Int. J. of Grid and Utility Computing, Vol. x, No. x, 2018 1, Vol. z, No. z, 2018 1

A Dataflow Runtime Environment and Static
Scheduler for Edge, Fog and In-Situ Computing

Caio B. G. Carvalho, Victor C. Ferreira, Felipe
M. G. Franca

Programa de Engenharia de Sistemas e Computagao - COPPE
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Phone: +55 21 3938-8672 E-mail: {cbgc,veruz,felipe}@cos.ufrj.br

Cristiana B. Bentes

Departamento de Engenharia de Sistemas e Computagao

Faculdade de Engenharia Universidade do Estado do Rio de Janeiro, Rio de
Janeiro, RJ, Brazil

E-mail: cris@eng.uerj.br

Gabriele Mencagli

Department of Computer Science
University of Pisa, Pisa, Italy
Phone: +39-050-2213132 E-mail: mencagli@di.unipi.it

Tiago A. O. Alves, Alexandre C. Sena, Leandro
A. J. Marzulo

Departamento de Informatica e Ciéncia da Computagao

Instituto de Matematica e Estatistica Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, RJ, Brazil

Phone: +55 21 2334-0144 E-mail: {tiago,asena,leandro}@ime.uerj.br

Abstract: In the dataflow computation model, instructions or tasks are executed
according to data dependencies, instead of following the program order, thus allowing
natural parallelism exploitation. A wide variety of dataflow-based solutions, in different
flavors and abstraction levels (from processors to runtime libraries), have been proposed
as interesting alternatives for harnessing the potential of modern computing systems.
Sucuri is a dataflow library for Python that allows users to specify their application as
a dependency graph and execute it transparently at clusters of multicores, while taking
care of scheduling issues. Recent trends in Fog and In-situ computing assume that storage
and network devices will be equipped with processing elements that usually have lower
power consumption and performance. An important decision on such system is whether
to move data to traditional processors (paying the communication costs), or performing
computation where data is sitting, using a potentially slower processor. Hence, runtime
environments that deal with that trade-off are extremely necessary. This work presents a
study on different factors that should be considered when running dataflow applications in
Edge/Fog/In-situ environment. We use Sucuri to manage the execution in a small system
with a regular PC and a Parallella board, emulating a smart storage (Edge/Fog/In-situ
device). Experiments performed with a set of benchmarks show how data transfer size,
network latency and packet loss rates affect execution time when outsourcing computation
to the smart storage. Then, a static scheduling solution is presented, allowing Sucuri to
avoid outsourcing when there would be no performance gains.

Keywords: Dataflow Computing; Edge Computing; Fog Computing; Scheduling
Techniques; Smart Storage.

1 Introduction

Parallel programming is paramount for fully harvesting

the

available

computational

architectures, which are often composed by different
co-processors and accelerating devices, including GPUs,
Xeon Phi processors and FPGAs (Caulfield et al.

power of modern 2016). Moreover, trending applications related to Deep

2 C. B. G. Carvalho et al.

Neural Networks and Internet-of-Things produce an ever
increasing amount of data that needs to be efficiently
stored, usually in a distributed way. When devising such
applications, programmers need to consider the impact
on performance caused by data movements between
storage/memory devices and processing elements.

Edge/Fog/In-situ computing (OpenFog Consortium
Architecture Working Group 2016, Shi et al. 2016)
proposes bringing computation closer to where the
data is sitting, by adding computational capabilities
to storage devices (Jun et al. 2015, Kim et al. 2011,
NGD Systems 2017), network devices (Juniper 2018)
(such as NICs, switches and routers) or even using
mobiles devices. Those “smart” devices would be able to
perform part of the computation that would reduce data
transmission over the network and data buses. Moreover,
those devices could be equipped with processors custom-
made for the application, which could result in good
performance, even for low power systems.

All the aforementioned issues require a proper
tool-set that helps programmers devise parallel and
distributed applications that can be executed on a
large spectrum of devices. Furthermore, such tools
should shield developers from dealing with technological
aspects pertaining task creation, synchronisation and
edge/fog/in-situ aware scheduling.

The Dataflow programming model seems to be a
good candidate for edge/fog/in-situ applications, since
it provides a simple and natural way of exploiting
parallelism. A dataflow program is usually represented
as a directed graph, where tasks (or instructions) are
depicted by nodes and data dependencies are denoted by
edges between nodes. In dataflow, instructions or tasks
are allowed to run as soon as their input operands are
ready, instead of following program order. Independent
tasks can be naturally identified and executed in parallel,
if there are enough resources. Dataflow-based APIs and
runtime environments (Alves et al. 2011, Marzulo et
al. 2014, TBB 2014, Wozniak et al. 2013, Wilde et
al. 2011, Matheou & Evripidou 2016) can be used on
top of Von Neumann architectures with performance
equivalent to well-known tools for parallel programming
such as OpenMP or Pthreads. In addition, increasing
the granularity level of the dataflow programming can
turn it into a good coordination language. It is easier
to outsource blocks of computation, like functions, to
different cores and machines (Johnston et al. 2004). IoT
nodes can also be abstracted as nodes in a graph flow, as
stated in (Giang et al. 2015). The library or runtime in
use could take advantage on that to distribute the work
among the devices.

In this work, we continue the study presented in
(Carvalho et al. 2017), aiming at using the dataflow
model for devising edge/fog/in-situ applications. Since
all data dependencies are explicitly described in the
graph, dataflow runtime environments could make use
of that information to schedule task execution according
to edge/fog/in-situ demands. Our proposal employs
Sucuri (Alves et al. 2014, Sena et al. 2015, Silva et

al. 2016) to orchestrate edge/fog/in-situ devices that
come into play. Sucuri is a dataflow library for Python
that provides an easy interface for parallel programming
where developers can accommodate custom functions
into nodes and only fill in the dependencies connecting
them with edges inside a graph. Sucuri also creates
an abstraction layer that uses MPI for communicating
with remote machines in a transparent way. As Sucuri
has already been developed and in use by our research
group, and presented good performance with ease of
programming, it would be a natural candidate for our
approach.

To emulate a smart storage device we used a
Parallella board (Parallella 2014), equipped with a Xilinx
Zynq 77010 (ARM Cortex A9 dual core + FPGA)
(Xilinx 2017) and a Epiphany 16-core RISC processor.
The Parallella board runs a Linux operating system on
a SD Card where input files of our benchmarks are also
stored. A traditional computer (PC) communicates with
the Parallela board through an ethernet connection. In
this version, the FPGA and Epiphany were not used.

Our study consists in evaluating the impact of
employing our solution in scenarios with different
network latencies and packet loss rates, using different
applications and input file sizes. With that information
in hand, this work proposes an improvement on the static
scheduling mechanism for Sucuri that tries to predict
transfer and execution times, to decide whether it is
better to outsource computation to the (slower) smart
storage processor, or move data from disk to the (more
powerful) PC. Our benchmarks include two artificial
benchmarks (text processing applications) and a set
of search and ordering algorithms. Results show that,
even for a low power device with limited computational
capabilities, it is possible to obtain speedups by avoiding
unnecessary data transfers. Gains are maximised when
task computational costs are low and input sets are
larger. Moreover, scenarios with higher network latency
and packet loss make our approach more appealing.
Finally, our proposed static scheduling mechanism was
able to make good decisions and avoid outsourcing work
when this would affect performance.

This paper is organised as follows. Section 2 consists
of related work in edge/fog/in-situ data processing.
Section 3 presents an overview of the Sucuri dataflow
library for Python. Section 4 presents the changes made
in Sucuri for edge/fog/in-situ environments. Section 5
presents the experimental analysis. At last, Section 6
discusses what can be taken from the results found in
the previous section and also what can be done as future
work.

2 Related Work

In this section, we review some research papers closely
related to Sucuri. As stated in prior work (Giang et al.
2015), the dataflow model is a valuable candidate to
execute Fog/In-Situ computations provided that some

A Dataflow Runtime Environment and Static Scheduler for Edge, Fog and In-Situ Computing 3

properties are met by new runtime systems: notably,
they need support to device heterogeneity, adaptability
and scalability. Although Sucuri does not have all these
properties yet, it goes on the right direction.

2.1 Dataflow runtime systems

The dataflow model is a widely studied programming
model for expressing parallelism driven by pure data
dependencies among tasks. Several runtime systems have
adopted this model by exposing different interfaces and
optimised scheduling strategies.

Corral (Jalaparti et al. 2015) is a framework that
takes advantage of predictability of recurring jobs in
computer clusters to perform offline scheduling. The
framework tries to place computation and data jointly
to improve locality. Moreover, in order to reduce
interference between jobs, it performs spatial and
temporal isolation. The scheduler will try to place
jobs in different regions of the cluster and will try to
avoid concurrent execution of certain jobs. Corral was
implemented on Apache Yarn and executed on a 210
machine cluster, reducing the makespan of production
workloads of up to 33% when compared to Yarn’s
capacity scheduler. Moreover, there was a reduction of
the average completion time of up to 56% and 20-90%
of reduction in data transferred across racks. Corral is
not suitable to target Fog/In-Situ computing scenarios
since it targets clusters of homogeneous nodes. However,
its scheduling policies are highly optimised and could be
implemented in any dataflow runtime including Sucuri.

Swift/T (Wozniak et al. 2013) is a description
language and runtime that supports the dynamic
creation of workflows with different task granularity
and execution on platforms with a huge number of
processing elements. Swift/T employs Asynchronous
Dynamic Load Balancing (ADLB) to distribute tasks
among computing nodes. However, task data sharing
is done through a parallel file system that can cause
performance degradation, due to poor data locality
and interference with other applications. In (Duro et
al. 2014), authors propose exploiting data locality in
Swift/T applications through Hercules, a distributed
in-memory store based on Memcached (Fitzpatrick
2004). Swift/T implementation was optimised to
schedule computation jobs in the nodes where required
data is stored. The proposal was evaluated using
a synthetic application that accesses raw files with
different patterns, showing promising results. Although
interesting, Swift/T supports in-memory key-value
stores to allow data to be shared among tasks, while
dataflow runtimes for Fog/In-Situ computing should
be efficiently based on a persistent storage to address
the high dynamicity and possibly unreliability of IoT
computing environments.

The dataflow model has been adopted in the design
of several runtime systems for parallel computing.
The ffMDF runtime (Buono et al. 2014) provides a
lightweight support for dense linear algebra kernels.

It has a dynamic macro-dataflow interpreter that
processes directed acyclic graphs generated on-the-fly.
It is developed for multicore, shared-cache machines,
and not for distributed and heterogeneous scenarios.
Hence, it cannot be used in the cases studied in this
paper. StreamlIT (Thies et al. 2002) is a programming
language used to design streaming applications as
dataflow graphs of data transformation phases, executed
on the available resources based on data availability
policies. The framework targets clusters of homogeneous
nodes. The adopted scheduler does not take into
account the status of the network to choose the
best mapping of tasks to nodes, a feature strongly
required in Fog/In-Situ scenarios. OpenMP (Dagum
& Menon 1998), and its new standard 4.0, supports
task parallelism (another terminology recently used
in place of dataflow model). The runtime targets
single-node machines (CPU+GPU nodes). The lack of
distributed support makes it currently unsuitable for
Fog/In-Situ. S-Net (Penczek et al. 2012) is a mature
dataflow model which provides great scalability owing
to the stateless design of its nodes. The framework
provides a set of low-level optimisations to reduce
power consumption in case the underlying resources are
underloaded by the current application workload (e.g.,
using frequency scaling mechanisms of modern’s CPUs).
Although interesting and useful on commodity server
machines, such optimisations are far from being portable
to IoT environments.

2.2 Advanced storages for Fog/In-Situ

Fog/In-Situ computing requires highly scalable and
available storage distributed services where data shared
among tasks are placed and freely obtainable by the
system nodes on-demand.

The work in (Jun et al. 2015) presents BlueDBM,
a system architecture that employs flash-based storage
with in-situ computing capabilities and a low-latency
high-throughput inter-controller network. The system
is composed of 20 nodes, each having 1TB of flash
storage. Storage devices were designed with high-
capacity custom flash boards employing FPGAs. They
are organised in a network with Near-uniform latency to
provide a global address space. BlueDBM allows users
to implement custom in-store processing engines and
flash cards are designed to expose a set of software
interfaces that enables application-specific optimisations
in flash accesses: (i) a file system interface, (i) a block
device driver interface and (éi1) an accelerator interface.
Preliminary experimental results show performance
gains of up to an order of magnitude better than clusters
equipped with conventional SSDs.

A multipoint approach to address I/O performance
bottlenecks in extreme-scale computing is introduced
in (Klasky et al. 2011). Authors designed the ADIOS
I/0O framework following a Service-oriented Architecture
(SOA) that takes care of in-situ processing, data
staging, data management, application monitoring,

4 C. B. G. Carvalho et al.

while providing an easy-to-use interface. Moreover, they
present ADIOS-BP, a file format that provides resiliency
and high performance in extreme-scale systems.

GoogleFS (Ghemawat et al. 2003) is a Linux-based
distributed file system developed by Google to provide
a reliable and efficient way to store files in clusters
of commodity machines. GoogleFS is based on highly
scalable mechanisms for accessing large files. The idea
is to split files into chunks which are stored in multiple
nodes by maintaining the mapping between chunks and
nodes in some index structures of the file system. Chunks
can be replicated in order to provide data reliability. The
architecture is based on the master-worker paradigm,
with a master in charge of maintaining the metadata
of the files and the workers, executing on the different
nodes, being responsible for storing the file chunks.

An evolution of GoogleFS is the cross-platform
distributed file system adopted by Hadoop
(HDFS (Shvachko et al. 2010, The Apache Software
Foundation 2016)), which by default uses larger chunks
than GoogleFS (128MB vs. 64MB). While GoogleFS
supports a multiple-writers multiple-readers model,
HDFS is based on the multiple-readers and one-writer
model. In HDFS, only the append mode is supported to
modify files, while GoogleFS allows files to be modified
at random positions. This apparent limitation allows
HDFS to scale very well in highly distributed scenarios,
and to fit perfectly with the MapReduce programming
model of which HDFS provides an uniform I/O layer for
Hadoop clusters.

Since in this work we focused on enabling
Edge/Fog/In-situ support on Sucuri, including
scheduling aspects, we did not try to integrate with
existing solutions for distributed file system, such as
GoogleFS or HDFS. Instead, our solution employs a
file catalogue that does not consider chunk division or
redundancy of chunks. Studying and implementing such
integration is part of our future work.

3 Swucuri

Sucuri (Alves et al. 2014, Silva et al. 2016) is a library
written in Python that allows dataflow programming
in a higher level than most libraries and runtime
environments. It supports transparent execution on
multicore clusters, using MPI under the hood. Sucuri
main components are Node, Graph, Task, Worker and
Scheduler, described below :

e Nodes are objects associated with functions
and connected with edges by the programmer
(add_edge method). Edges describe data
dependencies and nodes depict computation
that must be performed when dependencies are
satisfied.

e A Graph object is used as a container, representing
the entire dataflow application.

e A Task is created by the scheduler once all input
operands are available for a certain node. Each task
contains the list of input operands and their related
node id.

e Workers are processes instantiated by Sucuri to
execute tasks. When a worker is idle it will request
a task to its local scheduler. Once they receive a
task they will consult the correspondent node in
the graph and call the related function.

e A Scheduler is responsible for matching input
operands and generating tasks, according to the
dataflow firing rule. This means every operand sent
by a worker will be stored in a Matching Unit until
all input operands are available for a certain node,
resulting in instantiating a task that is inserted in
a Ready Queue.

The original Sucuri library (Alves et al. 2014)
provided a centralised scheduler, meaning that workers
in remote machines will request tasks and deliver results
to a dummy local scheduler that will just forward
messages to the main scheduler. The Sucuri version used
in this paper adopts a distributed scheduler (Silva et al.
2016), meaning that there will be one scheduler instance
per machine, each one being responsible for generating
tasks for a set of nodes. Moreover, a static mechanism
that partitions the graph among Sucuri schedulers is
provided.

Figure 1 shows a general view of the Sucuri
Architecture. Notice that each machine has its own
scheduler. Moreover, the graph is replicated in all
machines and each Scheduler will have access to a list
containing the nodes that are statically mapped to that
machine (mappings are represented by colours in the
graph). Allocations of tasks to workers are dynamic,
following a First-Come First-Served policy.

The graph partitioning mechanism used by
Distributed Sucuri (Silva et al. 2016) is based on the
List Scheduling (LS) algorithm (T. I. Adam & Dickson
1974, Sinnen 2007, H. Topculoglu 2002, Lombardi et al.
2010). The LS version implemented uses a naive priority
scheme that has three levels.

Each Graph node has a weight attribute that
influences the way the scheduler maps them. They are
scheduled taking into account where their incident nodes
are. Given two nodes ¢ and j, ¢ is incident to j if and
only if, there is at least one edge going from ¢ to j (i —
)

Allocation starts with source nodes in a circular way
over the available cores of each machine, and then it
proceeds according to the following rules, also described
in detail in (Silva et al. 2016):

1. the scheduler tries to allocate the node in the
same worker of the incident node with greater
computational cost;

2. it tries to allocate on the same machine of the
incident node with greater computational cost;

A Dataflow Runtime Environment and Static Scheduler for Edge, Fog and In-Situ Computing 5

3. in case incident nodes have the same weight, it
allocates in a circular way over workers of incident
nodes;

4. if none of the above criteria is matched, it allocates
on a remote machine.

Machine 0 ()

Application’s
Dataflow Graph

Node

9\9\9\7\

Information Scheduler
8\9/9/' [Matching |
Operands < Ma&%'?;ng
Node function call . "'é'l
S
&l
! Ready Queue ©
Worker Worker
[i (YY) N-1] ‘.I
7'y A Tasks

° |

° Network B
(MPI)

)

Machine M-1 ([O])

Application’s
Dataflow Graph

,\Q\,\ z?::"aﬁon (Scheduler)
‘\9\9/9 S

Matching [«
Unit

Operands

Operands

vy

Ready Queue

Workﬂ 'I
N-1 . J
A A T

Figure 1 The Distributed Sucuri Architecture
(reproduced from (Silva et al. 2016)). The same
structure is replicated in each machine. The
application dataflow graph is colour-coded,
denoting which machine will be responsible from
executing tasks generated from each node.

Worker
0

Weights for each node have to be specified
by the programmer or by using external profiling
tools. In the context of Edge/Fog/In-situ computing,
where devices with different processing capabilities are
connected in a heterogeneous network, the trade-off
between computation and communication should play an
important role in scheduling. Moreover, in the context
of smart storages, where one can avoid transferring files
to perform computation in the disks, it is also important
that the runtime and the scheduler know where files are
being stored so they can calculate transfer costs more
accurately and decide if data should be transferred to the
requesting node or processed In-situ. Therefore, Sucuri
needs to be adapted in order to consider these issues.

4 Sucuri for Edge, Fog and In-Situ

As the main goal of this work is to turn Sucuri into
a Dataflow runtime environment for Edge/Fog/In-situ
computing, we propose modifications to Sucuri’s static
scheduler so that data locality is taken into account when
partitioning the dataflow graph. This would allow Sucuri
to automatically determine whether it should place
nodes closer to where data is sitting (in-situ processing)
or it should move data to another machine when its
processors would yield higher performance. Notice that
the later would result in communication costs, meaning
there is a trade-off (communication vs. computation)
to be considered. Moreover, a distributed file catalogue
was added to Sucuri’s scheduler, so it can determine file
transfer times in the context of smart storage (with in-
situ computing capabilities) and use this information for
scheduling purposes.

4.1 Sucuri Environment Setup

In order to make decisions accurately, Sucuri’s static
scheduler needs to access performance information
on the computational platform being used. For that
purpose we developed an external tool called SES
(Sucuri Environment Setup) that should be executed
before running applications on Sucuri. SES contains
an Environment class that will gather performance
information about the computational environment,
including network and processing elements performance,
and generate a set of configuration files that should
be used by Sucuri. SES provides a list of methods
to retrieve network information, builds a file catalogue
and estimates computation and transfer times. Those
methods might be called in bulk or independently via
command line interface.

As Sucuri, SES is also implemented in Python and
relies on MPI for instantiating remote processes that are
used to collect network and performance metric, as well
as assembling the File Catalogue with transfer times for
each file. SES can be called using the following command
line:

mpiexec -machinefile <hostfile> -np <n>
python ses.py <hostfile> -D -B -P
-f <paths>

‘Where:

e hostfile is the list of hosts that will participate
in the computation;

e n is the number of hosts;

e -D informs SES that it should estimate
communication latencies between hosts;
e -B informs SES that it should estimate

communication bandwidth between hosts;

e -P informs SES that it should
computation performance of each hosts;

estimate

6 C. B. G. Carvalho et al.

e —f <paths> informs SES that it should build a File
Catalogue using files indicated in a list (paths);

4.1.1 Network information gathering with SES

Latency and bandwidth have a huge effect on file transfer
times in a network storage. Moreover, due to factors like
reception and transmission overhead or costs related to
the communication protocol itself (such as congestion
control on TCP), the application network layer can only
utilise a fraction of the available bandwidth. Considering
that one of our goals in this configuration phase is to
provide a good estimation on data transfer time between
hosts, we need to know the amount of useful data
effectively received by the application in a period of time
(goodput), as well as latency and bandwidth between
each pair of machines (or Edge/Fog/In-situ devices).
For this purpose SES provides the following methods:
getLatencies, getBandwidth and getGoodput.

The getLatencies method measures communication
latencies between each pair of machines (or
Edge/Fog/In-situ devices) using Linux ping command
and builds an adjacency matrix.

The getBandwidth method measures communication
bandwidth between each pair of machines (or
Edge/Fog/In-situ devices) using Linux iperf command
and builds a bandwidth matrix. However, since
determining bandwidth can be more complex and costly,
and given that iperf utilises a client/server approach,
getBandwidth will only fill in the upper triangular
matrix. Moreover, measurements are taken in multiple
steps, where each step comprise of a group of measures
taken in parallel without repeating the source or
destination machines. This is done in order to minimise
the interference of having a machine communicating
simultaneously with two other machines in a given step.

The getGoodput method estimates the amount of
useful data that can be effectively received by an
application in a period of time. Some previous works
model TCP performance and could be employed for
determining the goodput, such as (Mathis et al. 1997,
Altman et al. 2005, Fortin-Parisi & Sericola 2004).
These works, however, are too restrictive or depend
on parameters that cannot be trivially obtained at the
application layer, unless there is a structural analysis of
network packets. For this reason, we decided to employ
an empirical approach.

Intuitively, file transfer time (T') will be proportional
to both the file size (s) and a goodput constant
(g9). Therefore, we could transfer a file between hosts,
measure the time spent on the process and obtain the
value of g using the following equation:

- — 1
9= (1)
It is important to mention that the value of g must
be calculated based on transfer of files that are not too
small, when compared to the bandwidth. Using small
files would result in measurement distortion, given that

overheads would tend to dominate transfer times. To
overcome this issue a second constant o was added to
Equation (1). The value of o can be obtained transferring
a very small file (in the order of bytes), where o = T,
given that s is too small. Then we obtain the following
equation for file transfer time:

T=sxg+o (2)

This approach is not only simple, but also does
not require any parameters that depend on the
implementation peculiarities of protocols, thus making it
flexible enough to be adopted in different environments.
Moreover, we do not need extreme precision in our
estimation, since those values would just help Sucuri’s
scheduler in its decisions. Results presented in Section 5
validate our approach.

4.1.2 Building the File Catalogue with SES

Our solution requires users to register paths for all
files that are going to be used in their applications.
This is necessary because Sucuri scheduler needs to
know the physical location of files, so it can calculate
file transfer times. File registration can be done either
by a configuration file passed to SES or by calling
the registerFile method in SES. Sucuri Environment
Setup will discover the size and host for each file.

Using all collected information, and using Equation
(2), SES estimates transfer time for each file
to all possible hosts in the system, using the
getTransferTimes method. Then, it generates a File
Catalogue that will be used by Sucuri’s static scheduler.

Figure 2 provides a full example on how the user
could generate a file catalogue that keeps track of three
files (video.avi, image. jpg and text.txt). Figure 2(a)
shows that files are distributed in two smart disks
and a traditional server. Figure 2(b) shows the use of
registerFile method to inform which files are going to
be on the catalogue. Users can also pass a file to SES,
containing a list of paths to be registered. Finally, Figure
2(c) shows the File Catalogue containing the paths of all
files and transfer times to all hosts in the system.

In this work, we are not yet integrating with existing
solutions for distributed storage, such as HDFS or GFS.
In the future, Sucuri file catalogue could be eliminated
and we could query those services to determine file
location. However, in HDFS and GFS, files are split into
blocks which would require us to place the computation
closer to most blocks or closer to the blocks most likely to
be accessed. Redundancy is also implemented by those
systems and Sucuri could take advantage of that.

4.1.8 Estimating Computing Performance with
SES

The getPerformance method allows SES to estimate
computing performance for machine (or Edge/Fog/In-
situ device). This is done by executing a set of synthetic
benchmarks with different complexities (O notation). We

A Dataflow Runtime Environment and Static Scheduler for Edge, Fog and In-Situ Computing 7

Server or PC
with traditional

disks Smart Disk 0

’] video.avi

Image.jpg M u

N u u

= = —
T
w

O g text.txt

K blahblah

blahblah

blahblah

(a) File Location

ses.registerFile ("/pathl/image. jpg")
ses.registerFile ("/path2/video.avi")
ses.registerFile ("/path3/text.txt")

(b) File Registration

Transfer Times
Server | Disk 0 | Disk 1
/pathl/image.jpg 0 400.5 | 280.7
/path2/video.avi | 600.3 0 200.5
/path3/text.txt 300.34 | 1104 0

(c) File Catalogue

File Path

Figure 2 File Catalogue in a smart storage environment

have two applications for each complexity class and two
input sets per application with different sizes. For each
application we calculate the time corresponding to one
computational step (¢1) by dividing the execution time
(t) by the application known complexity:

t
th = ——r (3)
complexity
For example, in an application with complexity =
O(nlogn), where n is the input size, substituting on (3)
we would have:
t

t = 4
! nlogn)

This way we can estimate later the time an algorithm
will take to run on each machine, given that its
complexity and size of input are know. Currently,
SES includes benchmarks with complexity of O(n),
O(logn), O(nlogn) and O(n?). After all measurements
a Computational Cost Matriz will be produced, where
each line will represent a machine and each column will
represent ¢; for algorithms with different complexities (4
columns), taken from the mean of ¢; of each machine.

It should be noted that the O notation here was used
just as an illustration, because we are not using this
information (if algorithm is O or ©, for example) directly
in t1 calculations.

4.2 Edge/Fog/In-situ static scheduling

In the previous work of (Carvalho et al. 2017), the
original Sucuri scheduler (discussed in Section 3) was
modified to always place computation where data is

sitting. Nodes of the dataflow graph that manipulate files
would be scheduled to run on the processors of the smart
disk that stores those files. If, according to the static
scheduler, the disk processor would be busy running
another node, then the decision would be to choose the
closest machine (or device).

In this work, we took a step forward and included
performance in the decision process. Notice that smart
disks would probably have a slower processor than a
traditional server. On the other hand, executing a task
on the disk processor would save us file transfer time
(through network). Information generated by SES is
passed to Sucuri in the form of configuration files so
that Sucuri static scheduler can partition the graph to
maximise performance with locality awareness.

Our scheduler will allocate each node of the dataflow
graph on the machine (or device) which has the lowest
overall cost (C), based on the computational cost
(Ceomp) and communication cost (Ceomm):

C= Ccomp + Ccomm (5)

Notice that Ciomm is basically the file transfer time
T (available in the File Catalogue), while Ceomyp is based
on the profile information for an algorithm of same
complexity (determined by SES) and the file size (s):

Ccomp =t Xs (6)

The user needs to inform the complexity of the
algorithm running on each dataflow node so that the
scheduler can estimate the execution time based on
the right profile information from SES. The method
set_complexity should be called on the Node object
for that purpose. Then, Sucuri scheduler will build an
array for each dataflow node n that manipulates a file
where each element will hold C;, which is the cost C' of
running n on host ¢. The scheduler will select host m
with minimum cost C,,;, for allocating n.

It is important to mention that, since this is a static
scheduling policy, it can be performed once for several
executions of the application. Mappings are saved to a
file where each line represents a node in the order they
were added to the graph and each number on the line is
the machine where that node was mapped to. Moreover,
as for the local schedulers running on each machine, they
still adopt a pool of tasks, which means it can perform
load balancing in an on-demand basis.

5 Experiments and Results

Our experimental environment consisted of a PC
equipped with an Intel® Core™ i5-3210M CPU
(2.50Ghz quad core), 4GB of memory, running a 3.10
Linux kernel, and a Parallella board (Parallella 2014),
equipped with a Xilinx Zynq Z7010 (ARM Cortex A9
Dual core + FPGA) (Xilinx 2017), an Epiphany 16-core
RISC processor, 1GB of memory and running a 4.6 Linux
kernel. The devices were connected by Gigabit Ethernet.

8 C. B. G. Carvalho et al.

At the Parallella board we used an SD card as the storage
medium for all input files used in our experiments.
Since the Parallella board had lower processing
power than the PC, we evaluated the proposed solution
conducting a set of experiments with a set of well-known
algorithms with different costs (complexities):

e Search performs a sequential search in a text file
counting all occurrences of a certain character.
Search complexity is O(n).

e Search 2x performs the same operation done by
Search on 2 files of the same size. This application
just replicates the Sucuri node that performs the
search operation to take advantage of different
cores available either in the Parallella board or the
PC. Search 2x complexity is also O(n).

e Filter finds numbers in lines of an input file,
using a regular expression, and adds them up.
Each line has 24 characters. Considering that
regular expression matching on a string with m
characters has O(m) complexity and that we are
performing that operation on a list of n strings,
complexity would be O(n x m). However, since
n > m we could assume a complexity of O(n).
Note that Filter has a constant (O(1) time) that is
considerably larger than Search. This would be a
good opportunity for evaluating our computation
time estimation mechanism.

e HeapSort orders a binary file containing 8-bit
integers using the Heapsort algorithm (O(nlogn)
complexity).

e MergeSort orders a binary file containing 8-bit
integers using the Mergesort algorithm (O(nlogn)
complexity).

e SelectionSort orders a binary file containing 8-bit
integers using the SelectionSort algorithm (O(n?)
complexity).

e InsertionSort orders a binary file containing 8-bit
integers using the InsertionSort algorithm (O(n?)
complexity).

Complexities were indicated here in O notation
because this is the common notation for these known
algorithms. In algorithms with © values better than O
ones, O could be used for better precision.

All benchmarks were implemented in Python with
no optimisation efforts to avoid Python interpretation
overheads, such as using pre-compiled C functions as
dynamic libraries that could be invoked from Python
code. Since file size plays an important role in our
study, all experiments present results for different file
sizes. For Search and Search 2x we used input files
of 256 bytes, 4KiB, 8KiB, 48KiB, 256KiB, 1MiB,
8MiB, 16MiB, 48MiB, 262MiB, and 476MiB. For Filter,
we executed with files of 256 bytes, 4KiB, 8KiB,

48KiB, 256KiB, 1MiB, 8MiB, 16MiB and 48MiB. For
HeapSort and MergeSort, files of 256 bytes, 4KiB, 8KiB,
48KiB, 256KiB, 1MiB, 8MiB and 16MiB were used. For
SelectionSort and InsertionSort, files of 256 bytes, 4KiB,
8KiB, 48KiB and 256KiB were used. The maximum file
size evaluated for each application was chosen so that
the application could be stressed in the context of in-situ
computing.

In the first set of experiments, we enforced In-
situ execution, meaning that all Sucuri nodes that
manipulate input files should execute on the ARM
cores of the Parallella board. Then, we activate the
proposed scheduler to evaluate if it can successfully
prevent outsourcing execution to the Parallella and avoid
performance losses.

Figure 3 shows the results for Search and Search 2x
applications. The y-axis show speedups based on PC
execution times, where data is always copied from the
Parallella board. Notice that enabling in-situ provided
speedup gains, regardless of file sizes. Moreover, the
Sucuri scheduler always took the right decisions (to use
the board). Therefore, results of enforced in-situ are the
same of using our scheduler to decide.

m Search m Search 2x

25
2
1.5
0

256B 4KiB 8KiB 48KiB 256KiB 1MiB 8MiB 16MiB 48MiB 262MiB 476MiB

Speedup

=
3

File Size

Figure 3 Speedups for the search algorithm when using
the proposed scheduler for one and two (Search
2x) input files. The z axis shows shows file sizes,
while the y axis shows the speedup over a
non-in-situ (original) scenario. Each bar provides
the results for the input files size used (256 bytes,
4KiB, 8KiB, 48KiB, 256KiB, 1MiB, 8MiB, 16MiB,
48MiB, 262MiB, and 476MiB).

Figure 4 shows the results for the Filter application.
The y-axis shows speedups based on PC execution times,
where data is always copied from the Parallella board.
Notice that Sucuri scheduler always decided to enable
in-situ, which was not the correct decision for input files
larger than 1MiB. Although Filter complexity is O(n),
the base time (¢1) is much larger than the ones in O(n)
applications used in SES and in Search application. This
suggests that our scheduler could accept such constant
as an input, which will be left to future work.

Figure 5 shows the results for sort applications.
The y-axis shows speedups based on PC execution
times, where data is always copied from the Parallella
board. In Figure 5(a), in-situ execution is enforced
and, in Figure 5(b), we are relying on our scheduler

A Dataflow Runtime Environment and Static Scheduler for Edge, Fog and In-Situ Computing

Speedup

1.2
1
0.8
0.6
0.4
0

2568 4KiB 8KiB 48KiB 256KiB 1MiB 8MiB 16MiB 48MiB

File Size

Figure 4 Speedups for the Filter application when using
the proposed scheduler. The x axis shows shows
file sizes, while the y axis shows the speedup over
a non-in-situ (original) scenario. Each bar
provides the results for the input files size used
(256 bytes, 4KiB, 8KiB, 48KiB, 256KiB, 1MiB,
8MiB, 16MiB and 48MiB).

to make that decision. Notice that in-situ execution is
only good for smaller files. Moreover, applications with
greater complexities provide the worse results. Since
the Parallella board has much less resources, such as
a smaller memory bus, cache size and slower processor
when compared to the PC, this would be expected.
Another important factor is that we limited the number
of cores for both processors to two. The Intel processor
can use the other cores to execute the Operating System,
while the ARM processor would need to share its two
cores with the Operating System. Nevertheless, our
proposed scheduler made the right choices and prevented
performance losses by disabling in-situ execution for
larger files, since transferring files would yield higher
performance than running on a slower processor. In-situ
execution of HeapSort and MergeSort yielded speedups
of up to 1.4 for files with up to 8KiB. SelectionSort and
InsertionSort only provided performance gains for 256-
byte files.

In order to evaluate the potential performance
gains of our approach, we measured the percentage
of time spent on file transfers, application execution,
Sucuri overheads and other overheads (such as MPI
initialisation). That was done for both the original
applications (in-situ disabled) and the ones that use
in-situ execution guided by our scheduler. Figures 6
and 8 provide results for search and sort applications
respectively.

In Figure 6, overheads (Sucuri and other) are
predominant for small files, since total time for those
cases is too small (in the order of 2s). For larger files,
transfer times dominate the execution for non-in-situ
configurations (Figure 6(a)). On the other hand, transfer
time is completely eliminated in all scenarios of Figure
6(b), since the scheduler is always deciding to enable
in-situ. Actually, having file transfer as a dominating
aspect of this application is exactly what makes it a
good candidate for in-situ execution, since the lower

W HeapSort ® MergeSort © SelectionSort M InsertionSort
1.6 1.60
1.4 1.40
1.2 1.20
1.0 1.00
Q Q
3 08 =0.80
B B
8 &
& 0.6 &0.60
0.4 0.40
0.2 I l L 0.20
0.0 I 1 . i 0.00
BV Y Y o
File Size File Size

(a) Enforced In-situ (b) Scheduled In-situ

Figure 5 Speedups for the different sorting algorithms
when enforcing in-situ and when using the
proposed scheduler. The x axis shows file sizes,
while the y axis shows the speedup over a
non-in-situ (original) scenario. Each bar provides
the results for the input files size used (256 bytes,
4KiB, 8KiB, 48KiB, 256KiB, 1MiB, 8MiB and
16MiB).

Transfer Time ® Execution Time + Sucuri Time m Other

-—|
@
©
)
&

(a) Original

5833883
2568 N D
4KiB I
eKip I I

[]
aQ
X
=3
-

M I ———

amic I ——
4kic NN ——

16Mie I —
48MiB

262Mic I
16mie GG
48MiB I

476MiB

256Kic I ——

262MiB I |
476Mic I

Search

m Transfer Time m Execution Time Sucuri Time = Other

100% B -
90%
80%
70%
60%
50%
40%
30%
20%
10% l I
0% —m - n
Q0 o0 30000330000 3000030
8 ¥ ¥ ¥ X333 3 === 8% xxx¥xs35:3:3z:3:=:=
NF I ® R B- DR YLD R B D0 R YL
N -IYIRF o~ —ITI&S
Search Search 2x

(b) In-situ (scheduler)

Figure 6 Time distribution for the Search application
with one and two input files (2x). Results are
provided for both the original and In-situ
scenarios. The x axis shows file sizes, while the y
axis shows % of time spent in transferring files,
executing the algorithm, Sucuri overhead and
other (such as MPI initialisation costs). Each bar
provides the results for the input files size used
(256 bytes, 4KiB, 8KiB, 48KiB, 256KiB, 1MiB,
SMiB, 16MiB, 48MiB, 262MiB, and 476MiB).

10 C. B. G. Carvalho et al.

performance of the smart disk processing cores would
not be a big obstacle.

B Transfer Time M Execution Time © Sucuri Time ® Other

100%
o0% . |
80%
70%
60%
50%
40%

30%
20%

10% I
0%
256B 4KiB 8KiB 48KiB | 256KiB 1MiB 8MiB 16MiB | 48MiB
File Size

(a) Original

M Transfer Time ™ Execution Time © Sucuri Time ™ Other

100% —
=
80%
70%
60%
50%
40%
30%
20%
|

10%
0%
256B | 4KiB 8KIB | 48KiB | 256KiB | 1MiB | 8MiB | 16MiB = 48MiB
File Size

(b) In-situ (scheduler)

Figure 7 Time distribution for the Filter application.
Results are provided for both the original and
In-situ scenarios. The = axis shows file sizes, while
the y axis shows % of time spent in transferring
files, executing the algorithm, Sucuri overhead
and other (such as MPI initialisation costs). Each
bar provides the results for the input files size
used (256 bytes, 4KiB, 8KiB, 48KiB, 256KiB,
1MiB, 8MiB, 16MiB and 48MiB.

In Figure 7, overheads (Sucuri and other) are also
predominant for small files, since total time for those
cases is too small (in the order of 2s). However, for
larger files, transfer times and execution times are well
balanced, suggesting there could be gains with in-situ
computing (Figure 7(a)). Slowdowns happened because
the Parallella board is way less powerful than the PC
used in our experiments .

In Figure 8, it is possible to observe a different
scenario. Overheads (Sucuri and other) dominate only
for really small files and execution time dominate for
larger ones, specially for SelectionSort and InsertionSort.
In this case, faster in-situ processors would be required,
in order to yield performance gains by avoiding such
insignificant file transfers.

To evaluate our approach on the context of
Edge/Fog applications, where network can present
higher latencies and packet loss than in a local networks,
we also conducted a set of experiments varying those
parameters. We expect to improve gain on in-situ
computing in those scenarios, since transfer costs would
be higher. Search and Search 2x applications were not
included in those experiments because they already
present good results in a local network. Latency and

m Transfer Time ®™ Execution Time Sucuri Time ® Other

90% I I

80%

70%

60%

50%

40% I |
gggﬂ_ﬂgg R
2 xx=s Sicx
K’vogg_ I

(a) Original

1MIB—
SMIB I
16MiB ——

4KIB —
8KIB —

48K IB m—

8MIB I——
16M B I————

2568 -

256K iB IE———

= Transfer Time ™ Execution Time © Sucuri Time ™ Other

o @
5|3
©
Iy
18

40%

20%
10%
0%

100%

90%

80%

70%

60%

50%
o @
< x
=3

8MIB I
16MIB I—

256B)

FEE @
s == x
— o © ©

(b) In-situ (scheduler)

1MIB —— —

[]
I3
©
ey
o

256K B I ——

4KiB .
8KIB —
48KIB m——

2568
4KiB n
2568 1
4KiB

Figure 8 Time distribution for the different sorting
algorithms on the original and In-situ scenarios.
The x axis shows shows file sizes, while the y axis
shows % of time spent in transferring files,
executing the algorithm, Sucuri overhead and
other (such as MPI initialisation costs). Each bar
provides the results for the input files size used
(256 bytes, 4KiB, 8KiB, 48KiB, 256KiB, 1MiB,
8MiB and 16MiB).

packet loss rate were enforced using metem, a network
emulation functionality provided by the Linux kernel
(Linux Foundation Wiki 2017). We simulated delays of
100ms, 200ms and 300ms, with 10ms variation using a
normal distribution, and packet losses of 5% and 15%.
Delays of this order of magnitude could be found when
data is being stored on a distant server. As for the packet
loss, those values are more common on a scenario where
there are sensors communicating through a wireless
connection which might suffer from -electromagnetic
interference. Notice that those characteristics are very
common in IoT applications that employ smart sensors
using wireless connections to send data to the cloud.

Figure 9 shows the results for latency experiments,
using Sucuri scheduler. Notice that, as latency increases,
in-situ execution becomes profitable for larger files,
specially for HeapSort and MergeSort (speedups for files
with up to 48KiB). SelectionSort and InsertionSort did
not present significant improvements. Moreover, there is
an upper bound trend of about 1.6 speedup, possibly
because the application is being able to stress one ARM
core of the Parallella board even for smaller file sizes.

Figure 10 shows the results for packet loss
experiments, using Sucuri scheduler. Notice that, as
packet loss rate increases, in-situ execution tends to
become profitable for larger files. However, since packet
loss would also affect packets of Sucuri runtime, we got
high standard deviations for packet loss rate of 15%.

A Dataflow Runtime Environment and Static Scheduler for Edge, Fog and In-Situ Computing 11

W HeapSort ® MergeSort SelectionSort ™ InsertionSort

16
1.4
12
1
%0'8
3 06
2 04
&o
0.2
0
T o oooog 2
X X
§35%=23 & 33
8 @ ©

om

o5pp
4K T —

Q\aa
557
&

300m

(\vip EEEEE—

qvjp T
jp

8MiB

1pMip

Qo Qa Qo
FARAR~4 8«
5w qa T

L apkip ——
2 48KiB

@
n
=3
=3
3
@
@

File Size

Figure 9 Speedups for the different sorting algorithms
when enforcing different network latencies and
using the proposed scheduler. The x axis shows
file sizes and latencies, while the y axis shows the
speedup over a non-in-situ (original) scenario.
Each bar provides the results for the input files
size used (256 bytes, 4KiB, 8KiB, 48KiB, 256KiB,
1MiB, 8MiB and 16MiB).

W HeapSort ® MergeSort SelectionSort M InsertionSort

]
¥4
?

00% 15.00
File Size

18
1.6
1.4
12

1
0.8
06
0.4
02
0

o

g ¢

g

5,

Figure 10 Speedups for the different sorting algorithms
when enforcing different network packet loss rates
and using the proposed scheduler. The x axis
shows file sizes and packet loss rates, while the y
axis shows the speedup over a non-in-situ
(original) scenario. Each bar provides the results
for the input files size used (256 bytes, 4KiB,
8KiB, 48KiB, 256KiB, 1MiB, 8MiB and 16MiB).

Speedup

256B
4KiB
8KiB
1MiB
8MiB
16MiB
256B
4KiB
8KiB
iMiB
8MiB
16MiB

osekip I

Q
¥4
©
red
§
%

Besides the low processing power of the ARMSs, which
removed part of the gains we could achieve with data
locality, it is important noticing that our experiments
only covered applications that read data from the files.
In a storage scenario, for example, in which applications
would also update files, the transfer times from the
regular computer back to the board should be taken into
account as well, resulting in potential greater speedups.

6 Discussion and Future Work

In this work, we propose to transform Sucuri, a
Dataflow programming library for Python, making it
capable of executing in-situ processing in heterogeneous
environments. The library was already versatile to
allow transparently execution on clusters of multicores,
and now Sucuri also deals with data locality in a
straightforward way. Sucuri scheduler was modified
to consider file transfer times (through network) and
computation times to decide whether it should outsource
execution of nodes of the application dataflow graph to
smart disks that store input data.

Sucuri Environment Setup (SES) tool was developed
to allow developers to estimate computing power,
bandwidth, latency and transfer times of different
machines. SES also aids to build a File Catalogue that
is used by Sucuri scheduler.

Experiments with a set of benchmarks with different
complexities show performance gains in cases where
data transfers are more expensive than computational
costs and also when network latency or packet loss are
high. Also, in every case but one, the scheduler took
the right performance decision about where to process
the work: in-situ or transferring the input to the more
powerful machine. This demonstrates Sucuri’s ability to
orchestrate dataflow parallelism in multicores, clusters
and in-situ environments transparently and efficiently.
Moreover, it was possible to identify limitations
pertaining the equipment used to represent the storage
device.

This work opens a set of possible future research,
such as experimenting with different benchmarks,
evaluating different devices, and performing experiments
to measure energy consumption as another possible
benefit of in-situ computing. Moreover, in order to
increase performance, we need to fully explore the
resources of the Parallella board, including the FPGA
and Epiphany cores. It was also detected that in some
cases we could benefit from having the complexity
constants in the performance calculations, a good point
for future work. Finally, it might be useful to experiment
with much larger datasets and applications that generate
output data, to stress the library and seek for possible
bottlenecks we could fix.

We are also working on implementing a dynamic
scheduling mechanism for Sucuri in the context
of Edge/Fog/In-situ computing. The scheduler could
invoke SES to dynamically update system profile

12 C. B. G. Carvalho et al.

information. Moreover, we intend to integrate it with
some distributed file system inspired in the GFS
(Ghemawat et al. 2003), like the open source Hadoop
Distributed File System (Shvachko et al. 2010, The
Apache Software Foundation 2016). They are mature
and specialised file systems for exploiting data locality
with large files and redundancy, thus our approach can
benefit from their features and can allow developers of
Sucuri to concentrate on the dataflow aspects.

References

Altman, E., Avrachenkov, K. & Barakat, C. (2005),
‘A Stochastic Model of TCP/IP With Stationary
Random Losses’, IEEE/ACM Transactions on
Networking 13(2), 356-369.

Alves, T. A., Goldstein, B. F., Franca, F. M. & Marzulo,
L. A. (2014), A Minimalistic Dataflow Programming
Library for Python, in ‘2014 International Symposium
on Computer Architecture and High Performance
Computing Workshop’, IEEE, pp. 96-101.

Alves, T. A. O., Marzulo, L. A. J., Franga, F. M. G.
& Costa, V. S. (2011), ‘Trebuchet: Exploring tlp with
dataflow virtualisation’, Int. J. High Perform. Syst.
Archit. 3(2/3), 137-148.

Buono, D., Danelutto, M., De Matteis, T., Mencagli, G.
& Torquati, M. (2014), A lightweight run-time support
for fast dense linear algebra on multi-core, in ‘Proc.
of the 12th International Conference on Parallel and
Distributed Computing and Networks (PDCN 2014).
TASTED, ACTA press’.

Carvalho, C. B. G., Ferreira, V. C., Franca, F. M. G.,
Bentes, C., Alves, T. A. O., Sena, A. C. & Marzulo, L.
A.J. (2017), Towards a dataflow runtime environment
for edge, fog and in-situ computing, n ‘2017
International Symposium on Computer Architecture
and High Performance Computing Workshops (SBAC-
PADW)’, pp. 115-120.

Caulfield, A., Chung, E., Putnam, A., Angepat, H.,
Fowers, J., Haselman, M., Heil, S., Humphrey,
M., Kaur, P., Kim, J.-Y., Lo, D., Massengill, T.,
Ovtcharov, K., Papamichael, M., Woods, L., Lanka,
S., Chiou, D. & Burger, D. (2016), A cloud-scale
acceleration architecture, in ‘Proceedings of the 49th
Annual IEEE/ACM International Symposium on
Microarchitecture’, IEEE Computer Society.

Dagum, L. & Menon, R. (1998), ‘Openmp: An industry-
standard api for shared-memory programming’, IEEE
Comput. Sci. Eng. 5(1), 46-55.

Duro, F. R., Blas, J. G., Isaila, F., Wozniak, J.,
Carretero, J. & Ross, R. (2014), ‘Exploiting data
locality in Swift / T workflows using Hercules’, Nesus
Workshop I(1), 7T1-76.

Fitzpatrick, B. (2004), ‘Distributed caching with
memcached’, Linuz J. 2004(124), 5-.

Fortin-Parisi, S. & Sericola, B. (2004), ‘A Markov
model of TCP throughput, goodput and slow start’,
Performance Fvaluation 58(2-3), 89-108.

Ghemawat, S., Gobioff, H. & Leung, S.-t. (2003), The
Google file system, in ‘Proceedings of the nineteenth
ACM symposium on Operating systems principles -
SOSP ’03’, ACM Press, New York, New York, USA,
pp- 29-43.

Giang, N. K., Blackstock, M., Lea, R. & Leung, V.
C. M. (2015), Developing iot applications in the
fog: A distributed dataflow approach, in ‘2015 5th
International Conference on the Internet of Things
(IOT)’, pp. 155-162.

H. Topculoglu, S. Hariri, M. W. (2002), Performance-
effective and low-complexity task scheduling for
heterogeneous computing, in ‘IEEE Trans. Parallel
Distrib. Systems 13 (3)’, pp. 260—274.

Jalaparti, V., Bodik, P., Menache, I., Rao, S.,
Makarychev, K. & Caesar, M. (2015), ‘Network-Aware
Scheduling for Data-Parallel Jobs’, ACM SIGCOMM
Computer Communication Review 45(5), 407-420.

Johnston, W. M., Hanna, J. R. P. & Millar, R. J. (2004),
‘Advances in dataflow programming languages’, ACM
Computing Surveys 36(1), 1-34.

Jun, S. W., Liu, M., Lee, S., Hicks, J., Ankcorn, J.,
King, M., Xu, S. & Arvind (2015), BlueDBM: An
appliance for Big Data analytics, in ‘2015 ACM/IEEE
42nd Annual International Symposium on Computer
Architecture (ISCA)’, pp. 1-13.

Juniper (2018), ‘Juniper Networks Advances Application
Performance and Acceleration with New Compact
Compute-Integrated Network Switch’. Available
at https://www.maxeler.com/juniper-switch/.
Accessed: Feb 1, 2018.

Kim, J., Abbasi, H., Chacn, L., Docan, C., Klasky, S.,
Liu, Q., Podhorszki, N., Shoshani, A. & Wu, K. (2011),
Parallel in situ indexing for data-intensive computing,
in ‘2011 IEEE Symposium on Large Data Analysis and
Visualization’, pp. 65-72.

Klasky, S., Abbasi, H., Logan, J., Parashar, M., Schwan,
K., Shoshani, A., Wolf, M., Ahern, S., Altintas, 1.,
Bethel, W. et al. (2011), ‘In situ data processing
for extreme-scale computing’, Scientific Discovery
through Advanced Computing Program (SciDAC11).

Linux Foundation Wiki (2017), ‘netem’. Available at
https://wiki.linuxfoundation.org/networking/
netem. Accessed: 28-Aug-2017.

A Dataflow Runtime Environment and Static Scheduler for Edge, Fog and In-Situ Computing 13

Lombardi, M., Milano, M., RUGGIERO, M. et al.
(2010), Stochastic allocation and scheduling for
conditional task graphs in multi-processor systems-on-
chip, in ‘Journal of Scheduling doi: 10.1007/s10951-
010-0184-y.’, pp. 315-345.

Marzulo, L. A., Alves, T. A., Franca, F. M. &
Costa, V. S. (2014), ‘Couillard: Parallel programming
via coarse-grained data-flow compilation’, Parallel
Computing 40(10), 661 — 680.

Matheou, G. & Evripidou, P. (2016), FREDDO: an
efficient framework for runtime execution of data-
driven objects, in ‘Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA)’, Las Vegas,
pp. 265-273.

Mathis, M., Semke, J., Mahdavi, J. & Ott, T. (1997),
‘The Macroscopic Behavior of the TCP Congestion
Avoidance Algorithm’, ACM SIGCOMM Computer
Communication Review 27(3), 67-82.

NGD Systems (2017), ‘NGD Systems announces
availability of industry’s first Computational Storage’.
Available at http://www.prnewswire.com/news-
releases/ngd-systems-announces-availability-
of-industrys-first-computational-storage-
300493319.html. Accessed: Feb 1, 2018.

OpenFog Consortium Architecture Working Group
(2016), ‘OpenFog Architecture Overview’. Available
at http://www.openfogconsortium.org/wp-
content/uploads/OpenFog-Architecture-
Overview-WP-2-2016.pdf. Accessed: Sep 7, 2017.

Parallella (2014), ‘Parallella-1.x reference manual’.
Available at http://www.parallella.org/docs/
parallella manual.pdf. Last accessed on February
1, 2018.

Penczek, F., Cheng, W., Grelck, C., Kirner, R.,
Scheuermann, B. & Shafarenko, A. (2012), A data-flow
based coordination approach to concurrent software
engineering, in ‘2012 Data-Flow Execution Models for
Extreme Scale Computing’, pp. 36-43.

Sena, A. C., Vaz, E. S., Franca, F. M. G., Marzulo,
L. A. J. & Alves, T. A. O. (2015), Graph templates
for dataflow programming, in ‘2015 International
Symposium on Computer Architecture and High
Performance Computing Workshop (SBAC-PADW)’,
pp- 91-96.

Shi, W., Cao, J., Zhang, Q., Li, Y. & Xu, L. (2016), ‘Edge
computing: Vision and challenges’, IEEE Internet of
Things Journal 3(5), 637-646.

Shvachko, K., Kuang, H., Radia, S. & Chansler,
R. (2010), The hadoop distributed file system, in
‘Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST)’,

MSST ’10, IEEE Computer Society, Washington, DC,
USA, pp. 1-10.

Silva, R. J., Goldstein, B., Santiago, L., Sena, A. C.,
Marzulo, L. A., Alves, T. A. & Franga, F. M. (2016),
Task Scheduling in Sucuri Dataflow Library, in ‘2016
International Symposium on Computer Architecture
and High Performance Computing Workshops (SBAC-
PADW)’, Vol. 1, IEEE, pp. 37-42.

Sinnen, O. (2007), Task Scheduling for Parallel Systems
(Wiley Series on Parallel and Distributed Computing),
Wiley-Interscience.

T. I. Adam, K. M. C. & Dickson, J. R. (1974), A
comparison of list schedules for parallel processing
systems, in ‘Commun. ACM, vol. 17, no.12’, pp. 685—
690.

TBB (2014), ‘Tbb flowgraph’. Available at http:
//www.threadingbuildingblocks.org/docs/help/
reference/flow_graph.htm. Last accessed on August
8, 2014.

The Apache Software Foundation (2016), ‘HDFS Users
Guide’. Available at http://hadoop.apache.org/
docs/r2.7.3/hadoop-project-dist/hadoop-hdfs/
HdfsUserGuide.html. Accessed: 29-Aug-2017.

Thies, W., Karczmarek, M. & Amarasinghe, S. P. (2002),
Streamit: A language for streaming applications, in
‘Proceedings of the 11th International Conference
on Compiler Construction’, CC 02, Springer-Verlag,
London, UK, UK, pp. 179-196.

Wilde, M., Hategan, M., Wozniak, J. M., Clifford, B.,
Katz, D. S. & Foster, I. (2011), ‘Swift: A language
for distributed parallel scripting’, Parallel Computing
37(9), 633 — 652.

Wozniak, J., Armstrong, T., Wilde, M., Katz, D.,
Lusk, E. & Foster, 1. (2013), ‘Swift/t: Large-
scale application composition via distributed-memory
dataflow processing’, pp. 95-102.

Xilinx (2017), ‘Zynq-7000 all-programmable
technical reference manual’. Available at https:
//www.xilinx.com/support/documentation/
user_guides/ugb85-Zynq-7000-TRM.pdf. Accessed:
Sep 7, 2017.

