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Abstract—The efficient parallelization of very fine-grained
computations is an old problem still challenging also on modern
shared memory architectures. Scalable parallelizations are possi-
ble if the base mechanisms provided by the run-time support
(for inter-thread/inter-process synchronization/communication)
are carefully designed and developed on top of parallel architec-
tures. This requires a deep knowledge of the hardware behavior
and the interaction patterns used by the parallelism paradigms.
In this paper we present our experience in developing efficient
inter-thread interaction mechanisms on the Tilera TILEPro64
network processor. Although it is a domain-specific parallel
architecture, the TILEPro64 represents a notable example of
how advanced architectural structures, such as user-accessible on-
chip interconnection networks and configurable cache coherence
protocols, are of great importance to design lightweight coop-
eration mechanisms enabling efficient parallel implementations
of fine-grained problems. The paper presents our ideas and an
experimental evaluation that compares our proposals with other
existing run-time supports.
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I. INTRODUCTION

An increasing number of emerging applications, such as
network traffic and sensor data processing, e-business transac-
tions monitoring, and real-time analysis of data streams from
social media, are characterized by the presence of fine-grained
computations that need to be efficiently parallelized to meet
strong throughput and latency requirements.

The design of efficient, scalable fine-grained paralleliza-
tions is a challenging issue on modern multi-/many-core archi-
tectures. In these applications the execution is communication
bound: the frequency of synchronization/communication is
very high and each individual task is small in size and
execution time. In this context the overhead of setting up the
run-time system and executing core-to-core synchronization
can easily exceed the parallelization benefit, with the risk
of reducing the performance instead of improving it. For
these reasons, fine-grained parallelism requires support both
from the hardware architecture and the run-time system. Fast
communication and synchronization mechanisms can not rely
on standard techniques [4], [6], [S]. As an example pthread
mutexes and condition variables are not effective, since they
can easily take thousands of clock cycles that may represent a
significant portion of the execution time.

Over the last years a large research effort has been devoted
to studying efficient solutions on multi-core architectures.
Lock-free queues represent a de-facto standard for low latency

inter-thread interaction. Several research works [4], [6] have
investigated the design of efficient queues based on lock-free
shared data structures and their porting on today’s multicores.
These works are based on very low-level optimizations aimed
at hiding latencies of the cache coherence subsystem and
improving the efficacy of the hardware prefetcher.

In this work we investigate the design of lightweight
mechanisms on network processors. Network processors are
application-specific microprocessors targeting network domain
problems such as pattern matching and classification, route
lookup, data manipulation, intrusion detection, and queue
management. The interesting aspect of network processors is
the availability of very specific architectural structures that
can be exploited to speed up inter-core cooperation. Notably,
configurable cache coherence protocols and the presence of
user-accessible on-chip core-to-core interconnection networks
enlarge the space of possible optimizations, leading to very
efficient ways to conceive run-time mechanisms on these
architectures.

This paper describes our experience on the TILEPro64 net-
work processor [12]. Inspired by the classic mechanisms used
in networking applications to exchange packet descriptors, we
define efficient mechanisms (send and receive operations) that
rely on the architectural facilities available on this architecture.
We compare our solutions with standard techniques based on
pthread synchronization and the lock-free queues made avail-
able by the FastFlow parallel programming framework [4],
[1]. The results confirm that the architectural facilities available
on network processors provide a further degree of freedom left
to the run-time support designer to develop synchronization
mechanisms that outperform standard solutions and support
scalable parallelizations of very fine-grained problems.

The organization of this paper is the following. Sect. II
presents a brief overview of similar works. Sect. III introduces
the features of network processors and the TILEPro64 archi-
tecture. Sect. IV outlines the design of our run-time mecha-
nisms. Sect. V provides and experimental evaluation of our
work by studying micro-benchmarks and a complete parallel
application on the TILEPro64. Finally Sect. VI concludes this

paper.

II. RELATED WORK

In the literature a common approach to low latency syn-
chronization on multicores consists in lock-free concurrent
data structures used to exchange references to shared data
between cores. In [10] the authors propose a single-producer



single-consumer lock-free queue targeting data traffic mon-
itoring in high-speed networks. The rationale is to reduce
memory access overhead by improving the cache locality of
accessing the control variables of the queue. Another simi-
lar approach has been described in [7], which is based on
cache-aware optimizations and lazy updates to decrease the
communication overhead. In [6] the FastForward framework
for pipeline parallel applications has been proposed by relying
on fast queue/dequeue operations properly optimized for the
cache coherence protocols of modern multicores. Similar ideas
have been adopted by the low-level communication support
of FastFlow, a parallel programming framework based on
algorithmic skeletons [4], [1].

In this paper we focus on the space of optimizations for
fine-grained parallelism offered by network processors [13]
with special attention on the TILEPro64 architecture. As
described in [13], programming models of networking applica-
tions exploit lightweight cooperation mechanisms among cores
and specialized co-processors based on the exchange of packet
descriptors through special on-chip interconnection networks.
Similar mechanisms can be adopted to design run-time sup-
ports for general-purpose parallel programs, not limited to the
network domain only. Although the porting of some parallel
programming frameworks on TILEPro64 has been discussed
in the past [5], their mechanisms do not exploit all the features
of the underlying architecture in terms of cache coherence
protocols and on-chip interconnection networks. Further opti-
mizations are possible, that lay the groundwork for lightweight
mechanisms supporting very fine-grained parallelism.

III. NETWORK PROCESSORS: TECHNOLOGICAL TREND
AND PROGRAMMING MODELS

The technological roadmap of network processors started
from general-purpose CPUs performing classical routing pro-
tocols and switching functionalities [13], [8]. To improve the
scalability with high bandwidth traffics, the second generation
of network processors exploited specialized hardware (ASICs
chips - Application Specific Integrated Circuits) to interpret
networking functionalities directly at the hardware level. De-
spite their initial success, ASIC-based network processors were
hard to design and lacked the flexibility and extensibility to
incorporate additional features and to cope with the dynamicity
of modern communication protocols and internet traffics [8].

Over the recent years, network processors have evolved
to combine high-speed co-processors, specialized for common
networking tasks, with programmable cores, in an attempt
to achieve the trade-off between high performance and flex-
ibility [13]. Examples are the IBM PowerEN, Intel IXP and
more recently Broadcom XLP and the Tilera architectures. The
trend is to have heterogeneous multicores with the following
distinguishable features:

e a high number of simple, often in-order cores with
support to hardware multi-threading;

e the presence of a set of integrated co-processors re-
sponsible to accelerate specific tasks, e.g. checksum,
compression/decompression, encryption and authenti-
cation, regular expressions, XML parsing and so on;

e amulti-level cache hierarchy composed of private only
or private and shared levels of cache with configurable
coherence mechanisms;

e a uniform and low latency cooperation mechanism
among cores/co-processors which exploits dedicated
on-chip interconnection networks.

The heterogeneity of network processors and the need of
high bandwidth and low latency pose serious problems to
software design and development. The design of networking
applications has followed two basic parallelism paradigms. The
first model, called run-fo-completion [3], is based on the rask-
farm paradigm in which incoming packets are dispatched to
a pool of identical processing engines executed on general-
purpose cores. The engines execute the same functions on
different packets possibly by interacting with co-processors for
the acceleration of specific tasks. The second model derives
from the pipeline parallelism paradigm, sketched in Fig. 1.
Each engine executes a part of the data-plane processing
on each packet by possibly interacting with specialized co-
processors. Once a packet has been processed by an engine,
it is passed to the next stage of the pipeline. The two models
have different features in terms of load balancing (easier on

task farming) and to reduce the contention on co-processors
(better in pipelining).
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Fig. 1: Pipeline model for packet processing on network processors
and the use of on-chip messaging networks.

On both the models a certain degree of coordination
is required to distribute packets and to offload part of the
computation on the co-processors. Furthermore, the functions
applied on packets usually have a fine computational grain.
Instead of using costly mechanisms such as spin-locks, mu-
texes and semaphores, last-generation network processors offer
alternative ways to perform the cooperation between cores/co-
processors. An interesting approach is represented by on-chip
interconnection networks (referred to as Messaging Networks)
used to exchange messages containing packet descriptors, i.e.
the packet headers and the initial memory address of the packet
in memory (see Fig. 1). The transmission of packet descriptors
is performed over the messaging network by skipping all the
shared memory and cache hierarchy levels, thus exploiting
the on-chip interconnection to limit the memory contention
by sharply reducing the communication latency. Bus, Ring or
Mesh networks are available on modern network processors
like Broadcom XLP (formerly Netlogic), Cavium and Tilera.
In the next part of this section we will provide a detailed
description of the Tilera TILEPro64 architecture.



A. The TILEPro64 Network Processor

The TILEPro64 [12] is equipped with 64 identical process-
ing cores (called tiles) interconnected by an on-chip network
named Tilera iMesh. Each link consists of two 32-bit-wide
unidirectional physical links carrying the traffic in both the di-
rections. Each tile is composed of: (a) a 3-way VLIW in-order
processor running at 866MHz with a single thread context,
(b) a private cache subsystem composed of 16KB L1i, 8KB
L1d and 64KB L2, and (c¢) a switch for the interconnection
with the iMesh network. To sustain the memory bandwidth
requirements of the 64 tiles, four DDR2 memory controllers
are placed at the edges of the chip, as shown in Fig. 2. The
TILEPro64 is mounted on a PCI express card of a host machine
and it is equipped with on-chip PCle and network controllers.
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Fig. 2: TILEPro64 architecture: interconnection networks and the
structure of a generic tile.

The TILEPro64 is a peculiar architecture. The rationale
of its design is to sacrifice the number of co-processors to
increase the chip area available to general-purpose cores.
However, the TILEPro64 shares interesting features with other
network processors, mainly the presence of on-chip messaging
networks and configurable cache coherence policies.

The iMesh network is composed of five independent 2D
meshes each one carrying a different kind of traffic. The
Memory Dynamic Network (MDN) is dedicated to transfers
between tiles and the four memory controllers. Other two
meshes (IDN and CDN) are dedicated to I/O transfers and the
cache coherence protocol. The User Dynamic Network (UDN)
supports the explicit transfers of small messages (up to 128 32-
bit words) among tiles under application programmer control.
Each tile has five UDN hardware queues connected directly
to the processor registers. Special assembler instructions are
provided to perform the enqueue/dequeue and the transmission
over UDN. The UDN serves user-land processes or threads,
providing a flexible and low latency cooperation mechanism.
This is a departure from the standard multi-core design, in
which the user-land interaction between threads is possible
only through shared memory [12].

The TILEPro64 provides a flexible cache subsystem named
Dynamic Distributed Cache (DDC) [12]. A tile T; is called the
home node for a cache line x (64 bytes) if when a miss occurs
on that tile, the line is directly loaded from the memory. A
miss from a different tile 77 is served by the home tile T; that
transmits the line  from its L2 cache to the T);’s L2 cache.
Therefore, for that cache line the L2 cache of the home tile acts
as a virtual L3 cache for all the other tiles. The home tile is

responsible to handle the coherence of that line and to maintain
the updated copy in its L2 cache, i.e. if T; writes the cache
line x, the modified words are forwarded to the home tile 7
that updates its copy and transmits the invalidation messages
to the other tiles (if they exist) that hold a copy in their private
L1/L2 caches. The TILEPro64 supports a distributed hash-
based homing, in which cache lines are homed on different tiles
by hashing their base addresses. However, the programmer is
also able to manually set the home tile for all the cache lines
belonging to the same virtual memory page.

IV. LIGHTWEIGHT RUN-TIME MECHANISMS FOR
FINE-GRAINED PARALLELISM

In this section we will exploit the architectural features
of the TILEPro64 to design efficient run-time support mecha-
nisms for general-purpose fine-grained parallel computations.

A clear and well-defined structuring of run-time supports
is possible if parallel programs instantiate well-known par-
allelism patterns with a precise semantics in terms of com-
munication/synchronization between parallel entities and their
role in the overall computation. Notable examples are task-
farm, pipeline and data-parallel patterns like map, reduce and
stencils. According to this approach, known in the literature
as Structured Parallel Programming (SPP) [9], the run-time
support consists of a limited set of base mechanisms for point-
to-point and asymmetric distributions, non-determinism and
collective operations like multicast, scatter, gather, and so on.

We start with a very basic mechanism, that we call
communication interface, used by cores to synchronize and
exchange messages. The mechanism provides a point-to-point
communication between two partners with a buffer of one
position. Fig. 3 describes the send and the receive primitives.

send(data)::
wait until ack is present
write data in msg
reset ack
signal ready to the receiver
receive(buf)::
wait until ready is present
copy msg in buf
reset ready
signal ack to the sender

_SENDER__ RECEIVER_

Fig. 3: Abstract definition of the send and receive primitives on
the communication interface.

The pseudo-code uses two boolean events: (i) the ready
event specifies the presence of a new message, (ii) the ack
represents the reception of the last transmitted message. The
signal operation sets the event to true, the reset one does the
opposite. For a correct behavior, the ready and the ack events
are initialized to false and true respectively. By assuming
that the functionalities of a parallel program share part of
their address space (e.g. they are implemented as threads), the
message msg can be a memory pointer to a shared data struc-
ture. As discussed in previous works [4], [6], this approach is
general and makes it possible to implement work distribution,
result collection and other interactions by exchanging data
structures by reference. Throughout this paper we assume that
the message transmitted on the communication interface is a
single machine word representing a memory pointer.

In the next parts of this section we will study two imple-
mentations of this base mechanism on TILEPro64: the first is



based on shared memory variables and a proper configuration
of the cache coherence directives to minimize the communica-
tion latency; the second exploits the UDN facility to exchange
messages using a separated interconnection network.

A. Communication interface on Shared Memory

The first implementation consists in a symmetric commu-
nication mechanism based on shared memory variables. The
ready and the ack events are implemented by two boolean flags
(initialized to O and 1 respectively) and the waiting of an event
is implemented by a while-loop on the corresponding flag. The
shared variable msg is the message word (a memory pointer)
transmitted from the sender to the receiver. The code of the
send and receive operations is shown in Fig. 4.

send(cm_int, data):: receive(cm_int, buf)::

1 while(cm_int->ack == 0); 1 while(cm _int->ready == 0);
cm_int->msg = data; 2 buf = cm_int->msg;
cm_int->ack = 0; 3 cm_int->ready = 0;
cm_int->ready = 1; 4 cm_int->ack = 1;

IR

Fig. 4: Shared memory implementation of the symmetric communi-
cation mechanism.

Let us consider an abstract multi-processor architecture
M respecting the Sequential Consistency memory model [2].
Accordingly, load/store instructions of the same processor are
executed in the program order and they can be interleaved with
instructions of different processors in any sequential order. On
this abstract architecture the following result holds:

Proposition 1. (Correctness) The send and receive algo-
rithms executed on M implement a lock free single-producer
single-consumer shared buffer of one position.

Proof sketch: TInitially (ready, ack) = (0,1), i.e. the
sender can proceed by executing the send while the receiver
is eventually waiting on line 1 of the receive. The sender
writes the data in the msg field and sets the flags such that
(0,1) — (1,0). Now the receiver is the only one of the two
partners that can execute the communication primitive. It reads
the message and copies it in a private variable buf, and sets
the flags such that (1,0) — (0,1) going back to the initial
condition. It is worth noting that row 2 in the send must be
executed after ack is equal to 1 (otherwise the new message
can overwrite a previous and possible unreceived message),
and row 4 after row 2 (the ready must be set to 1 after the store
of the message in msg is visible to the receiver). Similarly,
row 2 in the receive must be executed if and only if ready
is equal to 1, and row 4 after row 2 (saving the message in
the private variable before it is overwritten by the sender). W

The TILEPro64 architecture adopts a weak memory con-
sistency model [12]. Loads and stores to different addresses
issued by the same core can become visible to the other cores
in a different order w.r.t the program one. To execute correctly
the communication primitives on this architecture, we have to
force the ordering of the instructions and their visibility to the
other cores. Both in the send and in the receive algorithm
we have to execute a memory fence between rows 3 and 4. It
is worth noting that the store in the msg variable and the load
of msg at row 2 in the send and in the receive algorithms
can never overpass the load of ack and ready flag at row 1

respectively, since each core of the TILEPro64 processes the
instructions in-order.

One of the most important features of TILEPro64 is its
configurable cache coherence mechanism (see Sect. III-A). The
default strategy, referred to as hash-for-home [11] (see Fig. 5),
assigns the home nodes for the cache lines by hashing their
base addresses: i.e. cache lines are distributed across many
tiles by load balancing memory accesses across several caches.
Accordingly, the cache line of the communication interface
is homed at a generic tile 7}, the can be different from the
sender’s tile 7; and the receiver’s one 7. During the execution
of a communication primitive (e.g. a send by 7T;) the cache
line is modified causing a write-through of the written words
to the home tile 7} and the invalidation of the cache line
copy in the T}’s cache. The successive read by T} (e.g. during
the spinning on the ready flag) causes a request to the home
tile and the transmission of the entire cache line back to the
T;’s cache. This interaction pattern is represented in Fig. 5.
A similar behavior can be described for the execution of the
receive operation performed by Tj.

_ _cache line

Sender

cache

iMesh network

iMesh network

Tile Ti Ti's L2 cache Tk's L2 cache Tj's L2 cache Tile Tj
o —r0+————@ o— >0 o+———————r0+——0

Fig. 5: Cache lines and cache coherence traffic with the hash-for-
home strategy: execution of the send primitive.

With the hash-for-home strategy we have one invalidation
and the transfer of the cache line at the end of the execution
of each communication primitive. This behavior gives the clue
for an important optimization to reduce the communication
latency: the modified words of the communication interface
should be transmitted directly to the L2 cache of the tile that
needs to read these values. To do that, we adopt a fixed-homing
strategy in which the home tile of a cache line is defined by
software using a specific API provided by the Tilera Multicore
Library (TMC) [11]. For the ready flag and the message word
the ideal home node is the receiver’s tile. However the opposite
holds for the ack flag. Tab. I shows the activities performed
on the fields of the communication interface.

Ready Ack Msg
Sender ‘Write Only Read and Write | Write Only
Receiver | Read and Write | Write Only Read Only

TABLE I: Reading and writing activities on the fields of the
communication interface.

Since each cache line can have exactly one home tile, a
solution consists in partitioning the fields of the communica-
tion interface in two different cache lines: the first one contains
only the ack flag; the second cache line contains the ready flag
and the message word. A clever allocation consists in homing
the cache line of the ack flag on the sender’s tile while the
other cache line is homed on the receiver’s L2 cache. The new



interaction pattern is depicted in Fig. 6. During a send, the
ready flag and the message word are transmitted directly from
the sender’s tile to the receiver’s one, which is the home node
of that cache line (it owns the updated copy). The opposite
behavior occurs during the execution of the receive, when
the new value of the ack flag is transmitted directly from the
receiver to the sender’s L2 cache.

cache line

'

|
[}
|
[}
|
|
f

update to home node

Sender Receiver

cache line

update to home node

Tile Ti Ti's L2 cache iMesh network Tj's L2 cache Tile Tj

Fig. 6: Cache lines and cache coherence traffic with the fixed-homing
strategy.

Furthermore, this allocation makes it possible to avoid
cache invalidation messages. The store instructions on the
write-only fields of the communication interface, i.e. the ack
cache line for the receiver and the ready+msg cache line for
the sender, can be performed with the no-allocate-on-write
flag available in the Tilera’s instruction set. Store instructions
with this flag enabled do not bring the cache line into the L2
cache in the case of a write miss. In this way, the sender and
the receiver do not need to transfer their write-only part of the
communication interface into their L2 cache, with a further
reduction in the traffic on the iMesh network.

1) Generalizations of the mechanism: the basic symmetric
communication interface on shared memory can be used to
emulate several possible generalizations of the mechanism,
notably (a) communications with more than one buffer position
and, (b) asymmetric many-to-one communications.

We denote by K > 1 the asynchrony degree, i.e. the
maximum number of messages that a sender can send without
waiting for the first sent message being received. In the basic
implementation of our communication interface K is equal
to 1. A higher asynchrony degree can be obtained by using
K symmetric communication interfaces used in a round-robin
fashion by the sender and the receiver, as depicted in Fig. 7.
The sender and the receiver have two private variables indexS

READY-2 |

indexS MSG2 | :}

Y ACK-2

READY-3 |

MSG-3

H indexR
ACK-3 ! % M

READY-1 E READY-K E

send_buffered(cm_int, data)::
send (cm_int [indexS], data);
indexS = (indexS + 1)mod K;

receive_buffered(cm_int, buf)::
receive (cm_int[indexR], buf);
indexR = (indexR + 1) mod K;

Fig. 7: Implementation of a K-buffered symmetric communication
with K communication interfaces used in a round-robin fashion.

and indexR (both initialized to zero) which denote the next
communication interface to use. Each time the sender wants
to transmit a new message, the interface with index indexS is

selected and the send primitive is executed on it (according to
the same pseudo-code of Fig. 4) and indexS is incremented
by 1 modulo K. Symmetric actions are performed on the
receiver’s side using the private variable indexR.

The second generalization is a form of non-determinism
consisting in an asymmetric many-to-one communication in-
terface with many senders and one receiver. By executing a
receive operation it is possible to receive a message from
any source selected by a strategy invisible to the programmer
(it is implemented in the run-time support).

Our communication interface can be easily extended to
cover the asymmetric behavior. An asymmetric interface serv-
ing N senders can be implemented by N single-producer
single-consumer interfaces. The receive primitive must be
modified in order to implement the non-deterministic selection
(see Fig. 8). Instead of a while-loop on a single ready flag, the
asymmetric version scans all the flags waiting for at least one
ready becoming equal to 1. Once selected one of the ready
flag, the implementation proceeds exactly as in the symmetric
case, as shown in Fig. 8. The wait-until statement can be
implemented as a while-loop on the set of ready flags possibly
with a fair selection policy. To exploit the cache optimizations
discussed before, the pairs {(ready;, msg;)|¢ = 1,...,N}
can be grouped in a set of cache lines homed in the receiver’s
tile. Similarly, the ack flags {(ack;)|: = 1,...,N} are
allocated in separated cache lines each one homed in the
corresponding sender’s tile.

receive_asym(cm_int, buf):

1 1 < wait until at least one Ready == 1;
//Let i the selected sender

2 buf = cm_int->msg[i];

3 cm_int->readyl[i] = 0;

4 cm int->ack[i] = 1;

Fig. 8: Pseudo-code of the receive primitive on the asymmetric
communication interface (many-to-one).

B. Exploiting the User Dynamic Network

The hardware facilities of the TILEPro64 can be exploited
to provide an alternative implementation of the communication
interface without using shared memory variables for the syn-
chronization and the message transmission. This implemen-
tation relies on the UDN on-chip network (see Sect. III-A).
Every tile can transmit a message composed of one header
word and the payload by specifying: (i) the z- and y-
coordinates of the destination tile; (ii) a fag associated with the
message. When a new message arrives at the destination tile,
the switch unit inspects the tag and forwards the message to
the corresponding UDN hardware queue. If a tag miss occurs,
the message is dispatched to the special catch-all queue.

The UDN implementation is based on using two UDN
queues, one on the sender’s side and one on the receiver’s
side, named respectively ack_queue and msg_qgueue. The ack
event is implemented by the reception of a special word (ack)
from the ack_queue. The reception of a message from the
msg_queue by the receiver corresponds to both the ready event
and the copy of the message in the temporary variable buf of
the receiver. This idea is sketched in Fig. 9.



During the initialization of the communication interface
(e.g. by calling a special initialize function), the receiver
sends a first ack to the sender. When the sender executes
the send primitive, it must wait for the reception of the
ack, and then it can transmit the message to the destination
tile. The receiver waits for the reception of a new message
from its input msg_queue. When a new message is received,
the receiver notifies the ack to the sender’s ack_queue. In
the pseudo-code of Fig. 9 push and pop are two macros
for the corresponding assembler instructions implementing the
transmission and the reception from the corresponding UDN
queue. The two instructions have a blocking semantics: i.e. the
push returns if and only if the destination queue has enough
space to enqueue the new message; similarly the pop blocks
the calling thread as long as the target input queue is empty.

o
msg_queue (11—
Tile - \ UIDNK : i Tile
(senden) _mm ) networ . e———  (receiven
| ) ack_queue
o

send(cm_int, data)::
1 pop(cm int->ack queue id, ack word);
> push(cm _int->msg queue id, cm int->rcv_tile, data);

receive(cm_int, buf):
1 pop(cm_int->msg_queue_id, buf);
> push(cm _int->ack queue id, cm int->snd tile, ack word);

Fig. 9: UDN implementation of the symmetric communication
interface.

Although the synchronization and the message transmis-
sion exploit the UDN network only, some shared data between
the sender and the receiver are still necessary, such as the
identifiers of the msg_queue and the ack_queue, and the
coordinates of the sender’s and the receiver’s tiles. However,
such data are defined during the initialization of the commu-
nication interface, and for the successive send and receive
invocations they are read-only data present in both the L1d and
L2 private caches of the sender and the receiver. In conclusion,
no memory or coherence traffic is generated by the UDN
communication support.

1) Generalizations of the mechanism: an asynchrony de-
gree greater than one can be obtained by using the buffering
capability of the UDN queues and by slightly changing the
initialization of the communication interface. Instead of gener-
ating a single ack message during the initialization, the receiver
can initialize the communication interface by sending K ack
words to the sender’s ack_queue. Each ack corresponds to the
possibility to transmit a new message by the sender. Since the
buffering space of a UDN queue is of 128 32-bit words, the
maximum asynchrony degree is K = 128.

Support to many-to-one communications can be achieved
through the hardware de-multiplexing of the UDN network.
The asymmetric communication interface with /N senders and
one receiver uses N ack_queues, one for each sender, and one
msg_queue on the receiver as shown in Fig. 10. The receiver at
the application-level must be able to distinguish the sender of
each message, in order to transmit the ack to the corresponding
ack_queue. Therefore, in the asymmetric implementation each
message is composed of a pair of words, the first is the sender
identifier, the second is the real message word (a pointer to
a data structure shared between the sender and the receiver).

During the initialization, the receiver transmits one or more
ack words to each source, in order to give a proper asynchrony
degree to the senders. By assuming the same asynchrony
degree per sender, the maximum value of K is 128/(2 N).

Despite its flexibility, there are some constraints imposed
by the UDN implementation. The number of communication
interfaces that can be used per tile is limited by the number
of UDN queues (we have four queues per tile plus the catch-
all queue). To remove this constraint, generalizations of the
mechanisms that use both shared memory and UDN are pos-
sible. For instance, a set of logical communication interfaces
can be implemented on a smaller number of physical UDN
queues. Each message now contains also the identifier of the
communication interface. The reception of a message is treated
as an interrupt: a run-time support handler is called each time a
new message is present in one of the UDN queues; the message
is inspected to determine the corresponding communication
interface, and the message word is copied in a local buffer in
memory associated with the communication interface. In this
paper we do not discuss such implementation, which will be
left to our future work.
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Fig. 10: Asymmetric (many-to-one) communication interface on
UDN.

V. EXPERIMENTS

In this section we propose two classes of experiments. The
first one consists in a set of micro-benchmarks in which we
study the communication latency of different implementations
of the base mechanisms using the shared memory and the UDN
supports. The second experiment is a fine-grained parallel
application. All the experiments have been compiled with the
tile-gcc cross compiler using the —03 optimization flag.

A. Micro-benchmarks of the Communication Latency

The latency benchmarks are carried out using a ping-pong
scheme. A sender thread transmits a one-word message to a
receiver thread executed on a different tile and waits for a reply
from the receiver. The receiver receives the message, and sends
back a reply to the sender. The benchmark consists of many
iterations Z. The execution time of a pair of send/receive
primitives (named Teychange) 18 measured as the completion
time of the benchmark 7> divided by the number of iterations,
i.e. Tegchange = Tc/Z. The communication latency to execute
a single communication primitive can be estimated by L., =~
Tewchanye/2~



Fig. 11a provides a graphical view of the results for the
symmetric communication interface. We compare the latency
achieved by three different run-time supports:

e the shared memory support without cache optimiza-
tions (i.e. the hash-for-home strategy shown in Fig. 5).
We refer to this implementation as ch_sym_sm;

e the shared memory support (ch_sym_sm_cache)
with a clever homing of the cache lines of the com-
munication interface (see Fig. 6);

e the run-time support using the UDN network (denoted
by ch_sym_udn).

Each experiment consists in Z = 10° iterations of the
ping-pong benchmark executed by two threads. We measure
the average communication latency (in clock cycles 7 and
in psec), the standard deviation and the maximum measured
latency. Since the communication latency depends on the
distance in the iMesh network between the sender and the
receiver, we take into account three cases: the minimum one (1
hop), the worst case (14 hops) and the average one (v/64 = 8
hops). The numerical results are summarized in Tab. II.

Toom
Run-time support Hops Avg Std Dev | Max (1)
T psec

1 42.13 | 0.0486 0.091 42.39

ch_sym_udn 8 49.63 | 0.0573 0.087 49.88
14 55.64 | 0.0642 0.080 55.84

1 363.55 | 0.4198 0.2039 363.83

ch_sym_sm 8 | 337.01 0.3892 0.1621 337.14
14 | 331.06 | 0.3823 0.1769 331.22

1 124.27 | 0.1435 0.0848 124.38

ch_sym_sm_cache 8 150.31 0.1736 0.1121 150.42
14 168.33 | 0.1934 0.1081 168.42

TABLE II: Detailed results of the ping-pong micro-benchmark:
symmetric communication.

In general the experiments confirm our initial intuition.
First of all the cache optimizations discussed in Sect. IV-A
improve the latency of the shared memory support. This is
a meaningful result: when a producer-consumer pattern is
recognized, the homing of the cache lines can be properly
set in order to reduce the latency to update the modified cache
lines in the home node. For write-only cache lines is more
convenient to allocate the home node remotely. In contrast,
for read-write data accessible by one single consumer thread,
a local homing strategy in the L2 cache of the consumer is the
best solution to reduce the coherence traffic. This optimization
leads to a 50%-+-65% improvement w.r.t the basic ch_sym_sm
variant. This result shows that the flexibility and configurability
of the cache subsystem of the TILEPro64 makes it possible
powerful optimizations, especially when the interaction pattern
between threads is regular and well-identified.

A meaningful analysis is the comparison between the
implementation using shared variables and the one with the
UDN support. As we can observe, the UDN implementation
considerably outperforms the best shared memory variant.
With the UDN support all the phases of the inter-thread
cooperation are performed over UDN, without cache lines
transfers between tiles. Small messages of few words can
be exchanged with the minimum overhead as possible, and
they become promptly available to the receiver tile that can
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Communication latency with the ping-pong micro-

use them directly from its internal registers without additional
copies. The result is that the communication latency is one
third of the one of the best shared memory implementation.

As we can expect the communication latency is influenced
by the distance between the sender’s and the receiver’s tiles.
The longer the distance (in hops) the greater the latency.
This behavior is confirmed by our benchmarks. Apparently,
the ch_sym_sm variant without cache optimizations behaves
differently: the latency does not increase (even decreases) with
a longer distance between the sender and the receiver. The
reason is that the home node of the communication interface
cache line is a third tile w.r.t the sender’s and the receiver’s
ones (see Fig. 5). Thus, a better latency can be achieved even if
the sender and the receiver are farther. In fact, it is the distance
between sender and the home node and between the home node
and the receiver that plays a decisive role in the latency of this
implementation. Since in the hash-for-home policy the home
node is assigned by hashing the starting memory address of
the communication interface data structure, no control can be
applied by the run-time support designer.

To evaluate the asymmetric communication mechanism
we consider two experiments. The first one consists in the
ping-pong micro-benchmark with one sender and one re-
ceiver communicating through an asymmetric communication
interface. The idea of this benchmark is to show the addi-
tional overhead of the asymmetric mechanism compared to
the symmetric one when the communication involves only
two threads (one sender and one receiver). The results are
shown in Fig. 11b and Tab. III. We consider two different
implementations: ch_asym_udn over the UDN network, and
the shared memory version ch_asym_sm with the cache
homing optimizations discussed in Sect. IV-Al.

In the average case the gain of using the UDN support
compared with the shared memory version is more than 50%.
Tab. III shows an important metric denoted by A, i.e. the



Leom
Run-time support | Hops Avg Sid Dev | Max (1) A
T psec

1 56.11 0.0648 0.0387 56.18 | 24.9%
ch_asym_udn 8 63.64 | 0.0735 0.0552 63.74 | 22.0%
14 69.63 | 0.0804 0.0747 69.78 | 20.1%
1 129.75 | 0.1498 0.0972 129.88 | 4.22%
ch_asym_sm 8 154.23 | 0.1781 0.0968 154.41 2.54%
14 173.87 | 0.2008 0.4851 174.61 3.19%

TABLE III: Detailed results of the ping-pong micro-benchmark:
asymmetric communication.

overhead of the asymmetric mechanism w.r.t the corresponding
symmetric implementation. It is worth noting that by using
the shared memory support, the asymmetric mechanism and
the symmetric one provide very similar results (A is less than
5%). In contrast, the difference is more remarkable with the
UDN support. In this case the asymmetric mechanism features
a penalty of 20% in communication latency. The reason is
that in the asymmetric communication interface each UDN
message is composed of two 32-bit words, the first identifies
the sender’s tile, the second is the memory pointer passed
by the sender to the receiver. In the symmetric interface the
first word is not necessary, since the communication interface
allows the communication between a static pair of tiles.

The second experiment (Fig. 12) focuses on the efficiency
of the asymmetric communication mechanism by variating
the number of senders. During the execution only one sender
transmits messages to the receiver following the ping-pong
scheme, while all the other senders are idle. The goal is to show
the overhead of the non-deterministic selection by changing the
cardinality of the senders set. In the experiment the distance
between the active sender and the receiver is fixed to 1 hop.

Asymmetric case: multiple senders.
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Fig. 12: Overhead of the non-deterministic selection.

As we can note, the UDN support is very efficient. Al-
though there are multiple senders, the messages belonging to
the same communication interface are natively demultiplexed
on the same hardware queue by the UDN network without
additional overhead. Furthermore, the queue is directly acces-
sible by the destination tile through special registers, without
reading from the memory. The results show an ideal situation:
the latency offered by the asymmetric communication interface
does not depend on the number of senders, i.e. no overhead is
paid by the presence of multiple idle senders. In contrast, in
the shared memory support we need to loop on the ready flags
(see Fig. 8) with a cost proportional to the number of senders.

B. A fine-grained parallel application

The concluding part of this paper shows a complete appli-
cation executed on the TILEPro64. The application operates

on an input stream of elements and generates an output stream
of results. Each input element is a square matrix of integers:
we denote by A¥ € NM*XM the k-th element of the input
stream where M? is the size of the matrix. For each matrix
the computation applies the matrix-vector multiplication, i.e.
AF is multiplied by a constant vector b € NM and c¥ ¢ NM
is the result vector calculated as follows:

E_ k7.
Ci_E aij - bj

The output stream is composed of the sequence of result
vectors {c*}I¥_ where N is the stream length.

We consider a data-parallel parallelization of the problem
based on the map paradigm. The parallelization scheme con-
sists of a set of threads: an Emitter (E) and a Collector (C),
respectively responsible to interface the computation with the
reception of input elements and the transmission of output
results, and a set of Workers ({W}). Each Worker applies the
computation on a partition of the current input matrix. To
have independent Workers (as required by the map pattern),
each Worker operates on a subset of the rows of the current
matrix and calculates the corresponding elements of the result
vector by reading the constant vector b (shared among the
Workers). The Emitter is responsible to multicast the initial
memory address of the matrix to the Workers (needed to
address their partitions). This can be done according to two
strategies: (i) a linear distribution (see Fig. 13a), in which
the Emitter transmits the address through a sequence of N
communications where N is the cardinality of the Workers
set (i.e. the parallelism degree); (ii) a tree-based distribution
(see Fig. 13b) with a logarithmic latency, implemented directly
by the set of Workers by mapping a tree on the linear array
of Workers. Finally, Workers transmit the pointers to their
partitions of the result vectors to the Collector using an
asymmetric communication interface.
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Fig. 13: Map parallelization with different distribution strategies.

As said before, in our UDN support the number of commu-
nication interfaces per tile is limited by the available number of
UDN hardware queues. By using a binary-tree distribution we
can use this kind of support for our application. According to
the depth-first mapping strategy, the first Worker is the root of
the tree at level logo N (it receives directly from the Emitter),
and each Worker j at level ¢ (0 < ¢ < logaN) sends the
memory pointer to Workers j-+1 and j+2°~. In this way each
Worker has one input communication interface and at most



three output communication interfaces (one with the Collector
and at most two communications for the multicast).

We analyze the application performance with different
kinds of run-time supports. We denote by udn_tree the imple-
mentation using our UDN support and by sm_tree the version
based on shared memory communications. In both the cases
the distribution is performed using the binary-tree topology
mapped onto Workers. To make our analysis stronger, we
compare our supports with two state-of-the-art solutions. The
first one is based on the FastFlow lock-free queues [4], [1]:
single-producer single-consumer queues between Emitter and
Workers, and a multiple-producers single-consumer queue be-
tween Workers and the Collector. The second implementation
is based on lock-based queues protected by standard POSIX
mutexes and condition variables for thread synchronization.
Also in these cases we use the binary-tree distribution for the
multicast. We are interested in three metrics:

e the service time Tg, i.e. the average time between the
completion of two successive input matrices;

e the maximum throughput By, i.e. the highest input
data rate that the parallelization can sustain without
being a bottleneck. It is calculated as the average
number of matrices served per time unit (the inverse
of Ts) multiplied by the size of each matrix;

e the scalability S™) with N Workers is a measure of
the relative speed of the parallel computation. It is the
ratio between the service time with one Worker and
the service time with a parallelism degree equal to N:
ie. SN =1 /TN,

Fig. 14 shows the maximum sustainable throughput with
three problem sizes M = {56,112,168}. With the highest
parallelism degree N = 56 (2 tiles execute the Emitter and the
Collector threads and 4 tiles are reserved to the TILEPro64’s
operating system) these sizes allow to partition each matrix in
an equal number of rows per Worker. The results are very in-
teresting. The UDN on-chip network provides a way to exploit
additional bandwidth of the iMesh network, by separating the
memory and cache coherence traffic due to the execution of
matrix-vector multiplications with the inter-thread cooperation
traffic. In this way, the efficiency of cooperation mechanisms
is not influenced by the under-load memory access latency
of the program. The result is that the finer the computation

(smaller partitions to Workers) the more the gain of using the
UDN support. We achieve an improvement of 58%, 21%, 10%
with M = {56,112,168} compared with our support based
on shared memory communication interfaces. Notably, the
experiments show that FastFlow lock-free queues achieve
a lower throughput, and the difference is more remarkable
with smaller matrices. The reason is that FastF low, though it
has been efficiently ported on the TILEPro64 [5], makes only
a partial use of the available hardware features. Firstly, the
fixed-homing policy has been applied only to the application
level data structures of particular parallelism patterns (actually
only the task-farm), and has not been applied to the run-time
support mechanisms as proposed in this paper. Furthermore,
the UDN network has not been exploited yet in this framework.
FastFlow can be extended to incorporate these optimiza-
tions, which is a future direction of our work.

Tab. IV summarizes the best results achieved by the dif-
ferent implementations. The experiments show the importance
of the tree-based distribution. We denote by sm_linear the
implementation using our shared memory support and the
linear distribution strategy. In that case, the delay of the
multicast grows linearly with the parallelism degree and the
Emitter limits the performance of the overall application.
Finally, the implementation based on lock-based queues is
completely uneffective with very fine-grained computations.

56 X 56 112 x 112 168 x 168
Ts | Bw | S Ts | Bw ][ S Ts | Bw [ S
udn_tree | 49 | 203 | 19.0 | 13.07] 30.7 | 286 | 242 | 373 | 348
sm_tree | 119 | 846 | 795 | 166 | 24.1 | 225 | 27.1 | 334 | 312
sm_linear| 41.3 | 2.43 | 2.28 | 466 | 8.61 | 803 | 473 | 19.1 | 178
FastFlow | 140 | 7.15 | 6.72 | 282 | 147 | 146 | 393 | 229 | 215
1ck_queue| 434 | 231 | 217 | 799 | 132 | 580 | 1153 7.83 | 731
TABLE 1IV: Best results of different implementations:

Datatype=INT, T's and Bw expressed in psec and Gb/s.

As we can note the scalability increases with bigger
problem sizes, when the communication overhead is a smaller
portion of the overall execution time. However, it is still far
from the ideal one. The reason is that the efficiency is limited
by the available memory bandwidth. In fact, though each input
matrix is stored in memory by interleaving the accesses among
the four on-chip memory controllers (Fig. 2), their aggregate
memory bandwidth is not sufficient to sustain a high number
of working tiles. To demonstrate this fact we repeated the
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Fig. 15: Maximum sustainable throughput in Gb/s by the map parallelization: matrices of size M = {56,112, 168} and Datatype=FLOAT.

experiments with a different data type. Instead of integers,
each input matrix is now composed of single precision decimal
numbers. This case is meaningful: the matrix size is the same
(4 bytes per scalar), but TILEPro64 does not have floating-
point units and decimal operations are emulated by software.
The result is that we have a coarser grain computation with the
same number of cache misses. Thus, the memory controllers
are subjected to a lower pressure from the tiles and the
parallelization achieves near optimal scalability, see Tab. V.

56 X 56 112 x 112 168 x 168
Ts Bw S Ts Bw S Ts Bw S
udn_tree | 840 | 11.9 | 409 | 269 | 149 | 5.1 | 58.7 | 154 | 527
sm_tree 11.5 | 8.67 | 29.7 | 29.1 13.8 | 473 | 599 | 15.1 | 51.6
sm_linear| 414 | 242 | 829 | 395 | 102 | 348 | 584 | 155 | 529
FastFlow | 25.5 | 394 | 135 | 50.1 | 8.02 | 275 | 623 | 145 | 49.7
lck_queue| 67.3 | 149 | 5.10 | 126.8| 3.17 | 10.8 | 159.4| 5.67 | 194
TABLE V: Best results of different implementations:

Datatype=FL0OAT, T's and Bw expressed in usec and Gb/s.

Fig. 15 shows the throughput with Datatype=FLOAT. The
gain of UDN is remarkable also with small matrix sizes
and decreases with larger problem sizes up to achieving the
same performance of the shared memory and the FastFlow
support. In conclusion these experiments show that the UDN
is a very interesting architectural feature, suitable to achieve
scalable parallelizations of very fine-grained problems.

VI. CONCLUSIONS

Network processors provide architectural facilities not
available on traditional multicores, that can be exploited by ef-
ficient cooperation mechanisms that enable fine-grained paral-
lelism. This work explains the design principles of low-latency
cooperation mechanisms between threads on the TILEPro64,
and compares them with other available run-time supports. The
results confirm the effectiveness of our mechanisms which are
capable of achieving significant improvements in throughput
and scalability when dealing with the parallelization of very
fine-grained computations. In the future we plan to apply our
experience to provide a full parallel programming framework
on the TilePro64.
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