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ABSTRACT
The NAS Parallel Benchmarks (NPB), originally implemented in Fortran, is a distinguished and
consolidated suite containing several benchmarks extracted from Computational Fluid Dynamics (CFD)
models, which targets shared- and distributed-memory parallel architectures. The benchmark suite
has important characteristics such as intensive memory communications, complex data dependencies,
different memory access patterns, and hardware components/sub-systems overload (e.g., integer and
floating-point units, memory bandwidth, caches). Parallel programming abstractions such as APIs,
libraries, and frameworks that are written in C++ as well as new optimizations and parallel processing
techniques can benefit if NPB is made fully available in this programming language. Besides a
thorough translation following the official reports, which we named NPB-CPP, we provide parallel
implementations of all the NPB kernels and pseudo-applications targeting shared-memory architectures
(commodity multicores) with OpenMP, Intel TBB, and FastFlow. A structured design of each NPB-CPP
benchmark in terms of parallel patterns (notably Map and MapReduce constructs) is provided as well
as a discussion is presented on how this design can be expressed for the different C++-based parallel
programming abstractions selected in this paper. The results show that NPB-CPP is consistent and
reliable with respect to the original NPB. It is also platform-independent and enables the parallelization
using Intel TBB and FastFlow and possibly others can be evaluated in the future thanks to this work.

1. Introduction
Parallel programming is a popular paradigm to design

high-performance applications that leverage the capabilities
offered by modern parallel hardware, both shared-memory
architectures like multicores and NUMA of multicores, and
distributed architectures like clusters, where shared-memory
nodes are interconnected via fast networking technologies.
The complexity of the available hardware has increased con-
siderably over the years, with processors enhanced with out-
of-order computing capabilities, memory hierarchies com-
posed of different coherent private and shared levels of caches,
and interconnection networks equipped with smart network
interface cards used as co-processors for accelerating net-
working tasks.

In this ecosystem of complex hardware resources, parallel
programming has evolved consequently, with the availabil-
ity of frameworks that support the user in the development
of parallel applications and in taking advantage of the un-
derlying hardware in a productive way. Nonetheless, the
so-called programmability wall [7] is still the main challenge
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in parallel programming. Developing parallel applications
productively requires high-level programming tools that hide
the complexity of coping with complex hardware. Further-
more, they should enforce performance portability, e.g., they
shall achieve satisfactory performance on different machines,
both in terms of absolute performance like IPS/FLOPS as
well as scalability with more processes/threads composing
the parallel computation.

In the area of shared-memory parallel programming, par-
allel programming abstractions such as Intel TBB [38] (in
C++) and OpenMP [29] (C++ and multi-language support)
are of great popularity, with the former used for task-based
parallel programming while the latter to annotate the se-
quential code with pragma-based directives for loop paral-
lelizations and, from the most recent versions, providing a
task-based model similar to TBB. In addition, the research
community has proposed other families of programming tools
fostering high-level abstractions to drive parallel program-
ming. Notably, Algorithmic Skeletons [16, 10] (generally
belonging to the field of Structured Parallel Programming),
applied by some C++ research frameworks like FastFlow [1]
and SkePU [14], are worthy of consideration, with active
communities promoting this parallel programming style.

Assessing the effectiveness of parallel programming ab-
stractions in terms of performance portability on new hard-
ware architectures, which have become available day by day,
requires proper benchmark suites composed of parallel work-
loads with sufficiently heterogeneous features to stress differ-
ent hardware components/sub-systems (e.g., caches, floating-
point units, memory bandwidth). Examples of benchmark
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suites are PARSEC [6], SPLASH [39], SPEC [19], which
include workloads from different domains but all focusing
on High-Performance Computing.

Among the existing benchmark suites, we are interested
in the NAS Parallel Benchmarks [5] (briefly, NPB). NPB is
a set of programs originally developed by NASA Advanced
Supercomputing division to evaluate the performance of par-
allel machines. The benchmarks in the suite (three pseudo-
applications and five basic kernels) are derived from Compu-
tational Fluid Dynamics (CFD) models and can be configured
to work with predefined problem sizes (called “classes”). The
available official implementation of NPB is written in For-
tran, with parallelizations developed in OpenMP (based on
the Fortran code) for shared-memory systems and MPI (Mes-
sage Passing Interface) for clusters. The parallel workloads
in the NPB suite have received great attention over the years,
in different kinds of research activities targeting the perfor-
mance evaluation of new parallel programming techniques
and optimizations for specific architectures. An overview of
such works will be given in Section 2.2. However, despite
the wide use of NPB, no comprehensive porting of all the
kernels and pseudo-applications in C++ has been released
and made publicly available. Such porting is not only useful
as a mere translation between programming languages, but it
is of great interest from the research perspective because it
enhances the possibility to systematically study, evaluate, and
compare the performance of C++-based parallel program-
ming abstractions, either consolidated or research ones, on
a wide set of complex and real-world computational kernels
like the ones in the NPB suite.

Our main contributions are the following:
• We provide a thorough translation (i.e. which respects

the original sequential code structure in terms of data
structures, loops and original programming style) of
the five kernels and the three pseudo-applications from
the original serial Fortran code to C++, making NPB-
CPP usable and extendable also for future works.

• We provide parallel implementations of the entire bench-
mark suite in NPB-CPP. In addition to the original
OpenMP version (currently maintained by NAS 1),
which is available in Fortran and directly translated,
we provide parallel implementations with Intel TBB
and FastFlow, aiming at covering both a consolidated
and a research-based parallel programming abstraction.

• We show how the concept of structured parallel pro-
gramming [25] can be applied for efficiently paralleliz-
ingNPB-CPP.Wemodel each one of the parallel bench-
marks in NPB-CPP using compositions of Map and
MapReduce parallel patterns. This is a higher-level
programming approach whose expressiveness and flex-
ibility is discussed in this paper for OpenMP, Intel TBB
and FastFlow.

• We provide a careful analysis of the performance ob-
tained by NPB-CPP on different multicore machines

1https://www.nas.nasa.gov/publications/npb.html

and compilers, demonstrating the quality of the port-
ing from the (sequential and parallel) performance and
functional correctness perspectives. Experiments are
collected on a set of platforms (Intel Xeon, AMD Epyc,
and IBM Power8) to show the performance portability
on different multicore architectures.

A preliminary, partial version of NPB-CPP was first in-
troduced in our previous work [18], where we presented a
research on the C++ porting for the five serial kernels. The
code we used was mainly based on an outdated NPB version
(v2.4, released in the 2000s). With the current work, we re-
placed the code with a new NPB version (v3.4). More details
about the changes can be found in NPB’s official website 2.
This paper extends the previous work by: i) re-implementing
all the sequential kernels to be compliant to the last NPB ver-
sion (v3.4); ii) we complete the sequential porting with the
three pseudo-applications that were not studied in our prior
work; iii) we re-implement the five kernels to adhere to the
structured parallel programming style, so building the new
kernel implementations, and the three pseudo-applications
parallel code, in terms of parallel patterns (Map and MapRe-
duce), while our prior parallel implementations were based
on ad-hoc parallelization approaches; iv) NPB-CPP can be
configured to use all the workload sizes (classes) of the origi-
nal suite, while the kernels in our prior work worked only for
small class sizes (up to class B).

The source code of NPB-CPP is provided within a repos-
itory made accessible to the community3. NPB-CPP has
recently been used by other independent research works as
a baseline for experimental comparisons [27, 31, 22, 24, 12,
23, 15, 4], highlighting the importance of having a reliable
implementation of the distinguished NPB suite.

The outline of the paper is the following. Section 2 pro-
vides a summary of the NPB kernels and pseudo-applications
to make the paper self-contained, and provides an overview of
past research activities where NPB has been used in the exper-
imental evaluation for different purposes. Section 3 discusses
our implementation, both the sequential porting from Fortran
to C++ and the design of parallel versions using C++-based
parallel programming abstractions. Section 4 shows the re-
sults of our experimental analysis, while Section 5 concludes
our work.

2. Background
In this section, we briefly explain the basic structure of

NPB in terms of kernels and pseudo-applications. Then, we
will review some recent papers that used NPB.
2.1. NAS Parallel Benchmarks (NPB)

TheNPB suite has five kernels and three pseudo-applications.
The code poses several different challenges, as far as per-
formance is concerned, such as irregular memory accesses,
complex data dependencies, and short- and long-distance

2https://www.nas.nasa.gov/publications/npb_changes.html
3NPB-CPP GitHub repository: https://github.com/GMAP/NPB-CPP
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data communications [5], where the former stresses data lo-
cality while the latter memory bandwidth capacity. The five
kernels, all in Fortran except IS which is in C, are described
as follows:

• Embarrassingly Parallel (EP). It generates a large
number of Gaussian random deviates and enumerates
them to compute the Gaussian deviation by utilizing
the acceptance-rejection method. Finally, the number
of pairs that lie in the square annulus is computed.
This method is useful to measure the capacity of the
floating-point operations of the target architecture [5].

• Multi Grid (MG). It utilizes the V-cycle MultiGrid
method to compute a 3D scalar Poisson equation where
the kernel continuously computes restriction and pro-
longation when alternating between coarse and fine
grids. The goal is to stress short- and long-distance
data communications [5, 20].

• Conjugate Gradient (CG). It computes an approxi-
mation of the smallest eigenvalue of a large, sparse,
and unstructured matrix, utilizing the Conjugate Gra-
dient method. This kernel stresses data communi-
cation mechanisms as well as memory locality and
caches [20].

• Discrete 3D Fast Fourier Transform (FT). It com-
putes a Fast Fourier Transform (FFT) of a 3D par-
tial differential equation using the spectra and inverse
methods in an iterative loop. It simulates an intensive
long-distance communication [5, 20].

• Integer Sort (IS). It performs an integer sorting among
a sparse set of numbers, which simulates an important
computation for particle-in-cell applications. By de-
fault, it is based on the Bucket-Sorting algorithm. This
kernel simulates and measures integer computation
and data communication capabilities [5].

The pseudo-applications implement three different iter-
ative methods to solve a 3D Navier-Stokes system of differ-
ential equations describing the flow of incompressible fluids.
We summarize them as follows:

• Block Tri-diagonal solver (BT). It is an expensive im-
plicit algorithm to numerically solve 3D Navier-Stokes
equations. The solution is based on an Alternating
Direction Implicit (ADI) factorization on a 3D matrix,
which produces block-tridiagonal systems that, along
each direction, solve the unknown vectors using the
back substitution method [20].

• Scalar Penta-diagonal solver (SP). It uses the Beam-
Warming approximate factorization to decompose the
3D matrix. The output consists of a particular case of
band matrices known as Scalar Pentadiagonal matrices.
Then, the tridiagonal matrix algorithm is applied over
the block-tridiagonal systems and the back substitution
method solves the remaining vectors [20].

• Lower-Upper Gauss-Seidel solver (LU). It utilizes
the Symmetric Successive Over-Relaxation (SSOR)
method, which combines two SOR computations. The
latter is a variation of the Gauss-Seidel method that
solves a linear system of equations. First, a forward
SOR sweep is performed followed by a backward SOR
sweep to update the unknown variables in reverse order.

2.2. NPB in prior works
The current available official NPB version is implemented

in Fortran, which was elected over other languages consider-
ing its popularity in CFD applications. The selected papers
for discussing and comparing are those based on C language.
Previous works, such as [33, 11] and [30], have used NPB for
evaluating specific architectures and systems. The authors
of [33] have ported the NPB to C and re-implemented the
applications in OpenCL, to leverage heterogeneous architec-
tures equipped with GPUs. However, no information about
how the conversion was performed is given. Also, the authors
did not consider the largest NPB workloads (e.g., class C)
because of the limited memory capacity of the GPU consid-
ered (GeForce GTX 480). More recently, a new research
has extended this work by proposing an improved GPU ver-
sion for OpenCL and CUDA [11]. Again, no information
about the pitfalls of the porting was provided, while the focus
was only on the parallelization. The performed evaluation
demonstrates increased performance compared to the origi-
nal version on GPU-based platforms, while no results have
been presented on standard multicore platforms.

A prior work [30] presents a methodology to improve a
strong scalability evaluation for OpenMP. They implemented
the methodology in the PCERE (Parallel Codelet Extractor
and REplayer) tool that extracts and executes OpenMP paral-
lel regions. Their evaluation was performed on a C version
developed starting from an early NPB version (2.3) [8], which
was later made available. Some research works have focused
on the Unified Parallel C (UPC) language, an extension of
the C programming language designed for HPC platforms.
A version of NPB was ported to the UPC language, and it is
composed of two main parts. The first contains all the five
NPB kernels and was developed by the HPC Laboratory from
the George Washington University as part of the Berkeley
UPC Compiler project [13, 40]. The second contains the
three pseudo-applications and was developed by the NASA
Ames Research Center [21]. This NPB-UPC version is dis-
tributed with the Berkeley UPC project. The five previous
research works [33, 30, 11, 13, 21] put a significant effort to
convert and extend the NPB towards C-based languages.

In recent studies, C-based NPB versions have been used
for evaluation purposes. The work in [27] investigates the
performance and potential of the parallel STL (Standard Tem-
plate Library) using NPB kernels. Parallel STL is an Intel
library developed using Intel TBB as a backend for paral-
lel algorithms. This work used our previous version of the
NPB ported to C++ [18], which was limited to the five ker-
nels without the pseudo-applications. It also highlights the
importance of having such sequential porting in C++. In
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Table 1
Summary of past papers using NPB in their experimental evaluation.

Reference Year Benchmarks
NPB
Version

Languages
Parallel
Versions

Target
Architecture

[13] 2002
CG,EP,FT,IS,
MG

NPB 2.4 UPC UPC Cluster

[21] 2009 BT,LU,SP NPB 3.3 UPC UPC Cluster

[33] 2011
BT,CG,EP,FT,
IS,LU,MG,SP

NPB 3.3 C
OpenMP,
OpenCL

GPU

[30] 2015
BT,CG,EP,FT,
IS,LU,MG,SP

NPB 2.4 C OpenMP Multicore

[11] 2019
BT,CG,EP,FT,
IS,LU,MG,SP

NPB 3.3 C
OpenMP,
OpenCL,
CUDA

GPU

Ours 2020
BT,CG,EP,FT,
IS,LU,MG,SP

NPB 3.4 C++
OpenMP,
FastFlow,
TBB

Multicore

our work, besides completing the NPB porting, we study the
performance of NPB directly implemented using Intel TBB
without the additional layer provided by Parallel STL, for a
fairer comparison with OpenMP and FastFlow.

The work in [31] uses the NPB to evaluate five auto-
parallelizing compilers (Cetus, Par4all, Rose, ICC, and Pluto).
Also in this case, the authors used our previous version of the
NPB ported to C++. An optimized memory allocator for the
Single-Assignment C (SaC) compiler was proposed in [37].
The authors re-implemented the NPB in SaC to evaluate their
optimizations. A tool that systematically analyzes shared-
memory accesses of UPC applications has been proposed
in [9]. The authors tested NPB kernels and applications to
fine-tune data redistribution, and for enhancing the use of pri-
vate variables for improving local accesses. A locality-aware
framework for thread affinity placement based on hierarchical
data locality has been presented in [3]. The authors selected
four NPB kernels (IS, FT, CG, and MG) for covering a wide
range of communication patterns. Hardware support mecha-
nisms to efficiently manipulate PGAS address mapping and
to improve data access overhead have been introduced in [34].
Experiments were conducted on a subset of NPB kernels.

Among the previously cited papers, we selected five pa-
pers that are closely related to our work for comparing specific
features. Table 1 provides a summary of the characteristics of
those five papers and this work. The first and second columns
report the reference and the year of publication. The third
column reports the target kernels and pseudo-applications
supported. The fourth column shows the NPB version on
which they are based. The fifth column shows the language
used and the sixth column reports the adopted parallel pro-
gramming abstractions. The seventh column highlights the
targeted parallel architectures.

In past papers [33, 11], the authors have translated all the
kernels and applications of the NPB 3.3 targeting the C lan-
guage. In [30] and [13] authors used an outdated NPB version.
In [21] authors have implemented three pseudo-applications
using the NPB 3.3 version to target the UPC programming

language. Differences are also observed concerning the tar-
get architectures. Although [30] is targeting multicores as
our work, their version is a raw translation to test a compiler
tool. Most significantly, none of these previous works aimed
to provide a consistent and generic NPB version (kernels
and pseudo-applications) in C++ that is platform agnostic
(see Sect. 3). Our benchmark code can be easily extended
to support other computer architectures through the use of
existing C++ parallel programming abstractions. Further-
more, new C++ compiler tools can also use our NPB-CPP
to evaluate the impact of new code optimization and auto-
parallelization techniques, which represents an additional,
indirect contribution of our work.
2.3. Parallel Programming Abstractions

Modern systems can generate millions of data per day,
that require to be processed timely. To follow this trend,
parallelization is crucial for extracting the maximum perfor-
mance in the underlying architecture, specially in modern
multicores. On the other hand, parallel programming still
lacks accessibility and is a challenge to developers, since
they must deal with low-level details (e.g. scheduling, load
balancing and synchronizations).

Parallel programming in multicore architectures relies
on efficient abstractions enabling different parallelism ex-
ploitation patterns in a relatively easy-to-use manner by the
high-level programmer. The C++ programming language
already has consolidated parallel frameworks that offer the
structured parallel programming paradigm. This parallel pro-
gramming style is based in algorithmic skeletons or parallel
patterns for hiding from the developer many of the low-level
complexities intrinsic to parallelism. In the following, we
introduce three popular parallel programming abstractions:
OpenMP, Intel TBB and FastFlow.
OpenMP OpenMP [29] is a parallel programming frame-
work formulticore systems. It is based on pragma annotations
to be applied directly on the source code before regions that
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require a significant portion of the overall execution time, like
for and while loops. The OpenMP compiler is in charge of
transforming the annotations in a code leveraging multicores
by using threads that split the execution of the loop iterations.
Recently, starting from the 4.0 standard, OpenMP supports
the task-based parallelism paradigm with proper pragmas to
create tasks and link them with dependencies. This allows
the programmer to create a task, e.g. a portion of code plus
its surrounding data environment, that can be scheduled for
the execution on an available thread provided that all its input
dependencies are satisfied.
Intel TBB TBB [38] is the Intel suite for parallel program-
ming on multicores. In the original idea, TBB provides the
programmer with abstractions to create tasks connected by
dependencies and to schedule them transparently on a pool
of threads. Complex work-stealing techniques have been
adopted to balance the parallel workload of the underlying
threads in an effective and cache-friendly manner. A higher
level of abstraction has been added to represent graphs of
special importance in the parallel programming practice, like
pipelines of filter stages. Complex graphs can be easily de-
veloped by leveraging the FlowGraph interface, introduced
in TBB from version 4.0.
FastFlow FastFlow [1] is an open source4 structured par-
allel programming framework. It provides the application
programmer with a variety of ready-to-use stream and data
parallel patterns (from this the structured keyword) that may
be freely composed and customized to implement complex
parallel applications. FastFlow is a header-only library im-
plemented on top of POSIX/Pthread/C++11, and parallel
patterns are used by instantiating proper classes of the li-
brary. The framework has been designed to target multicore
machines with two main goals in mind: performance and
programmability. More recently [36], it has been extended
to target GPUs and FPGAs. Recent advances include the
possibility to use alternative implementations of the commu-
nications primitives (e.g., switching between blocking and
non-blocking synchronizations). Furthermore, the library
provides with its most recent version v3.0 an intermediate
layer (called Building Blocks) for system programmers aimed
at being used to develop novel parallel run-time systems for
specific application domains.

3. Implementation
The goal of this section is twofold. First, we describe how

the porting has been developed, and the principles behind
our thorough translation from Fortran (C in case of IS) to
C++. Then, in the second part, we show the strategies we
followed for parallelizing NPB with different C++ parallel
programming abstractions targeting the structured parallel
programming approach based on compositions of parallel
patterns. Our design choices aim at simplifing the usability

4The source code of the library is publicly available at: https://github.
com/fastflow

and extensibility of NPB-CPP. Therefore, we provide C++
code that can be easily converted to C-like code with minimal
modification effort. Consequently, NPB-CPP is not object-
oriented, however, it can be considered as a future work for
evaluating modern C++ features and compare them with
well-established parallel programming abstractions.
3.1. C++ porting and conventions

Our porting was conducted following the official docu-
mentation [5, 20]. When implementing the C++ code of
NPB, the first guideline was: every time a global array is
declared in the Fortran code, we allocate it as dynamic mem-
ory in C++ since NPB uses very large arrays that may result
in memory stack overflow errors. Furthermore, we imple-
mented the global arrays to be allocated in one single dimen-
sion for all kernels and pseudo-applications. However, for
internal multi-dimensional accesses, we perform conversions
from linear to multidimensional indexes. NPB reports do not
recommend the use of fixed multidimensional arrays because
the benchmarks implement different data access patterns. In
our design, we use linear arrays as the main layout for our
data structures because, although it is not necessarily the best
choice to optimize the cache hierarchy utilization (given the
irregular access pattern of some of the benchmarks), our goal
is to provide a generic code that can be extensible for a wide
spectrum architectures with minimal code changes to provide
custom optimizations for specific platforms.

Another important guideline was to follow as much as
possible the original Fortran code semantics during the se-
quential code porting. However, it was not always possible
to literally translate the code. In particular, we often needed
to modify the ordering of accesses to arrays. The reason is
that Fortran is column-major ordered (each complete column
of the matrix is stored before the next one), while C++ is
row-major ordered (each complete row of the matrix is stored
contiguously). Furthermore, the interval of valid positions in
the Fortran arrays is [1; n]while it is [0; n−1] in C++, which
required straightforward changes in the loops. NPB code
has also many goto statements, which have been removed by
implementing while loops with proper stop conditions.

Although the IS kernel was already implemented in C, it
uses some Fortran routines shared with other kernels. Dur-
ing our porting to C++, we re-implemented such routines
in C++. The porting to the FT kernel required a substantial
code refactoring effort to remove the batch mechanism which
gathers a set of FFT operations to increase the computational
granularity. Consequently, there is no need to manually spec-
ify the batch size parameter. Other code modifications (e.g.,
removing data dependencies, nested loops, low-level cache
optimizations) were necessary to keep the coherence between
the sequential and OpenMP code structures for FT and IS
since they were the only kernels having different sequen-
tial and OpenMP versions. This contributes to have a fair
performance comparison when parallelizing the code.
3.2. Parallel implementation

The original NPB code in Fortran is shipped with an
official OpenMP parallel implementation, and this parallel
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1. #pragma omp parallel for
2.    f or(i=0; i<n;i++){
3.         / /computat ion
4.    }
5. }

1. t bb::parallel_for( tbb::blocked_range <size_t > (0,n,chunk), [&](const  
t bb::blocked_range <size_t >& r){
2.    f or  (i=r.begin(); i<r.end(); i++){
3.         / /computat ion
4.    }
5. });

1. f f ::ParallelFor pf ; 
2. pf.parallel_for(0, n, 1, chunk, [&](int  i){ 
3.       / /computat ion 
4. }, 
5. nworkers);

Map parallel pattern on OpenMP Map parallel pattern on FastFlow

Map parallel pattern on TBB

(a) Map

1. #pragma omp parallel for reduct ion (+:x)
2.    f or(i=0; i<n;i++){
3.         / /computat ion
4.    }
5. }

1. z = t bb::parallel_reduce( tbb::blocked_range <size_t > (0,n), 0.0, [&](const  t bb::blocked_range 
<size_t >& r, double x){
2.    f or  (i=r.begin(); i<r.end(); i++){
3.         / /computat ion
4.    }
4.    ret urn x;
5. }, std::plus<double>());

1. f f ::ParallelForReduce <double> pf ; 
2. pf.parallel_reduce(x,0, n, 1, chunk, [&A](int  i){ 
3.       / /computat ion 
4. }, [&A](int  i, double& x) { x += A[i];},
5. nworkers);

MapReduce parallel pattern on OpenMP MapReduce parallel pattern on FastFlow

MapReduce parallel pattern on TBB

(b) MapReduce

Figure 1: Basic routines to implement the Map and MapReduce
parallel patterns using OpenMP, FastFlow, and Intel TBB.

strategy was adopted as a reference in our C++ version ow-
ing to the OpenMP multi-language support for both Fortran
and C/C++. However, in addition to this, our C++ porting
allows the evaluation of strategies based on different parallel
abstractions available in C++. We consider Intel TBB [38],
which is a mainstream tool, and FastFlow [1], which is a
pattern-based research library based on Algorithmic Skele-
tons [16, 10]. We chose FastFlow because we compare it
against state-of-the-art solutions for shared-memory architec-
tures like OpenMP and TBB, and the results of this compari-
son also help to improve other higher-level APIs and DSLs
(Domain-Specific Languages) that rely on FastFlow as its
parallelism runtime [17, 26, 32].
3.2.1. Parallel design choices

The design choices and principles adopted in the imple-
mentation of our parallel versions are the following: (1) the
first goal is to make the parallel implementations as faithful
as possible to the structured parallel programming approach
using data-parallel patterns such as Map and MapReduce
(Fig. 1); (2) our second goal is to be uniform in the design,
by making use of the features available in the different par-
allel programming abstractions. For example, although we
have intrinsic mechanisms such as std::mutex in C++, we
choose tbb::mutex from Intel TBB; (3) our third goal is to
avoid architecture-specific optimizations and let the code be
portable on a range of different platforms. However, people
interested to obtain the maximum performance on specific
architectures or parallel programming abstractions may in

the future easily extend NPB-CPP to implement their spe-
cific optimizations. Examples of them are the use of custom
task-parallelism patterns, memory and thread affinity strate-
gies, or even targeting different platforms like distributed
architectures (e.g., clusters) or GPUs (see [4]).

OpenMP, TBB, and FastFlow provide different parallel
programming APIs. In order to generalize the presentation
of the parallelizations and introduce the use of structured
parallel programming, we describe them using abstract Map
and MapReduce data-parallel patterns as well as Critical
Sections and Barriers that are all present in the different tools
(each API has its own specific implementation). They are
briefly introduced in the following list:

• the Map pattern [25], consists of the replication of a
function that applies over all elements of an indexed set.
This can be used to parallelize for loops when iterations
are independent. OpenMP, TBB, and FastFlow offer an
API called “parallel for” for this purpose, see Figure 1a.
In OpenMP, programmers annotate parallelizable for

loops using compiler pre-processor directives. In TBB
and FastFlow, programmers replace parallelizable for

loops using routines that are implemented by a C++
template library. Themain difference is that the parallel
region for OpenMP and TBB is thread-private while
FastFlow executes directly the parallel Map operation.
The scheduling type is optional, however, OpenMP
and FastFlow, by default apply a static assignment of
iterations to the underlying threads, while TBB uses a
dynamic distribution;

• theMapReduce is the union of a Map and a Reduce
pattern. According to [25], the Reduce pattern com-
bines all elements from a collection and produces a
single element (or a subset) using an associative bi-
nary operator. Therefore, in the MapReduce, every
element of the Map is combined into a single element.
This pattern can be used to parallelize for loops when
iterations exhibit specific data dependencies and syn-
chronization is required. OpenMP, TBB and FastFlow
offer an API called “parallel_reduce” as shown in Fig-
ure 1b. In OpenMP, programmers use reduction along
with the parallel_for directive for specifying the op-
eration type and the reduced variable. This parameter
only accepts predefined types. In TBB and FastFlow,
programmers replace the target for loop with a specific
routine receiving as arguments a set of parameters such
as the lambda functions implementing the Map and the
Reduce steps;

• the Barrier is a synchronization primitive for a group
of threads [25]. The barrier guarantees a synchro-
nization point where any thread must stop and cannot
proceed until all other threads reach the barrier. The
barrier definition considers both implicit and explicit
barriers. By default, implicit barriers are found at the
end of Map and MapReduce patterns on all parallel
programming abstractions. OpenMP has a nowait di-
rective that allows threads to avoid this synchronization.

Löff et al.: Preprint submitted to Elsevier Page 6 of 16



The NAS Parallel Benchmarks for Evaluating C++ Parallel Programming Abstractions on Shared-Memory Architectures

Table 2
Structure of each NPB benchmark in terms of parallel patterns
in FastFlow(FF), OpenMP (OMP), and Intel TBB (TBB).

Benchmark
Map MapReduce Barriers

FF OMP TBB FF OMP TBB FF OMP TBB
EP 1 1 1 1 1 1 1 1 1
MG 11 11 10 1 1 1 11 11 10
CG 7 18 7 4 6 4 7 11 7
FT 8 8 8 1 1 1 8 10 8
IS 6 7 6 1 1 1 6 7 6
BT 23 23 23 - - - 23 23 23
SP 19 19 19 - - - 19 19 19
LU 22 23 22 1 1 1 22 19 22

However, TBB and FastFlow do not have this option.
Explicit barriers are implemented when synchroniza-
tion is required across threads. In OpenMP we used
the #pragma omp barrier. In TBB and FastFlow, we
used the standard Pthread library barrier mechanisms.

Table 2 shows the number of instances of the parallel pat-
terns and synchronization primitives that have been used in
our NPB-CPP parallelization with the three parallel program-
ming abstractions. The FastFlow and TBB versions show a
different number of patterns and synchronization primitives
in some kernels and pseudo-applications (MG, CG, IS, and
LU). The reason is that some instances ofMap andMapRe-
duce do not bring any performance improvement (their loop
body does very small computation). Better performance can
be achieved with the TBB and FastFlow versions by removing
such few fine-grained Map and MapReduce.

Although the same could be done in OpenMP, and be-
cause no performance penalty was observed, we decided to
maintain the code of our C++ OpenMP version identical
to the original OpenMP Fortran code provided by the NAS
experts. Other asymmetries in the implementation with the
different tools are very specific to each kernel and pseudo-
application, and we omit to describe them since they do not
represent a central point for this work.

In the rest of this section, we describe the main aspects
of the parallelization for each kernel and pseudo-application.
3.2.2. EP kernel

The EP kernel has a single compute-intensive code region
that we parallelized using a MapReduce with static schedul-
ing. This choice has been applied in all our implementations
for the different parallel programming abstractions. Addition-
ally, this kernel needs a special synchronization at the end of
the parallel computation. As the defaultMapReduce imple-
mentation (described in Section 3.2.1) accepts only standard
types and there is a reduction over an array, we manually
implemented the data synchronization in OpenMP, TBB, and
FastFlow.
3.2.3. MG kernel

The MG kernel uses the multigrid V-cycle operation with
a residual computation. The strategy adopted is to parallelize

withMaps the intensive computational regions of the V-cycle
method, which are the restriction, prolongation, residual, and
smoother routines. Then, we also parallelized some less inten-
sive routines such as the communications along borders (with
aMap) and the approximation to the L2 and uniform norm
values (with aMapReduce). This lastMapReduce needed spe-
cial care since threads synchronize on two variables for differ-
ent operation types (sum and max). In OpenMP, this is done
with two different reduction directives, while in FastFlow
and TBB we manually implement theMapReduce. Finally,
we point out that the MG kernel exhibits limited scalability
with more threads, as it will be shown in the experimental
part. The reason is that the main computational step works on
a small grid and requires non-local accesses to the memory,
leading to poor cache exploitation.
3.2.4. CG kernel

The most computationally demanding step in CG is the
sparse matrix-vector multiplication q = Ap of the Conjugate
Gradient method, which we parallelize using a Map. In this
case, the static scheduling works well although CG has an
irregular workload. This is because the workload follows a
random Gaussian distribution, and when the slices are stati-
cally divided they tend to store equally balanced workload.
Furthermore, we used multiple Maps and MapReduces to
parallelize other less compute-intensive steps, as in Table 2.
The consequence of including several Map and MapReduce
is that synchronization barriers are implicitly added to the
code, and this synchronization overhead dominates the small
improvement obtained by introducing such parallel steps. We
mitigated this in OpenMP, where some implicit barriers in
the Maps were removed using the nowait directive.
3.2.5. FT kernel

This kernel contains three independent symmetric FFT
routines to compute each dimension, which we parallelized
using a Map. However, communications may represent a
bottleneck since the kernel must decompose slices of the
main 3D matrix into a 1D local array each time it applies an
FFT resolution, and then it requires to copy the results back.
In addition, we manually implemented the MapReduce for
computing the checksum in all the parallel programming ab-
stractions. This needs special treatments because the reduce
operation is applied over complex numbers.
3.2.6. IS kernel

The IS kernel uses the bucket sorting approach. The
sequential code (originally written in C) has a synchroniza-
tion protocol for the parallel OpenMP version. This protocol
needs to be adapted for TBB and FastFlow possibly by main-
taining the code as closely as possible to the original one. To
this end, we adapted the defaultMap (described in Sect. 3.2.1)
by using it just to replicate the same function without spec-
ifying which elements of the indexed set are computed in
parallel. Then, the scheduling is performed manually inside
the threads’ private region. This splits the computation and
determines which indexes of the set each thread computes.
An explicit Barrier is added after each instance of the modi-
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fiedMap for synchronization. We point out that in Table 2
the number of Maps in IS matches the number of Barriers
for this reason. We also instantiated the standard Map in
some loops, as for the sorting operation inside the buckets.
In this case, we used the dynamic scheduling approach to
better balance the workload between buckets. Finally, we
instantiated the MapReduce to implement the verification
function after the computation.
3.2.7. BT and SP pseudo-applications

Implicit methods are typically used to get an approxi-
mation of the solution in CFD equations through iterative
techniques, as implemented in the BT, SP, and LU pseudo-
applications. Besides the divergent factorization methods
used for BT and SP, those pseudo-applications were very
similarly designed. Both are originally implemented from a
parallel viewpoint. Therefore, their data have already been
organized to avoid dependencies. In OpenMP, FastFlow and
TBB, we only instantiated sequence of Maps to parallelize
them, as shown in Table 2. A practical example of the data or-
ganization’s importance concerning performance is found in
BT and SP for the residual computation routine. Dimensions
x and y are implemented with a singleMap due to the lack of
data dependencies since data are organized along the z direc-
tion. However, the z dimension itself is fragmented to avoid
data dependencies, requiring sixMaps instead of a single one
as in x and y directions. Finally, the most compute-intensive
steps of both BT and SP, along with the residual computa-
tion, are the three solving functions for computing each of
the three dimensions. We parallelized them instantiating the
Map pattern in the outermost loops.
3.2.8. LU pseudo-application

The LU pseudo-application implements the Symmetric
Successive Over-Relaxation (SSOR) method. This algorithm
extends the Gauss-Seidel method to solve a linear system
of equations. Its intensive computation relies on the decom-
position of the 3D matrix system in triangular lower/upper
matrices and then solving this matrix system. Both compu-
tations, upper and lower, are performed in two similar steps
on the same iteration. Previous studies [20, 21] suggest two
main ways to parallelize the LU application: hyperplane and
pipelining. In the first, points from the same hyperplane de-
fined by l = i + j + k can be computed in parallel. The
so-called pipeline strategy instead implements a synchroniza-
tion structure using data-parallelism mechanisms to control
the computational flow in a way that mimics a multidimen-
sional pipeline. The LU cannot be parallelized efficiently
with traditional data-parallelism techniques because all three
dimensions must deal with data dependencies. This means
that any modification would send a lot of update messages
between threads, impairing parallel scalability.

We adapted the original OpenMP parallelization in Fast-
Flow and TBB. First, we modify theMap as we did for the
IS kernel (see Section 3.2.6). We also implemented syn-
chronization mechanisms using locks to control the data flow
in FastFlow and TBB, where a thread starts the computa-

tion only when its previous neighbor has finished. OpenMP
uses a different approach based on omp flush directives. We
graphically show the parallel data flow outcome in Fig. 2.
Parallelism is achieved when for each advance along the k
direction, a new thread starts computing the next block of
elements from the indexed set.

Figure 2: The parallel data flow illustration for LU.

4. Experiments
The set of experiments was carried out on three differ-

ent multicore platforms, namely: Xeon, Epyc, and Power8. We
used the GNU compiler since it represents the most popular
one in the open source community, and also the Intel com-
piler (ICPC) since it represent the most popular proprietary
compiler. The architectural specifications and environment
settings of the three machines are reported in Table 3. The
NPB workload sizes are expressed through classes, where
classes A, B, and C are standard test problems having about
4× size increase going from one class to the next one. We
select class C for our tests because it represents a significant
workload size for modern multicores [28]. For compiling
the benchmarks, we specified -std=c++14 and -O3. Each ex-
periment configuration was repeated 5 times. The plots are
reporting the arithmetic mean value and the standard devia-
tion using error-bars. We also apply statistical analysis using
95% of reliability to compare the differences in the execution
times. We ensure the functional correctness of the results pro-
vided by NPB-CPP using the built-in verification functions
implemented in the NPB. Such functions compare the results
obtained in one execution with the correct ones stored within
the benchmark. The execution is successful when the result is
identical or within a tolerated error range (e.g., CG tolerates
less than 10−10). In all cases, our C++ porting successfully
passes all those verification checks.

We will first discuss the performance of the sequential
versions. Second, we examine the performance of the parallel
porting using the same OpenMP runtime (distributed within
compilers). Then, we discuss the performance obtained by
using Intel TBB (2020.1) and the FastFlow (3.0.0) library. Fi-
nally, we compare the performance with our previous work’s
benchmark versions.
4.1. Sequential porting

In this section, the goal is to evaluate our sequential port-
ing, observing the performance behavior of NPB-CPP com-
pared to the original NPB. Although we only present the
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Table 3
Multicore platforms and their environment settings (OS and
compilers).

Name Description

Xeon It has a Dual-socket Intel Xeon E5-2695 Ivy Bridge
CPUs running at 2.40GHz, featuring 24 cores (12 per
socket). Each hyper-threaded core has 32KB private
L1, 256KB private L2 and 30MB of L3 shared with
the cores on the same socket. The machine has 64GB
of RAM. System. Linux 4.15.0-72, Ubuntu 18.04.3LTS.
Compilers. GNU gcc 9.1.0 and Intel icc 19.0.5.281

Epyc It has a Dual-socket AMD EPYC 7551 CPUs Zen micro-
architecture running at 2.40GHz, featuring 64 cores (32
per socket). Each core has 2 HW threads, 64KB private
L1, 512KB private L2 and 8MB of L3 shared with other
three cores. Each socket has 4 NUMA nodes. The
machine has 128GB of RAM. System. Linux 4.15.0-101,
Ubuntu 18.04.4LTS. Compiler. GNU gcc 9.1.0

Power8 It has a Dual-socket IBM server 8247-42L with two
Power8 processors each with ten cores organized in two
CMPs of 5 cores working at 3.69GHz. Each core (8-way
SMT) has private L1d and L2 caches of 64 KB and
512 KB, and a shared on-chip L3 cache of 8 MB per
core. The total number of cores per CPU is 20 physical
and 80 logical ones. The machine has 64 GB of RAM.
System. Linux 4.4.0-47, Ubuntu 16.04. Compiler. GNU
gcc version 9.1.0.

plots for the Xeon platform, we also describe in a nutshell
the outcome for the other two platforms. Fig. 3 shows the
results obtained with the GNU gfortran/g++ compilers on
the Xeon platform. X-axis presents the NPB benchmarks in
both graphs, while the Y-axis presents the execution time
in seconds (using a logarithmic scale) in one plot while the
other shows the relative difference in percentage. The relative
difference is obtained by normalizing NPB-CPP benchmarks’
execution time with respect to the original NPB, where posi-
tive bars stand for C++ faster and negative bars the opposite.

On average, the C++ version achieves similar perfor-
mance compared with the original Fortran code. The nor-
malized difference is less than 1.5%, except for BT, LU, and
FT. One of the major differences between NPB-CPP code
with respect to NPB is that we dynamically allocate single di-
mensional arrays, while in NPB they were allocated statically
using multi-dimensions. As already explained in Sect. 3, we
use linear arrays to provide a generic code that can be extensi-
ble for a wide spectrum architectures. Also, since the bench-
marks implement irregular data access patterns, using linear
memory allocation is less intrusive than multi-dimensional
arrays for this purpose. In BT, this modification has a positive
impact–C++ is 7.43% faster than Fortran–while in LU the
impact is negative, since C++ is 4.3% slower. Concerning
FT, the C++ version is 2.15% slower than the Fortran version,
mainly because of the complex type (intrinsic data type only
in Fortran).

To observe the performance using different compilers
on the same platform, Fig. 4 shows the execution time in
seconds (using a logarithmic scale) obtained with the Intel
compiler on the Xeon platform. The relative differences be-
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Figure 3: Comparing the performance of NPB vs NPB-CPP
on the Xeon platform using the GNU compiler with Class C.

tween Fortran and C++ are also shown. In this case, the
differences between the two versions are more evident. The
FT kernel presents the biggest difference: the C++ version
is 27.49% slower than the Fortran one. The MG kernel also
shows a high normalized difference: the C++ version is
18.26% faster than the Fortran version. Both FT and MG are
the two benchmarks that allocate more memory and stress
long-distance data communications (see Section 2.1). We
observed that the most significant performance differences
are in those benchmarks that are more memory intensive.
Besides the FT and MG kernels, the C++ version of the BT
and SP pseudo-applications are 7.13% and 5.83% slower than
the Fortran ones. These pseudo-applications are faster when
using ifort than gfortran, while the C++ version (g++ and
icpc) is similar for both compilers, which explains the small
increase in the difference. For the remaining benchmarks,
the average difference is less than 3%.

The experiments conducted for the other two platforms
using the GNU compiler are summarized as follows. We
present the percentage numbers normalizing the difference
between NPB-CPP and NPB execution times. The outcome
is that NPB’s benchmarks are on average 0.86% faster than
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Figure 4: Comparing the performance of NPB vs NPB-CPP
on the Xeon platform using the Intel compiler with Class C.

NPB-CPP ones in Epyc. In Power8, NPB-CPP’s benchmarks
are on average 0.73% faster than NPB ones. As discussed for
the Xeon platform, the differences are less than 1% on average.
We can conclude that the sequential porting of NPB-CPP
is reliable and efficient compared to the NPB in different
compilers and platforms.
4.2. Parallel porting

This section aims at comparing the performance of the
parallel porting on shared-memory architectures, which was
first implemented with OpenMP in Fortran by the NAS ex-
perts. Our parallel porting translates from Fortran directives
to C++ directives as discussed previously. Consequently, we
are comparing the behavior of OpenMP parallelism between
NPB-CPP and NPB benchmarks. Graphs in Fig. 5 show the
execution time in seconds (using a logarithmic scale), vary-
ing the number of threads from 1 to 48 on the Xeon platform
and with workload Class C. The plots have a second Y-axis to
report the normalized difference in percentage between NPB-
CPP and the NPB using bars. A positive difference means
that the NPB-CPP version is faster than the NPB while a
negative value vice-versa.

To better evaluate the differences for each parallel exe-
cution, we colored the bars with red and green colors. The
assigned color is the result obtained by the p-value statisti-
cal analysis [35]. The smaller the p-value, the stronger the
evidence that the null hypothesis should be rejected. In our
statistical analysis, the null hypothesis (H0) is NPB=NPB-CPP

(e.g., the NPB-CPP provides the same level of parallel per-
formance of the original NPB). The alternative hypothesis
(H1) is then NPB≠NPB-CPP. To reject H0, the p-value must be
less than 0.05 (this is a commonly used threshold in the liter-
ature for software experiments). WhenH0 (green color) isrejected, we assumeH1 (red color). In this way, it is possibleto quickly identify which results are significantly different
from the statistical standpoint considering 95% confidence
in Fig 5.

As sketched in Fig. 5, the performance among NPB and
NPB-CPP benchmarks are very close. The EP and MG
kernels (Figs. 5a and 5b), followed by BT and LU pseudo-
applications Figs. 5f and 5h), are the benchmarks presenting
more cases with significant statistical difference. For LU the
primary reason is that the NPB-CPP sequential version is, on
average, 4.3% slower than the NPB version. This difference
persists in the parallel version (Fig. 5h). In BT, while in the
NPB-CPP sequential version was 7.43% faster, the parallel
version shows that NPB-CPP with OpenMP configured in
one thread is 4.15% slower than NPB, which is in Fortran.
The BT and SP pseudo-applications are both bounded to the
sequential PDE solver. However, in the Xeon platform, only
SP stops scaling around 12 threads, which explains why its
results tend to diverge less.

FT andMG benchmarks presented larger performance dif-
ferences. The first in favor of the NPB-CPP version whereas
the second in favor of the NPB version. Something similar
happens to CG, where results are different since it executes
over irregular workloads that require memory locality. For
IS, on average, the execution time is similar except for the
low and high parallelism degree. Finally, in the EP kernel,
NPB-CPP is slightly faster than NPB in all cases.

To observe how the performance is impacted by the use
of different compilers, Table 4 summarizes the best parallel
execution times obtained on the Xeon platform using both
the GNU and Intel compilers with workload Class C. On
average, the results are close to each other, except for EP, FT,
and MG. EP executes 25.6% faster with icc than gcc. Both
FT and MG stress long-distance data communications and
their performance relies mainly on how much the compiler
is capable of optimizing memory accesses.

After presenting and discussing these experiments, we
can conclude that the parallel porting achieved reliable results
and efficient performance compared to the original version.
The statistical analysis revealed that 58.8% of the tests (com-
bining the number of threads and benchmarks) stand equal
for NPB and NPB-CPP. In addition to that, we can see that
the differences were small in average. The next section will
extend the parallelism performance analysis on other parallel
programming abstractions.
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Figure 5: Experimental results for NPB-CPP and NPB benchmarks parallelized with
OpenMP on the Xeon platform by using the GNU compiler and workload Class C. Lines show
the execution time in seconds (using log scale) while bars show the normalized difference.
Bar’s colors show if this difference is significant from the statistical standpoint under 95%
of reliability: green color means NPB=NPB-CPP whereas red means NPB≠NPB-CPP.

4.3. NPB-CPP with Intel TBB and FastFlow
As the previous experiments highlighted the reliability

and efficiency of the sequential and parallel porting, this sec-
tion will evaluate and discuss the performance scalability
outcomes of the benchmarks for other parallel programming
abstractions, which now can be tested on these benchmarks
due to this work. Therefore, we used as the baseline the per-
formance results of the NPB-CPP with OpenMP (previously
discussed) to compared with the NPB-CPP parallelized us-
ing Intel Threading Building Blocks (TBB) and FastFlow
(FF) (see Sect. 3.2). Since our experiment environment uses
NUMA architectures, thread affinity can significantly affect
performance. We used the default configuration for each
parallel programming abstraction, therefore, OpenMP and
Intel TBB let the OS handle thread affinity while FastFlow
places threads to physical cores first from 0 to N in ascend-

ing order. Table 5 reports the best speedups of each version
computed over the NPB-CPP sequential version, the best
execution time in seconds, the number of threads used, and
the standard deviation. These metrics are presented for the
three platforms.

EP is an embarrassingly parallel computation implemented
by a single MapReduce pattern. As expected, it reaches its
best speedup by using all available cores of the machines in
all parallel programming tools and platforms. TBB shows the
highest speedup due to its work-stealing scheduling. The MG
kernel requires access to non-linear addresses in memory,
preventing the best cache usage. Since Power8 has a higher
memory bandwidth capacity [2], it provides better results.
FF and OMP provide higher speedup, mainly due to the static
scheduling policy of loop iterations adopted. The main differ-
ence between OMP and FF is that OMP creates a parallel region
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Table 4
The best execution times among NPB and NPB-CPP bench-
marks on the Xeon platform by using gcc/icc compilers with
workload Class C.

Bench. Metrics
GNU GCC Intel ICC

NPB-CPP NPB NPB-CPP NPB

EP
N Threads 48 48 48 48
Time (sec) 13.60 13.75 10.40 10.35
Std. Dev. 0.01 0.05 0.03 0.05

MG
N Threads 16 21 41 22
Time (sec) 7.94 7.28 8.352 8.02
Std. Dev. 0.12 0.24 0.17 0.24

CG
N Threads 48 48 47 24
Time (sec) 19.27 19.18 19.32 18.29
Std. Dev. 0.18 0.34 0.67 0.91

FT
N Threads 48 48 48 47
Time (sec) 20.67 20.54 22.11 23.71
Std. Dev. 0.08 0.23 0.99 0.40

IS
N Threads 48 48 47 47
Time (sec) 1.034 0.956 1.02 1.08
Std. Dev. 0.01 0.01 0.01 0.01

BT
N Threads 47 48 24 23
Time (sec) 71.74 68.61 71.96 66.16
Std. Dev. 0.59 0.23 0.89 0.53

SP
N Threads 14 14 14 14
Time (sec) 90.75 91.20 90.05 88.86
Std. Dev. 1.49 0.69 0.58 0.74

LU
N Threads 47 47 45 45
Time (sec) 45.72 44.18 45.72 44.88
Std. Dev. 0.29 0.38 0.22 0.21

where threads are always active while FF disables and enables
them each time a new parallel Map is executed.

The CG kernel requires a large number of synchroniza-
tions, primarily because it uses manyMapReduce for sharing
partial results (see Table 2). This periodically interrupts
the computation and decreases the maximum performance
achievable. CG has irregular data accesses, which benefit
of bigger last-level caches shared between more cores. This
explains why the results are better on the Xeon and Power8 plat-
forms. The OMP version shows the highest speedups, mainly
because we were able to add nowait directives to remove
implicit barriers, as depicted in Table 2.

In the FT kernel, data communication phases have a sig-
nificant impact on performance. Each FFT resolution copies
a slice of data from the main 3D-matrix to a local 1D-array,
solves it, and then copies it back into the main matrix. In the
Xeon platform, results are similar for all versions because the
memory bottleneck hides other sources of overhead. How-
ever, in the Epyc and Power8 platforms, although speedups
are similar, the obtained sequential execution time in the
Epyc machine is an order of magnitude faster than the one
obtained in the Power8. This explains the better scaling in the
Power8, specifically for the TBB version. It benefits from its
dynamic work-stealing scheduling policy, which achieves a
good workload balancing among the threads. However, since

the computation in FT is fine-grained, the extra overhead
of such dynamic scheduling does not payback on the Epyc

platform. As IS kernel is also memory-bound, it explains
the higher speedups in Power8. The IS sequential code runs
faster in Epyc than in Power8. This is the reason why FF and
TBB obtain the best speedup earlier (with 24 and 28 threads,
respectively) as the execution time is short (close to 1 sec-
ond) and the runtime overhead has a higher impact. In the
Power8, FF’s thread pinning to cores mechanism showed poor
performance for this benchmark.

As already discussed, BT and SP use analogous PDE
solvers. Despite both are bound by the PDE solver, taking
into account that they execute a different factorization, the
bottleneck occurs in different situations. This explains why
BT has a higher speedup than SP and why they stop scal-
ing when the sequential bottleneck of the solver is reached.
For SP, we parallelized it by using the same strategy for all
parallel programming abstractions, implementing onlyMaps.
Therefore, the maximum speedup is very close in all imple-
mentations. For BT, this is evident in the Epyc platform while
not in Xeon and Power8. Concerning the runtime systems of
the parallel programming abstractions, the static iteration
scheduling employed by the OMP and FF versions provide bet-
ter speedup with respect to the dynamic scheduling used by
the TBB version. Specifically, the execution time is reduced
significantly if the iteration space is equally divided among
all threads. In the Power8 platform, this happens with 160
threads.

The LU pseudo-application has been parallelized by us-
ing an implicit multidimensional pipeline implemented with
Maps. It uses the static scheduling policy for the iteration
space and proper lock mechanisms for synchronizations. In
all platforms, themaximum speedup is low because the bench-
mark is limited by the sequential solution of the linear system
of equations. For FF and TBB, the execution flow management
is done in the thread scope while for OMP it is done inside the
loop iteration scope.

In summary, we conclude that other parallel programming
abstractions can be effectively used to parallelize these bench-
marks. Although the focus was not to optimize at maximum
the parallelism exploitation to find or select the best parallel
programming abstraction, the results revealed interesting in-
sights. We can observe that the performance of each parallel
programming abstraction depends on the shared-memory ar-
chitecture design and benchmark characteristics. OpenMP is
considered the de-facto standard framework for these environ-
ments, however, it does not always achieve the best speedups.
These insights open space for future investigations regarding
parallelism optimizations.
4.4. Comparison with our prior work

In this section, we provide a performance comparison
between NPB-CPP and our prior work [18] which, as already
explained in Section 1, was based on the five kernels only
and on an outdated version of NPB.

In terms of parallel implementation, the IS and FT ker-
nels exhibit the most significant differences between the new
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Table 5
Experimental results for NPB-CPP showing the best execution time (in seconds) and
speedup using Class C for Xeon, Epyc, and Power8. The speedup is calculated using the ratio
between NPB-CPP’s sequential version (no parallel abstraction) and the best execution
time for each tool. Colored cells highlight the winner speedup.

Xeon Epyc Power8Benchmark Metrics TBB FF OMP TBB FF OMP TBB FF OMP
N Threads 48 48 48 128 128 124 160 160 160
Time (sec) 13.52 15.04 13.60 4.92 5.02 5.36 8.58 10.27 8.89
Speedup 41.20 37.02 40.94 128.77 126.35 118.38 124.03 103.60 119.74EP

Std. Dev. 0.01 0.11 0.01 0.01 0.01 0.11 0.06 0.26 0.29
N Threads 19 16 16 8 9 16 64 156 64
Time (sec) 10.18 7.69 7.94 14.76 15.28 13.64 18.28 20.73 15.83
Speedup 5.15 6.82 6.60 2.25 2.17 2.43 16.51 14.55 19.05MG

Std. Dev. 0.03 0.18 0.12 0.57 1.36 1.10 0.14 0.14 0.02
N Threads 48 48 48 56 6 24 152 68 120
Time (sec) 20.11 20.52 19.27 37.03 38.88 35.62 34.80 35.19 30.47
Speedup 16.99 16.65 17.73 3.09 2.94 3.21 28.81 28.49 32.90CG

Std. Dev. 0.08 0.52 0.18 0.52 1.31 4.66 0.31 0.36 0.32
N Threads 48 48 48 56 124 128 160 152 140
Time (sec) 20.62 20.06 20.67 12.00 11.42 11.00 20.60 23.51 25.10
Speedup 21.32 21.92 21.28 64.44 67.71 70.23 72.70 63.73 59.72FT

Std. Dev. 0.05 0.11 0.08 0.08 0.19 0.16 0.10 0.25 0.31
N Threads 48 47 48 28 24 124 140 160 148
Time (sec) 1.21 1.06 1.03 1.32 1.16 0.87 1.09 1.27 0.98
Speedup 14.95 17.06 17.56 13.97 15.94 21.16 43.81 37.6 48.53IS

Std. Dev. 0.02 0.03 0.01 0.03 0.08 0.02 0.02 0.03 0.04
N Threads 41 46 47 52 104 100 160 160 160
Time (sec) 86.31 68.15 71.74 60.70 60.34 59.63 210.73 105.69 86.60
Speedup 13.67 17.32 16.45 12.84 12.92 13.07 29.05 57.93 70.70BT

Std. Dev. 0.36 0.31 0.59 0.25 1.53 1.11 0.75 2.02 0.78
N Threads 13 14 14 8 7 12 40 32 32
Time (sec) 97.69 93.35 90.75 107.81 113.49 112.21 166.52 172.85 171.95
Speedup 7.82 8.18 8.41 4.14 3.94 3.98 16.78 16.16 16.25SP

Std. Dev. 1.22 2.65 1.49 1.92 7.48 13.41 0.31 1.30 3.56
N Threads 41 46 47 28 24 32 80 80 80
Time (sec) 47.96 43.64 45.72 47.21 47.89 47.21 85.89 88.24 82.92
Speedup 17.42 19.14 18.27 11.45 11.29 11.45 34.08 33.17 35.30LU

Std. Dev. 0.23 0.15 0.29 0.58 0.80 2.60 0.35 1.75 0.97

code in NPB-CPP and the old one. In IS, we implement a
new parallel strategy for FF and TBB designed from scratch.
This strategy uses a single Map for parallelizing the com-
plete compute-intensive region of the sorting routine using
buckets. In contrast, the previous one used four Maps and
serialized the synchronization between buckets, generating
extra overhead. Furthermore, the previous implementation
was not implemented in TBB due to issues related to getting
the thread identifiers, which was not possible with task-based
parallelism for TBB. In the FT kernel, we modified some
routines such as the evolve and checksum, and included others
like the initialization for warming up all data before execution.
We identified an extra loop suitable to be parallelized using a
Map. Additionally, in the CG kernel we identified four extra
Maps that provide performance benefits with large problem
sizes (starting from class C).

Table 6 shows the performance improvements between
our two versions. Since the code in prior work does not work
on large problem sizes starting from class C, we restricted

the comparison with experiments using class B. Consider-
ing this size is relatively small (see [28]), we do not expect
large performance differences. The table presents the best
execution times for the five kernels on the Xeon platform with
the GNU compiler. For the EP kernel, the implementation in
NPB-CPP is faster than the prior one in all the considered par-
allel programming abstractions, more distinct in FF. The main
reason is that our previous implementation was affected by
false-sharing problems, which we have fixed in the NPB-CPP
implementation using proper padding of our data structures
and arrays (configured to automatically work in any multicore
platform by reading the cache line sizes from the operating
system). Also in the MG kernel, the new version is faster
in all the tools. The main reason is that we standardized the
implementation of linear arrays to all kernels, which work
better in this case for MG’s fine-grained workload and irreg-
ular memory accesses. In the old implementation we used
multidimensional arrays.

In CG, FF and TBB had different performance result be-
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Table 6
Comparison with our prior work: best execution times on Xeon

with Class B using the GNU compiler.

Bench. Metrics
Current Work Previous Work [18]

FF OMP TBB FF OMP TBB

EP
Nº Threads 47 48 48 48 48 48
Time (sec) 3.78 3.42 3.39 5.07 3.45 3.41
Std. Dev. 0.05 0.01 0.00 0.03 0.00 0.01

MG
Nº Threads 16 14 10 21 16 9
Time (sec) 0.89 0.87 1.34 1.01 0.90 1.40
Std. Dev. 0.04 0.01 0.02 0.02 0.00 0.06

CG
Nº Threads 23 48 35 48 48 47
Time (sec) 9.16 6.86 7.84 7.94 6.76 9.04
Std. Dev. 0.15 0.01 0.04 0.03 0.14 0.07

FT
Nº Threads 48 48 45 48 47 48
Time (sec) 4.71 4.80 5.21 4.99 5.43 5.36
Std. Dev. 0.02 0.11 0.04 0.06 0.11 0.06

IS
Nº Threads 48 48 48 48 48 -
Time (sec) 0.25 0.21 0.25 0.26 0.21 -
Std. Dev. 0.00 0.00 0.00 0.00 0.00 -

cause we now parallelized more loops than before. In FF, we
used a different scheduler than the one used in the other tools,
because it works better with its thread pinning mechanism
in CG. However, it payoffs with bigger workloads as shown
in Table 5, where FF is similar to the others. TBB also shows
a higher overhead than OMP in CG. However, TBB overhead is
much more evident in FT since it is the only tool configured
to use a dynamic scheduler (work-stealing). Additionally, in
FT we modified considerably the code, and consequently, all
the new versions are faster. The IS execution time is very
small, close to 250 ms, and the overhead of the parallel run-
time becomes more evident. The difference between the FF
versions is close to 5%, which depends on the new parallel
strategy that paybacks even more with larger workload sizes.
Finally, this new version allows the Intel TBB parallelization
of IS, not available before.

5. Conclusions
This paper provided the NPB-CPP benchmark suite with

parallel implementations following a structured parallel pro-
gramming approach and using OpenMP, Intel TBB, and Fast-
Flow for shared-memory architectures. We presented a com-
prehensive discussion about the benchmarks, the implemen-
tation, and also our parallel design choices for justifying all
the results. For evaluating the C++ parallel programming
abstractions, we first obtained a C++ version of the NPB,
named NPB-CPP. Moreover, we characterized the basic struc-
ture of the benchmarks and their distinguished importance
in the research, which relies on the fact that NPB contains
many irregular workloads stressing different components of
the underlying multicore architecture.

We evaluated NPB-CPP by performing a set of exper-
iments using popular platforms nowadays (Xeon, Epyc, and

Power8) with two different compilers (GNU GCC and Intel
ICC). The performance evaluation was guided using statis-
tical analysis. The results demonstrated that there are mi-
nor performance differences among the sequential versions.
OpenMP versions (NPB vs NPB-CPP) have shown a reliable
outcome, presenting a similar pattern of behavior. Addition-
ally, with 95% of confidence, the statistical analysis evaluat-
ing the parallel porting revealed that, at least, 58.8% of the
samples stand for NPB-CPP equal to NPB benchmarks.

Finally, NPB-CPP’s extensibility and its importance to
the scientific community were shown in the experiments
of the parallel versions using FastFlow and TBB. Other re-
lated abstractions can be evaluated, including those that were
designed for distributed and heterogeneous parallel architec-
tures. The experiments, using Xeon, Epyc, and Power8 revealed
that the performance of the kernels and pseudo-applications
varies among the platforms, benchmarks, and parallel pro-
gramming abstractions. The main performance bottleneck
in the benchmarks was due to the caches and memory band-
width among the platforms, resulting in different behaviors
between the parallel programming abstractions. FastFlow
obtained better performance for Xeonwhen comparing among
other platforms. Intel TBB obtained better performance in a
few benchmarks and platforms mainly due to its optimized
scheduling for balancing the workload among the threads.
Although OpenMP is considered the state-of-the-art for mul-
ticores, this work revealed many situations in which TBB and
FastFlow are more optimized and can perform better.

Researchers can use NPB-CPP to improve parallel pro-
gramming abstractions based on the insights already revealed
in this research. Possible future works are: 1) provide NPB-
CPP with other parallel programming abstractions for shared,
heterogeneous, and distributed memory architectures; 2) per-
form experiments on other related multicore architectures
such as ARM processors; and 3) assess compilers and other
code optimizations techniques.
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