLASMA scheduling
starts to be more effective using larger matrices (Fig. 20d), since more powerful
and complex scheduling strategies are able to extract more parallelism.

7. Performance evaluation of STAP benchmarks

In this section our goal is to analyze the completion time of the STAP compu-
tational kernel, i.e. the latency Teign: needed to complete the decomposition of
a sequence of I' covariance matrices (one for each cell under test) and calculate
the corresponding weight vectors applying the forward and back substitutions. We
compare three different parallelizations:

o Pure Task-Farm: the task-farm parallelization is configured to exploit the max-
imum number of cores of the underlying architecture. Each worker executes the
fastest version of the tile Cholesky decomposition, according to the previously
discussed results;

e Nested Farm-DP-2: a nested approach in which each task-farm worker is
implemented by a data-parallel program using 2 cores. Thus, we have halved the
task-farm parallelism degree (16 workers on the Intel and IBM multi-processors
and 12 on the AMD multi-processor). The parallel Cholesky decomposition uses
different block sizes in order to provide the best trade-off between the number
of blocks and sequential calculation time. We use 32 x 32 blocks with matrices
of size 128 x 128 and 256 x 256, 64 x 64 blocks with 512 x 512 matrices and
128 x 128 blocks with matrices of 1024 x 1024 elements;

e Nested Farm-DP-4: a nested approach in which each task-farm worker is
internally parallelized using 4 cores. Again, we use the block size that provides
the best parallel decomposition time with 4 cores. We use 16 x 16 and 32 x 32
blocks with matrices of size 128 x 128 and 256 x 256 elements. 64 x 64 blocks
are used with larger matrices, of size 512 x 512 and 1024 x 1024.
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As stated in Section 2, the number of cells under test depends on the radar
characteristics and the number of desired targets to be tracked. We consider three
different scenarios inspired by the examples described in [61]. In the first benchmark
we consider I' = 75 cells under test, in the other two benchmarks we consider
a greater number equal to I' = 100 and I' = 200 cells. For each configuration
(determined by the size of the covariance matrices and the number of cells under
test) we discuss the results achieved by the three parallel versions.

Fig. 21 shows the results of 75 cells under test per CPI data-cube. In order
to understand the rationale of our approach, we recall the concepts exposed in
Section 6.1.4. On the IBM and Intel platforms, the integer ratio (rounded to the
nearest upper integer) between the number of cells under test and the parallelism
degree of the pure task-farm version is equal to [75/32] = 3. This means that some
workers perform the computation on three cells under test. With the Farm-DP-2
approach we have an integer ratio equal to 5. In this case, some task-farm workers
receive five tasks, but each of them is solved faster since each worker is internally
parallelized. We can notice that we have halved the task-farm parallelism degree
but the number of tasks assigned to each worker is less than double that of the
pure task-farm solution. If the data-parallel parallelization is sufficiently efficient,
the result is an improvement in the computation latency T'yeighs-

Completion time of 75 Cells under Test (128x128 matrices). Completion time of 75 Cells under Test (256x256 matrices).
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Figure 21.: Completion time of 75 Cells under Tests.

Fig. 21a underlines that the nested approach is not satisfactory with 128 x 128
matrices. In this case the pure task-farm version always provides the best com-
putation latency. To understand the reason, we can measure the speed-up of the
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data-parallel version using p cores:

(best)

speed-up(p) = 75— (12)

Tfact

the term speedup is in this case justified, since we compare the parallel decomposi-
tion time with the best sequential algorithm (which can use a different block size).
With 128 x 128 matrices, the speed-up is extremely low, equal to 1.15 on the Intel
platform (and similarly on the other architectures). Under this condition, halving
the number of task-farm workers results in a worse completion time.

With bigger matrices we experience a decisive change of course. The data-parallel
parallelization obtains better speed-up: on the Intel architecture the speed-up using
two cores is 1.35, 1.65 and 1.80 with 256 x 256, 512 x 512 and 1024 x 1024 matrices.
As Figs. 21b, 21c and 21d highlight, the Farm-DP-2 version achieves the best
completion time. The average improvement (on the three architectures) compared
with the pure task-farm version is of 6.56% with 256 x 256 matrices, 19.66% with
512 x 512 matrices and 17.92% with 1024 x 1024 matrices.

The Farm-DP-4 version exhibits similar behavior. The speed-up of a parallel
worker using 4 cores is extremely poor with small matrices (1.64 with matrices of
128 x 128 elements), and it gets better with larger matrices (we obtain speed-ups of
2.15, 2.55, 2.88 with 256 x 256, 512 x 512 and 1024 x 1024 matrices, respectively).
This justifies the fact that the Farm-DP-4 version becomes more effective than the
pure task-farm solution using larger matrices. Nevertheless, the maximum speed-
up is far from being optimal, and the Farm-DP-2 version is the most effective
combination to reach the best completion time.

Completion time of 100 Cells under Test (128x128 matrices). Completion time of 100 Cells under Test (256x256 matrices).
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Figure 22.: Completion time of 100 Cells under Tests.
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Fig. 22 shows the results with I' = 100 cells under test. Qualitatively the behavior
is similar to the previous benchmark. Due to a greater number of cells under test,
the integer ratio between the task-farm parallelism degree and the number of cells
under test is higher. Therefore, the contribution of the number of additional tasks
received by some workers on the completion time is lower. The consequence is a
smaller advantage of the nested versions w.r.t the task-farm solution. Similarly to
the previous case, for 128 x 128 matrices the task-farm is still the best solution.
This is also true for matrices of 256 x 256 elements, in which the nested versions
perform similarly and in some cases worse than the task-farm scheme. With larger
matrices, for which the data-parallel speed-up is better, the Farm-DP-2 offers a
non-negligible improvement. The average improvement on the three architectures
is of 15% and 8.5% with matrices of 512 x 512 and 1024 x 1024 elements.

Finally, in the last benchmark (Fig. 23) we show the results of 200 cells under
test. As for the previous benchmark, with 128 x 128 and 256 x 256 matrices the
task-farm parallelization provides the best completion time. With larger matrices,
the nested approach Farm-DP-2 is still able to provide a slight advantage (of 9%
and 4.86% with 512 x 512 and 1024 x 1024 matrices).

Completion time of 200 Cells under Test (128x128 matrices). Completion time of 200 Cells under Test (256x256 matrices).
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Figure 23.: Completion time of 200 Cells under Tests.

8. Conclusions

STAP is an effective and computationally expensive radar filtering technique. Due
to its computational load, this algorithm is very difficult to be implemented in
real-world apparatus. Important studies on special-purpose architectures such as
FPGAs and GPUs have been conducted over the last years. However, a similar in-
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vestigation on modern general-purpose architectures is not sufficiently undertaken.
For this reason, this paper provided a detailed analysis of different parallelizations
of the STAP computation kernel on modern multi-processors composed of several
multi-core chips. We focused on the importance of the sequential algorithm to per-
form efficient and cache-aware covariance matrix decompositions. Tile algorithms
deserved special attention: firstly they are able to exploit the potential of the hi-
erarchical memory of modern architectures, and secondly they provide a decisive
simplification to extract parallelism at the block level.

In this paper we investigated the application of parallelism paradigms on three
modern architectures covering a broad range of existing multicores. The portability
of our parallelizations, in terms of source code and achievable performance, was
enabled by exploiting the BLAS and LaPack libraries and through a careful design
of the run-time support of our parallel programs. For the task-farm scheme, we
studied its throughput and scalability. The results evidenced a positive correlation
between achieved performance and the adopted block size and the data-structure
layout in main memory. For the data-parallel implementation we discussed the
implementation of the PLASMA library. We experienced a poor scalability with the
matrix sizes considered in this paper. For this reason we developed a customized
data-parallel implementation able to provide better results in our test cases.

In the last part of the paper we evaluated our parallelizations using some STAP
benchmarks, measuring their completion time. We presented some major problems
of a pure task-farm approach when working with a small number of tasks, and we
discussed the possibility of exploiting a data-parallel pattern to solve the problem.
We proposed a mixed approach able to overcome the limitations of the task-farm
approach without suffering from the limited data-parallel scalability. This was pos-
sible by exploiting a fundamental concept of Structured Parallel Programming, i.e.
the composability of parallelism schemes. The nested approach provided a vari-
able performance gain, reaching peaks of 20% compared with the pure task-farm
parallelization.

In conclusion the paper provided a guideline to parallelize the STAP computa-
tional kernel on general-purpose multi-core architectures. We highlighted the bene-
fits of using well-known parallelism paradigms, that allowed us to compare different
implementations and compose them to leverage their strengths and weaknesses.
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