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Abstract

Paradigms like Internet of Things and the most recent Internet of Everything are shifting the attention towards systems
able to process unbounded sequences of items in the form of data streams. In the real world, data streams may be
highly variable, exhibiting burstiness in the arrival rate and non-stationarities such as trends and cyclic behaviors.
Furthermore, input items may be not ordered according to timestamps. This raises the complexity of stream processing
systems, which must support elastic resource management and autonomic QoS control through sophisticated strategies
and run-time mechanisms. In this paper we present Elastic-PPQ, a system for processing spatial preference queries over
dynamic data streams. The key aspect of the system design is the existence of two adaptation levels handling workload
variations at different time-scales. To address fast time-scale variations we design a fine regulatory mechanism of load
balancing supported by a control-theoretic approach. The logic of the second adaptation level, targeting slower time-
scale variations, is incorporated in a Fuzzy Logic Controller that makes scale in/out decisions of the system parallelism

degree. The approach has been successfully evaluated under synthetic and real-world datasets.
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1. Introduction

In our ever-more connected world we are assisting to
an unprecedented diffusion of systems and devices able to
generate massive streams of transient data transmitted at
great velocity. An urgent challenge is to design computing
and communication infrastructures supporting real-time
processing of data streams in order to extract complex
analytics for decision making [1].

The Data Stream Processing paradigm [2] has been pro-
posed to cope with this issue. It consists in a programming
model where applications are written as data-flow graphs
of logic entities called operators, each one applying trans-
formations on the input data and deployed on parallel and
possibly distributed environments.

Real-world data streams may exhibit dynamic charac-
teristics like hysteric data rates with abrupt surges and
out-of-order arrivals, where stream elements (called tu-
ples) may not be gathered in increasing order of times-
tamps. Due to such erratic nature, a-priori capacity plan-
ning and management of the resources needed to execute
streaming applications is not always practical [3], and this
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makes difficult to maintain the desired Quality of Service
(QoS) while achieving high resource utilization efficiency.

To circumvent this issue, some papers have investigated
the problem of enhancing stream processing systems with
elasticity mechanisms [4, 5, 6, 7]. The term elasticity has
been adopted in the field of Cloud Computing [8, 9] to
indicate the ability to change the number and the size of
virtual machines to adapt to the workload level. Recently,
the same term has been used in the data stream processing
literature [3, 4, 5] to indicate systems where the parallelism
level of some operators (i.e. the number of replicas of the
same operator working on distinct input data in parallel)
can be dynamically modified to optimize the application
throughput in response to variations in the arrival rate.

Most of the past elastic approaches have been exper-
imented assuming workload variations in the form of de-
terministic trends and non-stationarities observed at time-
scales of tens of seconds [3] or even minutes/hours [9]. The
work in [10] demonstrated that in elastic Clouds the pres-
ence of fast variabilities such as burstiness may be detri-
mental both for the system QoS and for the resource uti-
lization rate. This negative effect also occurs in stream
processing systems, where phases with arrivals occurring
in clusters (temporal burstiness) are likely to generate a
growing computational burden to the system.

Furthermore, this problem is exacerbated by the fact
that scheduling strategies may generate load imbalance in
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case of bursty streams. In fact, although a bottleneck oper-
ator can be replicated to increase throughput, for stateful
operators input tuples must be scheduled to the replicas by
preserving the computation semantics. As an example, all
the tuples whose timestamp is within a certain temporal
range might need to be scheduled to the same replica. In
this scenario scaling only of the number of replicas may be
ineffective because load imbalance may prevent additional
resources to be efficiently utilized.

In this paper we study these problems for sliding-
window preference queries, a class of important queries
used in multi-criteria decision making [11]. We propose
Elastic-PPQ (Elastic Parallel Preference Queries), a par-
allel autonomic system for executing preference queries on
multicores. To provide autonomic functionality the system
is able to continuously monitor its achieved throughput
and to take corrective actions. Since workload variabili-
ties happen at different time-scales, we design two adap-
tation levels synergically interrelated. The innermost level
neutralizes burstiness at time-scales of tens/hundreds of
milliseconds, and consists in adaptive scheduling strate-
gies that dynamically change the way to assign inputs to
the parallel replicas in order to adjust load balancing just
enough to absorb fast traffic surges. Variabilities at slower
time-scales are handled by the outermost level of adap-
tation that triggers elasticity mechanisms able to change
the parallelism level of the system. Since the performance
achieved by Elastic-PPQ depends on the behavior of sev-
eral of its components whose performances are strongly in-
terrelated, the definition of a precise mathematical model
of the QoS is not an easy task. For this reason we decided
to design the logic of the outermost level in order to incor-
porate heuristics derived from the human knowledge and
the “rule of thumb” experience. To do that we use the
Fuzzy Logic Control paradigm [12], a powerful approach
to design model-free controllers suitable for systems with
complex dynamics [13].

This paper builds on our previous work published in [14].
The novel contributions are listed below:

e in this work, the burst-tolerant scheduling strategies
previously published in [14] are synergically used with
elasticity mechanisms able to scale the utilized re-
sources dynamically. The fuzzy-logic adaptation level
is described in this paper for the first time, and repre-
sents an original application of the Fuzzy Logic Con-
trol methodology applied in the data stream process-
ing field for the first time;

e the scheduling approach designed for the second part
of the system (described in Sect. 3.2) is substantially
enhanced with respect to the first version in [14]. The
improvement consists in the definition of a new type
of tasks that can be scheduled to extract more paral-
lelism during bursty periods, and thus to allow achiev-
ing a high throughput with better resource utilization
(up to 45% improvement);

e Elastic-PPQ is evaluated on datasets exhibiting

burstiness generated with different traffic models,
widely used in teletraffic engineering to perform stress
tests. Furthermore, we develop an extensive evalua-
tion on real datasets from an existing application.

This paper is organized as follows. Sect. 2 introduces
the background and the motivation. Sect. 3 presents the
strategies in the innermost level of adaptation and Sect. 4
describes the outermost level. Sect. 5 provides a wide set
of experiments. Finally, Sect. 6 reviews similar work and
Sect. 7 gives the conclusions.

2. Background and Motivation

In this section we introduce our parallel approach to
sliding-window preference queries and the motivations be-
hind the design of Elastic-PPQ.

2.1. Sliding-window preference queries

Spatial preference queries process d-dimensional input
tuples (e.g., sensor readings) where d > 0 is the number of
attributes per tuple. Their goal is to extract from the set
of inputs the subset of the best tuples selected according
to a certain preference criterion specific of the query to
be executed. Fig. 1(left) shows an example with d = 2 in
the case of the skyline query [15]. In this query a tuple
t1 is considered better than to (t1 dominates t9) if t1.a; <
ts.a; for both the attributes and there exists at least one
attribute a; such that t1.a; < t2.a;. This relation is known
as Pareto dominance [15] and the output is the subset of
all the non-dominated tuples (called skyline).
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Figure 1: Example of skyline given a set of two-dimensional
tuples (left), and consecutive sliding windows (right).

Elastic-PPQ executes preference queries according to
the sliding-window model [2], where the best tuples are
periodically computed by inspecting the inputs received in
temporal windows of w time units that slide every s < w
time units, see Fig. 1(right). The output is a stream of sky-
lines, one for each temporal window. For instance, with
windows of w = 1 second that slide every 0.2 seconds the
skyline query is applied over the tuples received in the last
second by computing a new skyline every 0.2 seconds. To
avoid recomputing the window skylines from sketch, we
use the pane-based model [16, 17] that leverages the fact
that consecutive windows have an overlapping region and
so several tuples in common. Each window is divided into



non-overlapping ranges called panes of L, = GCD(w, s)
time units. In the example each pane lasts L, = 0.2 sec-
onds (we have five panes per window).

The pane-based model consists in two phases. The pane-
level sub-query (PLQ) processes input tuples by finding the
best ones within each pane interval. The window-level sub-
query (WLQ) computes the best tuples within each win-
dow by comparing the best tuples selected in the panes.
Since the same pane is shared among multiple consecu-
tive windows, this approach reduces the number of pair-
wise tuple-to-tuple comparisons with respect to traditional
sliding-window processing models [16, 18]. Furthermore,
the model takes also advantage of the incremental compu-
tation of results. Pane results are incrementally computed
by the PLQ phase every-time a tuple arrives by comparing
it with the best tuples currently selected in the pane. Anal-
ogously, window results are updated in the WLQ phase as
soon as a new pane result is available.

Fig. 2 describes the model in the case of the skyline
query. The figure outlines the pipeline parallelism exist-
ing between the PLQ and WLQ phases that represent two
stages connected in tandem. While the PLQ stage pro-
cesses input tuples, the WLQ stage updates the window
results using the results of the already computed panes.
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Figure 2: The PLQ stage computes the skyline of each pane, the
WLQ stage computes the skyline of each window by merging
the skylines of the panes.
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2.2. Workload variabilities and solution overview

The arrival rate of data streaming applications may be
affected by two variability factors that can have a direct,
negative effect on the system throughput:

e non-stationarities: they consist in variations in the
mean of the arrival rate like monotonous or step-like
increasing/decreasing trends, flash-crowd effects, or
periodic/cyclic variations [19];

e burstiness: it is a stochastic variability where the se-
quence of inter-arrival times tends to form clusters of
closely time spaced arrivals. This effect can be orig-
inated by very dynamic sources that transmit inter-
mittently, or introduced by network delays.

Non-stationarities are variabilities at a slower time-scale
with respect to the one at which data arrive at the sys-
tem [20]. In data centers and Clouds, non-stationarities

happen at time-scales of minutes or even hours [21]. Slow
time-scales instead are often considered in the order of few
seconds in data stream processing applications receiving
thousands of tuples per second [4, 5].

Burstiness may happen at multiple time-scales and is
measured using second-order properties such as the index
of dispersion or the Hurst parameter [22, 23, 10]. Fig. 3
illustrates three different traffic models (Poisson, Markov
Modulated and Self-similar arrivals) all having the same
average rate of 10K tuples/sec. The details about such
models will be described later in this paper. In each row
we plot on the left hand side the number of arrivals mea-
sured at a time-scale of 100 ms, which correspond to the
red region in the plot on right hand side where we amplified
the scale by a factor of 10. In the Poisson traffic burstiness
disappears just with a fast time-scale of 100 ms, while in
the other models it persists more or less intensively. Inter-
estingly, the self-similar traffic has the characteristic to be
scale invariant [19], i.e. the arrival process looks nearly
the same at different time-scales, see Fig. 3(bottom).
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Figure 3: Burstiness at different time-scales: Poisson, Markov
Modulated (fitted with an index of dispersion of 1K) and Self-
similar arrivals (with Hurst parameter of 0.75).

These variability factors must be addressed by adapta-
tion mechanisms. An approach consists in the so-called
computational elasticity [4, 5], which in streaming scenar-
ios consists in the dynamic modification of the parallelism
level of some application operators in response to work-
load fluctuations and changes in the resources availability.
Apart from the ability to keep up with the workload, ad-
ditional motivations in favor of elasticity are:

e parallelism-level auto-tuning: a sliding-window query
can be run multiple times each receiving a data stream



with different temporal characteristics. Finding the
right parallelism level for each run requires an inten-
sive manual tuning which may be impractical;

e sharing of cores and computing cycles: elastic applica-
tions can automatically coexist with other running ap-
plications by adapting to the number of unused cores
and to the available computing cycles. Such competi-
tion may also exist among different parts of the same
application, e.g., the PLQ and WLQ stages in Fig. 2
can be internally parallel, and the selection of their
parallelism level requires a proper coordination;

e saving instantaneous power: elasticity is beneficial in
light of the importance of power efficiency. In fact,
using more active replicas of an operator may in-
crease the power demand, and so higher parallelism
levels should be used when favorable trade-offs be-
tween power and performance can be achieved.

The strategy that monitors the system execution and
triggers changes in the parallelism level is often carried out
at regular time intervals [24]. If the interval is too long the
system is slow to adapt to workload variations. If it is too
short the system may not be fast enough to exploit the
new parallelism level. In prior stream processing systems
the used intervals are in the order of tens of seconds like
n [4, 25]. Such granularity may be inappropriate to react
to burstiness at fast time-scales like the one shown in the
last two plots in the left hand side of Fig. 3.

Variabilities at different time-scales need to be han-
dled by mechanisms with different responsiveness. In case
of sliding-window queries, the scheduling strategies that
distribute input data to the replicas play a decisive role
in smoothing the impact of burstiness. Bursty periods
may lead to uneven pane sizes in terms of number of
tuples contained, and this may hamper load balancing.
In Elastic-PPQ this problem is solved by an adaptive
scheduling strategy able to identify large panes and to
split them just enough to achieve the ideal instantaneous
throughput. In addition, such strategies are used together
with an overall controller that monitors the system execu-
tion, detects whether the used parallelism level needs to
be decreased to improve resource utilization efficiency or
increased to eliminate bottlenecks in the system.

In the next two sections we will study in detail these
two adaptation levels.

3. Innermost Level of Adaptation

To increase the query throughput, the scheme in Fig. 2
is parallelized by making the PLQ and WLQ stages inter-
nally parallel by replicating their logic in multiple identical
entities called workers [2]. Fig. 4 provides the illustration
of the whole structure, with n > 0 workers in the first
stage and m > 0 in the second one.

The emitters (denoted by E) are responsible for routing
input data to the selected destination workers. Collectors
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Figure 4: The structure of the system is a pipeline of two par-
allel stages (each featuring more identical workers).

(denoted by C) collect the results of the workers by even-
tually putting them in the right order.

To make the paper self-contained, we first recall the
main features of the adaptive scheduling strategy of the
PLQ stage, which has been published in [14]. Then, we
will describe the scheduling performed in the second stage,
which will be substantially enhanced with respect to the
one originally described in the same paper.

8.1. PID-based scheduling in the PLQ stage

The scheduling is described in Alg. 1. It consists
in two main parts: the management of out-of-order tu-
ples through a punctuation mechanism, and the adaptive
scheduling of tuples based on a pane splitting approach.

Algorithm 1: Adaptive splitting approach (PLQ)

Input: an input tuple t
Result: tuple t is dispatched to an activated PLQ worker
1: procedure PLQ_SCHEDULE(t)
2:  » Punctuation generation logic
3: if t.ts > timae then
3.1: We set tmas +— t.ts and K « max{K,E}, where d is
equal to maxy, ep{tmaz — ti-ls}
3.2: Set D + 0, and a punctuation with timestamp ¢,
max {tp, tmaz — K} is sent to the activated workers
4: else D=DU {t}
> Splitting threshold adaptation
6: if new sampling period 7 then
6.1: From the statistics get the number of tuples scheduled
to/processed by the workers during the last sampling
period
6.2: Estimate the service rate p(7) of the workers and the
PLQ utilization factor p(7)
6.3: Update the splitting threshold 6(r) by using the PID
control law (Fig. 5) with inputs p(7) and setpoint p

7: > Scheduling of the tuple
8: Let p be the identifier of t’s pane, i.e. p = |t.ts/Lp]|
9: if Owner[p] = undefined then
10: The 11w becomes the owner of p and ¢ is sent to it
11: else
12: Let w be Owner [p]
13:  if SentTuples[p,w] < 6(7) then tuple ¢ is sent to w
14: else the 11w becomes the owner of p and ¢ is sent to it

o

K-slack punctuations. To handle out-of-order tuples
Elastic-PPQ relies on a punctuation mechanism [26]. In-
put tuples are processed by the workers in the PLQ stage
in the arrival order, and the PLQ emitter periodically
transmits punctuations to them. A punctuation is a meta-
tuple conveying a timestamp value. If the workers receive
a punctuation with timestamp #,, they are sure that no
tuple with timestamp smaller than ¢, can be received in



the future. To meet this constraint, the emitter eventu-
ally drops all the late tuples received after the punctuation
transmission with timestamp smaller than .

The precision of a punctuation mechanism is evaluated
in terms of the number of dropped tuples. We adopt
the K-slack algorithm [27] whose high precision has been
demonstrated in past work [28]. The algorithm (at line 3 of
Alg. 1) uses a variable t,,4, to store the highest timestamp
seen in the stream history, and a variable K recording the
maximum tuple delay. The idea is to generate a punc-
tuation ¢, when the first tuple with timestamp greater
than ¢, + K has been received. So doing, all the panes
i =0,1,... such that (i 4+ 1) - L, < ¢, can be considered
“closed” and their results transmitted to the second stage.

It may be possible that no tuple is received within the
temporal range of a pane. The PLQ emitter records the
number of received tuples per pane, and in case of empty
panes it dispatches a special EMPTY meta-tuple before the
punctuation (not shown in Alg. 1 for brevity), whose role
is to open an empty pane result in a destination worker.
This aspect will be further discussed later in the paper.

A burst-tolerant scheduling. Tuples of different panes
can be computed by different workers in parallel. However,
in case of fast time-scale burstiness some “heavy” panes
may contain more tuples than the others, and this may
impair load balancing and thus the achieved throughput.

The solution described in [14] allows panes to be split.
Let P; ; the j-th partition of pane P; and R; ; its result.
Suppose that tuple ¢ is the first received tuple of P;. The
emitter assigns ¢ to currently least loaded worker (denoted
by 11w), i.e. the one having the smallest number of en-
queued tuples (line 10 of Alg. 1). This worker, let say
worker w, becomes the owner of the currently active par-
tition of the pane. The emitter records the number of
tuples of P; transmitted to w. Until such number is lower
than a splitting threshold 6, the tuples of P; are scheduled
to worker w that updates the result R; ,, (line 13). If the
threshold is exceeded, a new worker becomes the owner
that will receive the next tuples of the pane by creating a
new result (line 14). Once received the punctuation clos-
ing the pane, the results of its partitions are sent to the
WLQ stage. We define the splitting factor 04,4 > 1 as the
average number of existing partitions per pane.

The choice of the threshold is critical. Low values lead
to an aggressive splitting that may vanish the advantage of
the pane-based approach while high thresholds may result
in load imbalance. For this reason, the threshold value
should be automatically adjusted based on the monitored
throughput. Since this is a single-input single-output con-
trol problem (SISO), we adopt a Proportional-Integrative-
Derivative regulator (called PID, see Fig. 5) to do this
work because it represents a popular and well-established
solution for SISO control loops [29]. The threshold during
the sample 7 is computed as follows: 0(7) = a(7) - Opase,
where @ > 0 is an adaptation parameter and Opgse is a
statistic base threshold set to the average size of the last

closed partitions plus the standard deviation. The PID
computes an adjustment Aa(7) of the adaption parame-
ter such that a(7) = a(t — 1) + Aa(7).

Figure 5: The PID regulator automatically changes the split-
ting threshold based on the measured PLQ utilization factor.

The input of the PID is the utilization factor p(t) >
0, an indicator computed as the ratio of the number of
received tuples to the number of tuples that the stage is
able to serve during the sampling period. If p < 1 the stage
is not a bottleneck and the threshold can be increased to
split less the panes. Otherwise, panes must be divided
more to improve load balancing. The error E(7) is the
deviation between the utilization factor and a desired value
p slightly smaller than one to optimize throughput with
high resource utilization efficiency, e.g., p = 0.9.

To determine the utilization factor during a sampling
period 7, we need to estimate the average number of tu-
ples that a worker would be able to process during the
period by assuming it is never idle. As the paper [14] ex-
plains in detail, this can be estimated from the monitoring
data, by measuring for each tuple computed during the
sampling period 7 its processing time and by taking the
average processing time among all the tuples computed
by the workers. Then, the PLQ utilization factor p(7) is
computed as the weighted average of the utilization fac-
tors p;(1) = X\i(7)/p(7) of the workers, where \;(7) is the
number of tuples scheduled to the i-th worker, u(7) is the
worker service rate and the weights are the distribution
probabilities \;/A with A =37, A;.

Our approach has some interesting properties. First, it
is not necessary that the load is always perfectly balanced
among the n > 0 workers. If a worker receives a fraction
greater than 1/n of the arrivals, this is acceptable as long
as the service rate is high enough to prevent it from be-
coming a bottleneck. If the PID is unable to achieve p < 1
the scheduling behaves as follows:

Proposition 1. If the PID is unable to lower the utiliza-
tion factor close to the setpoint p, it will split the panes
as much as possible, i.e. 049 = n.

Proof. The PID tries to minimize the utilization factor by
choosing the distribution frequencies A1 /A, ..., A\,/A. In
the notation we omit the sampling period variable 7 for
simplicity. The optimization problem is the following:

7)\n)z<)\'pi> :U;Af
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The problem is constrained by the following condition



Sr X = A According to the well-known Cauchy-
Schwarz inequality we can write:

2
" 1 " 1

This result can be used to derive a lower bound of the
utilization factor, which is given by:

n 2
p:L.ZAfzi.L:L
Al pt A-ppon wen
This lower bound can be obtained when \; = A\/n, i.e.
when the splitting threshold is very low and the emitter
evenly distributes to the workers the input tuples received
during the sampling period. This means that the splitting
factor turns out to be maximum, i.e. 0qug = n. O
Counting the pane partitions. The WLQ stage must
be able to determine when all the partitions of a pane have
been received. To do that, each PLQ result is associated
with the identifier of the pane and the counter of the parti-
tions of that pane. Each time a new partition is created, all
the workers already having a partition of that pane must
update their counter with the new value, which is notified
with an UPDATE_CNT meta-tuple sent by the emitter (this
extends the actions at line 14 in Alg. 1).

3.2. Feedback-based scheduling in the WLQ stage

Also in the WLQ stage the scheduling must be designed
in order to tolerate micro-congestion episodes happening
at fast time-scales. The general idea of the scheduler (de-
scribed in Alg. 2) is to spawn different types of tasks that
the WLQ workers have to compute.

The emitter maintains an internal data structure called
window directory (WD) storing a descriptor for each win-
dow. Descriptors are periodically purged when window
results are finalized in order to save memory. The descrip-
tor of a window W, contains a queue (pBuffer) of pane
partition results that belong to that window and that still
have to be processed. We denote by ®; the set of the
identifiers! of the windows that contain the pane P;.

The WLQ emitter adds each result R; ; to the pBuffers
of the windows that contain P; (a pointer/reference is put
in those buffers). For each of these windows a WIN_UPDATE
task can be spawned. A task of this type updates the
window result by taking into account the tuples in R, ;.

Only tasks of different windows can be executed in par-
allel. In fact, two tasks of the same window will update
the same window result and this must be done in mutual
exclusion. This constraint is enforced by using a busy
flag in the window descriptor, set to true by the emitter
if a WIN_UPDATE task of that window is still in execution

I1The set ®; can be statically defined for most of the sliding win-
dow semantics including the time-based sliding windows studied in
this paper. See [18, 16] for further details.

Algorithm 2: Feedback-based scheduling (WLQ)

Input: a result of a pane partition R; ; or a feedback message Fb
Result: new tasks are scheduled to idle workers
1: procedure WLQ_SCHEDULE(R; ; or Fb)
2: b Case 1: the input is a new result R; ;
3:  if input is R; ; then
4 for each k£ € ®; do > pane P; belongs to window Wy
5: Add R; ; to WD[k].pBuffer
6: Midle < getNumIdleWorkers()
7 T < FindTasks(m;qie)
8 for each tk € T do
8.1: If tk is a WIN_UPDATE task of window tk.win, the busy
flag in the corresponding descriptor is set to true. If
tk is the last task to execute of window tk.win, the
finalized flag in tk is set to true
8.2: The task tk is sent to an idle worker

9: b Case 2: the input is a feedback message
10: if input is Fb then
11:  if Fb.type = MERGE then add Fb.R to WD[Fb.win] .pBuffer
12:  else set the flag busy in the descriptor of Fb.win to false
13: Mark the worker w sending the Fb message as idle
14: if worker w is still activated then
15: T < FindTasks(1)
16: if 7 = {tk} then
16.1: If tk is a WIN_UPDATE task of window tk.win, the busy
flag in the corresponding descriptor is set to true. If
tk is the last task to execute of window tk.win, the
finalized flag in tk is set to true
16.2: Task tk is sent to worker w

17: else worker w becomes idle

in a worker. The emitter never dispatches a WIN_UPDATE
task for a window with the busy flag set to true. In this
way it may be possible that although some pane results
are enqueued in the internal pBuffers, some workers are
actually idle because no further tasks can be scheduled.
To find further parallelism opportunities, we enhance
the scheduling with MERGE tasks. A task of this type con-
sists in a pair of two results of pane partitions. Its exe-
cution produces a single result containing the best tuples
among the ones contained in the two results. MERGE tasks
can be executed to do useful work when all the open win-
dows are busy but there are still idle workers to utilize.
To utilize the workers more effectively, the emitter
avoids sending tasks to workers that are running previ-
ously scheduled tasks. To do that the emitter: ) marks
each worker with a ready flag set to true if the worker is
idle, false otherwise; ii) after the computation of a task,
workers send special messages called feedbacks that notify
the emitter when they are ready to compute again. The
ready flag of a worker is set to false by the emitter when
a task is scheduled to it, and the emitter resets it to true
when it receives the feedback message from that worker.
As shown in Alg. 2, at the arrival of a result from the
PLQ stage the WLQ emitter updates the pBuffer of the
windows and tries to schedule at most m;g. > 0 tasks
(line 7), where m;q is the number of idle WLQ work-
ers (line 6). Alg. 3 first tries to find WIN_UPDATE tasks of
different windows, otherwise it looks for MERGE tasks.
Each feedback message incorporates information related



Algorithm 3: FindTasks

Input: maximum number m;g;. > 0 of tasks that must be found
Result: a set of tasks T

1: procedure FINDTASKS(m;qie)

2: > Looking for WIN_UPDATE tasks
3: for each W, € WD do
4
5

if 7 .size = m;q;. then return 7

if WD[k] .busy # true AND WD[k] .pBuffer # () then

5.1: Extract a result from the pBuffer and add a new
WIN_UPDATE task to 7

> Looking for MERGE tasks
for each W € WD do
if T .size = m;q;. then return T
if WD[k] .pBuffer > 2 then
9.1: Extract two results from the pBuffer and add a new
MERGE task to 7

10: return T

to the completed task, such as its type and the involved
window. If it was a WIN_UPDATE task, the emitter clears
the busy flag of the window (line 12 of Alg. 2). If it was
a MERGE task, the message contains the result of the task
which is appended to the pBuffer of the window (line 11).
Then, the emitter tries to schedule a new task to the same
worker (line 16), otherwise its ready flag is set to true.

4. Outermost Level of Adaptation

We add to the adaptive scheduling strategies described
in the previous section an overall controller in charge of
dynamically adjusting the number of workers available in
the two stages. In the description we will assume that
each worker entity is executed by a dedicated thread in the
Elastic-PPQ run-time system. Thereby, we will use the
terms parallelism level and thread level interchangeably.

4.1. Elasticity mechanisms

The complete design of Elastic-PPQ is illustrated in
Fig. 6. The parallel structure in Fig. 4 is extended by in-
troducing a Controller entity responsible for periodically
evaluating the logic that triggers reconfigurations of the
number of activated workers. We first describe the recon-
figuration mechanisms in general. Then, we show in detail
how they are used in the two stages.

r! Worker

Pmma  Worker

reconfiguration reconfiguration
messages messages

Figure 6: Final design of the system: innermost level of adapta-
tion encapsulated in the emitter entities (E), and the outermost
level implemented by a controller.
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Reconfiguration messages are transmitted from the con-
troller to the emitters and can be of two types: REMOVE and

ADD. A REMOVE message deactivates a subset of the workers
used by the stage. Since thread creation may come with
considerable overhead in most of the operating systems,
threads once created are never destroyed but the system
tries to recycle them. After the arrival of a REMOVE mes-
sage, the emitter stops sending new tuples/tasks to the
workers to be deactivated and sends a TURNOFF message
to them with the effect to put their threads to sleep.

The second type of reconfigurations are ADD messages.
Before sending a message of this type, the controller de-
termines whether there exist enough sleeping threads for
executing the new workers. If this is not the case, new
threads are spawned. The system uses a global maximum
thread level N > 0 by default equal to the number of phys-
ical cores available?. After receiving the ADD message, the
emitter updates its scheduling with the new list of acti-
vated workers and wakes up all the workers that have to
be re-activated.

Elasticity in the PLQ stage. In the first stage an in-
crease in the parallelism level requires that the emitter
simply starts to schedule tuples to the new workers. After
a REMOVE message instead, the PLQ emitter executes the
actions in Alg. 4. The removed workers are marked as de-
activated by the emitter, and a TURNOFF message is sent
to them. For all the open panes (i.e. panes with at least
one received tuple and that are not closed by a punctua-
tion yet), the emitter checks whether their owner is still
activated or not. If not, the least loaded worker (denoted
by w in Alg. 4) is designated as the new owner. There
are two possible cases: i) w has already a partition of the
pane and no further action is needed; ii) w does not have
a partition of the pane, and the emitter transmits to w an
EMPTY meta-tuple opening a result of that pane with the
counter set to the updated number of existing partitions.

Algorithm 4: Worker removal in the PLQ stage

Input: set of identifiers Z of the PLQ workers to deactivate
Result: the workers with identifiers in Z are deactivated

1: procedure PLQ_REMOVAL(Z)

2: for each w € Z do
send a TURNOFF message to w and mark it as deactivated

3
4: for each not closed panes p do

5 if Owner[p] € Z then

6: Let w be the current 11w worker

7 if w already has a partition of p then

8 Owner [pl<+ w

9 else

0 Owner [p]< w and an EMPTY meta-tuple is sent to w

10:

A PLQ worker receiving a TURNOFF message must
forcibly close and transmit to the WLQ stage all the par-
tition results that is currently holding. A subtle problem
is that such panes can be further split by the PID-based
scheduling, and thus the number of partitions may change
in the future. The WLQ stage must be able to determine

2 Alternatively, the maximum thread level can be set to the avail-
able number of virtual cores (Simultaneous Multithreading).



when all the partitions of a pane have been received, and
the values of the counters must always be coherent to do
that. For this reason, the counters of all the forcibly closed
results must be reset to a special value (i.e. zero) before
being transmitted. In this way the WLQ stage is able to
correctly count the number of results per pane, since all
the non-zero counters will have the same value equal to
the final number of existing partitions of the pane.

Elasticity in the WLQ stage. In the second stage re-
configurations are handled easily since workers do not
maintain any internal data structure across the process-
ing of different input tasks. In case of an ADD reconfigura-
tion, the emitter only updates the list of activated workers
that are initially idle (see Alg. 2). A REMOVAL message is
handled as follows:

e the emitter stops to schedule tasks to the deactivated
workers and sends a TURNOFF message to them;

e once received a TURNOFF message, the workers are de-
activated and the corresponding threads go to sleep.

4.2. Fuzzy logic controller

Autonomic strategies map system behavioral conditions
onto reconfiguration actions. Our system presents inter-
related dynamics among its sub-parts. For example, if
the first stage is a bottleneck while the second one has a
thread level just sufficient to process the tasks at the cur-
rent speed, an increase in the parallelism of the first stage
will likely reflect in a higher input pressure to the second
stage. Therefore, in addition to increase the thread level
in the first stage the strategy might try to increase in an-
ticipation the parallelism level of the second stage.

While conventional Control Theory methods can be eas-
ily used to automatize the adjustment of control variables
in small parts of the system (like scheduling parts), the
application of such methods to large systems is more dif-
ficult. In fact, standard techniques like Model Predictive
Controllers [29] need accurate mathematical models that
are complex to be defined for systems like ours with mul-
tiple components featuring interdependent dynamics. For
this reason we adopt the methodology of Fuzzy Logic Con-
trollers [12, 13] (shortly, FLC). Instead of being based on
a system model, FLCs use a set of logic rules that provide
a linguistic description of the interactions existing between
the different system parts and allow an inference process
that extracts the actions to be taken.

Since it has never been applied to stream processing sys-
tems in the past, the use of the FL.C methodology deserves
to be explained in detail by focusing on its three main
phases: fuzzification, inference rules and defuzzification.

Fuzzification. Our FLC has three crisp inputs whose val-
ues are monitored by the run-time system: the PLQ uti-
lization factor p; € [0,+00), the splitting factor gy, €
[0, N], and the WLQ utilization factor py € [0, +00) (this
last computed similarly to what we did in Sect. 3.1 for p1).
Each crisp input is associated with a linguistic variable

with terms expressed in natural language. The first vari-
able RHO_PLQ corresponds to the p; crisp input and takes
three possible linguistic terms: slow means that the first
stage is currently too slow with respect to its arrival rate;
fast means that it is unnecessarily fast; finally, acceptable
means that its processing speed is very close to its input
speed. The variable RHO_WLQ corresponding to the py crisp
input has the same terms and fuzzification of RHO_PLQ be-
cause the two crisp inputs p; and ps take their values in
the same domain and have the same definition (e.g., values
greater than one identify a congestion scenario).

Each term L is a fuzzy set with a membership func-
tion pr(x) € {0,1} assigning to each value z a grade of
membership. Fig. 7(left) shows the fuzzy sets adopted
for the RHO_PLQ variable, analogous sets are defined for
RHO_WLQ. We chose trapezoidal-shaped membership func-
tions for the fast and slow terms, while acceptable has a
triangular-shaped membership. Such shapes are very com-
mon in fuzzy control. Non-linear functions like the Gaus-
sian are more complex, and we experienced no appreciable
advantage in using them. Each function has a set of pa-
rameters chosen according to the following principles:

e if the stage speed is at least two times higher than
its arrival rate (ie. p12 < 0.5) the term fast has
membership grade 1 while the other terms have grade
zero. This means that the controller will be able to
apply the maximum reduction of the parallelism level
in case the stage speed is at least two times higher
than its input rate (in the inference rules part we will
explain the reason for this choice);

e a desired situation is when the stage speed is slightly
higher than its input speed. In this case the stage
utilizes the minimum resources to avoid being a bot-
tleneck. This reflects in a utilization factor slightly
smaller than 1 (we chose 0.9 as our default value).
Therefore, if p1 2 = 0.9 the term acceptable has mem-
bership grade 1 while the others have zero grade;

o if the stage speed is at least 30% slower than its input
speed (i.e. p1,2 > 1.3), the stage is slow with grade 1
while the other terms have grade zero. This value has
been chosen to make the center edge of the acceptable
membership function (at 0.9) equidistant between the
right foot and left foot of the fast and slow functions
respectively, which makes their shapes symmetric (a
common rule in FLCs [13]).

The fuzzification phase assigns to a crisp input a fuzzy
value obtained according to the membership grades of all
the linguistic terms. For example, if p; = 0.6 the fuzzi-
fication result is p; = 0.750/fast + 0.250/acceptable +
0.000/slow. The meaning is that the crisp value is con-
verted into the term fast with membership grade 0.75, ac-
ceptable with grade 0.25 and zero grade for the term slow.
Fig. 7(right) shows the fuzzy sets of the SPLITTING vari-
able corresponding to the 04,4 crisp input, with two terms
(moderate and intensive) with trapezoidal-shaped mem-
bership functions. An approach to choose the shape of
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Figure 7: Fuzzy membership functions of the linguistic vari-
ables RHO_PLQ and RHO_WLQ (left) and SPLITTING (right).

membership functions is to compute some statistics of the
values assumed by the crisp input and to divide the range
of observations in function of the data percentiles [30]. In
our case the right shoulder and the left shoulder of the
two functions correspond to a splitting factor of 1.5 and
4.5 respectively. Such values represent the 25% and the
75% quartile of all the splitting factor statistics gathered
by running Elastic-PPQ in our past experience.

Inference rules. The strategy is developed as a set
of rules in the form if condition then action. The an-
tecedent is a sequence of propositions “variable is term”
connected by a conjunctive fuzzy and operator. In the
consequents we use two linguistic variables PAR_VAR_1 and
PAR_VAR_2 which indicate a relative variation of the par-
allelism level of the first and the second stage respec-
tively. Five terms are defined: decrease, slight_decrease,
unchanged, slight_increase and increase.

A problem is the so-called settling time, i.e. the number
of intervals needed to reach the target parallelism level [3].
If the controller performs large variations the settling time
is minimized at the expense of large oscillating decisions.
Instead, a controller that applies small modifications (e.g.,
of one or few workers) can feature a long settling time
that may be unsuitable to react to fast workload variabil-
ities. In our approach the controller changes the number
of workers at most of 50% of the current value. Therefore,
the parallelism level grows/decays following an exponen-
tial rule, which allows reaching the target parallelism level
in few intervals. We observe that if the utilization factor
is 0.5 the number of workers can be halved to reach an
utilization factor of 1. This explains why we apply the
maximum reduction of the parallelism level when the uti-
lization factor of the stage becomes less or equal than 0.5.

To model this behavior we adopt the zero-order Takagi-
Sugeno approach [31] where the output terms correspond
to constant values (see correspondence in Tab. 1). This
model does not require general membership functions for
the output terms and complex defuzzification methods
(like in Mamdani controllers [13]) and this makes easier
the definition of the rules modeling the herustics that we
have designed for Elastic-PPQ, as it will be explained in
the defuzzification part.

decrease d slight unchanged | . slight increase
ecrease increase
05 | 075 | 1 | 125 | 15

Table 1: Constant values associated with each linguistic term
of the output variables.

The rules are listed in Tab. 2. Some of them are straight-
forward, like rule no. 1. Others deserve more explanations:

e rules no. 7 and 8 state that we slightly increase the
parallelism level of the first stage if its speed is accept-
able, the splitting factor is intensive, and the second
stage is not slow. The use of some additional PLQ
workers is beneficial to divide less the panes by re-
ducing the tuples comparisons in the WLQ [14];

e rule no. 9 avoids increasing the PLQ parallelism level
if the WLQ stage is slow. In this way we give more
priority to the acquisition of new workers by the sec-
ond stage, which is impairing the query throughput;

e rules no. 10 and 11 try to prevent a future bottleneck.
In rule n. 10, the parallelism level in the WLQ stage is
slightly decreased in case the strategy needs simulta-
neously to increase the parallelism degree in the first
stage. In this scenario, it is likely that the load to
the second stage will become higher because the first
stage will be able to produce results faster. Similarly,
rule no. 11 slightly increases the number of workers in
the second stage if its current speed is acceptable but
we are increasing the parallelism in the first stage.

Defuzzification. The activation degree of each rule is
evaluated starting from the membership grade of the in-
put terms. Propositions in the antecedent are connected
by the and operator (T-norm): according to the Fuzzy
Logic semantics [12], the activation degree is obtained by
computing the minimum between the membership grades
of all the terms in the antecedent. According to the zero-
order Takagi-Sugeno model, each output term has a scalar
value (see Tab. 1) instead of a general membership func-
tion. The final defuzzified crisp outputs of the FLC are
obtained by taking the weighted average of the outputs
of the rules, where the weights are the activation degrees.
This leads to a direct interpretation of rules. As an exam-
ple, rule no. 1 halves the parallelism level of the two stages
if they are both fast with membership grade 1, otherwise
the reduction produced by the rule is proportionally re-
duced according to its activation degree. Finally, the FLC
rounds the parallelism levels to the nearest integer before
sending reconfiguration messages to the system.

5. Evaluation

Elastic-PPQ has been implemented using the FastFlow
parallel programming framework targeting shared-memory
machines [32]. FastFlow is a C++11 library that allows the
programmer to build graphs of streaming operators. Each



Rules no. If Then
RHO-PLQ SPLITTING RHO_WLQ PAR_VAR_1 PAR_VAR_1

1 FAST - FAST DECREASE DECREASE

2 FAST - ACCEPTABLE DECREASE UNCHANGED

3 FAST - SLOW DECREASE INCREASE

4 ACCEPTABLE MODERATE FAST UNCHANGED DECREASE

5 ACCEPTABLE MODERATE ACCEPTABLE UNCHANGED UNCHANGED

6 ACCEPTABLE MODERATE SLOW UNCHANGED INCREASE

7 ACCEPTABLE INTENSIVE FAST SLIGHT_INCREASE DECREASE

8 ACCEPTABLE INTENSIVE ACCEPTABLE SLIGHT_.INCREASE UNCHANGED

9 ACCEPTABLE INTENSIVE SLOW UNCHANGED INCREASE

10 SLOW - FAST INCREASE SLIGHT_-DECREASE
11 SLOW - ACCEPTABLE INCREASE SLIGHT_INCREASE
12 SLOW - SLOW SLIGHT_INCREASE INCREASE

Table 2: Inference rules adopted by the Fuzzy Logic Controller.

operator performs a loop that: i) gets a data item (through
a memory pointer to a data structure) from one of its input
queues; i) executes a code working on the data item and
possibly on a state maintained by the operator; 4ii) puts
a memory pointer to the result item into one or multiple
output queues selected according to a user-defined policy.
Operations on FastFlow queues are based on non-blocking
lock-free synchronizations enabling fast processing in high-
frequency streaming scenarios [33].

The application graph can be built by composing and
nesting customizable parallel patterns. One is the pipeline,
which allows the tandem composition of operators work-
ing on different data items in parallel.  Another is
the farm pattern, where the same computation is repli-
cated and takes place on different data items in parallel.
Elastic-PPQ has been designed as a pipeline of two farm
patterns by following the general picture in Fig. 6.

5.1. Experimental setup

Elastic-PPQ?® can be used by the user with some pre-
defined preference queries and it can also be extended to
execute other user-specified queries. In this case, the user
must provide the implementation of a relatively small set
of C++ classes with the implementation of few methods
that apply a user-defined preference criterion. In the anal-
ysis we consider:

e the skyline query, which computes the set of non-
comparable tuples using the Pareto dominance [15];

e the top-0 dominant query [34], which finds the small-
est k < d such that there are more than § > 0 k-
dominant skyline points.

The queries use the Block Nested Loop algorithm [15]
and, to increase the computational requirements, we will
use data streams of high-dimensional tuples (we use eight
floating-point attributes per tuple).

Elastic-PPQ is implemented on top of FastFlow* ver-
sion 2.1 and compiled with gcc 4.8.5 with the -03 op-
timization flag. The controller is implemented using the

3The source code has been made publicly available at the follow-
ing url: https://github.com/ParaGroup/Elastic-PPQ/.
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FuzzyLite library? version 5.0.

The used architecture is shown in Fig. 8. It is the last-
generation Intel Xeon Phi model 7210 (codename Knights
Landing, KNL) [35]. KNL is a highly parallel many-core
processor equipped with 32 tiles, interconnected by an on-
chip mesh network, each one with two cores working at
1.3 GHz. Each core has 32 KB L1d private cache and
the two cores on the same tile share a L2 cache of 1 MB.
The system is configured with 96 GB of DDR4 RAM and
has 16 additional GB of high-speed on-package MCDRAM
configured in cache mode [35].
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Figure 8: Intel Knights Landing internal architecture.

Owing to the busy-waiting synchronizations adopted by
the FastFlow run-time support [32], we decided to map at
most one thread per core. In case the controller decides
to allocate more workers, the output thread levels of the
controller are reduced proportionally to meet the global
constraint on the maximum total thread level N > 0. So-
lutions based on mapping more threads onto the same core
(by exploiting Simultaneous Multithreading) will be ana-
lyzed in our future work.

5.2. Preliminary experimental analysis

In this analysis we use synthetic data streams. Bursti-
ness is injected using two different methodologies. The
first is a light-tailed model based on a class of Markov

4FastFlow: http://calvados.di.unipi.it/, FuzzyLite: http://
www.fuzzylite.com/cpp/



Modulated processes called Markovian Arrival Pro-
cesses [23] (MAP), where the process has a “fast” and a
“slow” state. In each state the inter-arrival times are gen-
erated using an exponential distribution with rate Ay and
s respectively. The values of the two rates and the tran-
sition probabilities are the result of the fitting procedure
described in [22], in order to achieve a target average rate
A and a desired index of dispersion Z > 1. This parameter
is of fundamental importance, as it permits the burstiness
level to be arbitrarily adjusted, i.e. the higher the index
of dispersion (of some thousands of units) the higher is
the variability and correlation of inter-arrival times, which
turns out in a more severe burstiness level.

The second traffic model exhibits self-similarity and the
scale invariant property hinted in Sect. 2.2. The Hurst
parameter H € [0.5,1) is used to measure the level of self-
similarity: values close to one correspond to time-series
with a very long-range dependence [19]. We use the heavy-
tailed Pareto distribution to model the amount of arrivals
per time slot (of one millisecond by default).

Finally, all the synthetic data streams have been disor-
dered by adding a uniformly distributed random delay to
all the timestamps, and by generating tuples according to
the delayed timestamps.

Artificial scenario. We study an artificial scenario
where Elastic-PPQ executes the skyline query on win-
dows of w = 1 second and slide s = 0.1, thus the panes
have length of 100 milliseconds. Fig. 9 shows the results
of this experiment where the x-axis corresponds to the
elapsed execution time in second. The input rate is shown
in Fig. 9(top) with a black solid line (the corresponding
y-axis is on the left hand side of the figure). The initial
rate is of 40K tuples/sec and is changed every 30 seconds
(note the stepwise shape of the curve).

Fig. 9(top) shows the PLQ thread level (blue solid line)
and the splitting factor per second (small bars in the plot).
The y-axis for these measures is on the right hand side of
the figure. Not surprisingly, the controller increases the
thread level in the instants where the input rate changes.
Fig. 9(middle) shows the utilization factor. We note that:

e in the first 30 seconds the PLQ stage has 3 workers,
and the panes are evenly split (the splitting bars are
close to the blue line of the thread level in Fig. 9(top));

e after second 30 the rate grows of 256% and the PLQ
stage starts becoming a bottleneck, see the high uti-
lization peaks in Fig. 9(middle) at second 30. The
controller reacts by allocating a new worker. From
32-60 seconds the PLQ) stage is able to keep again its
utilization close to the setpoint by using a splitting
factor gqug ~ 3.5, i.e. the bars in Fig. 9(top) are
slightly lower than the thread level after second 30;

e after second 60 the rate grows again of 40%. The
PID adapts by increasing the splitting factor, which
becomes maximum (o4, = 4) in the instants just
after second 60. However, the PLQ stage is still a
bottleneck and the system needs to allocate additional
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Figure 9: First evaluation of the two-level autonomic approach
on an artificial scenario: analysis of the PLQ stage behavior.

120 150 180

workers: initially we add a further worker which is not
sufficient, finally at second 70 the controller decides
to use 6 workers and the system succeeds in achieving
the ideal throughput again, see see Fig. 9(bottom);

e at second 90 a further increase in the input rate is han-
dled transparently to the controller by the PID-based
scheduler, which is able to track the utilization set-
point by increasing the splitting factor. In this phase
there is no change in the thread level;

e at second 120 and 150 the input rate decreases. The
effect is a drop in the utilization factor, handled by
the controller with a decrease in the thread level.

Fig. 9(bottom) shows the throughput. The ideal num-
ber of panes that the system can complete is of 1/L,, = 10
panes/sec (red line). Most of the time the system is able
to keep the throughput near to its ideal value. Interest-
ingly, phases with dips in throughput correspond to time
intervals where the utilization factor is higher than one,
while the throughput is always ideal when the utilization
is close to its setpoint 0.9. This confirms that the utiliza-
tion metric presented in Sect. 3.1 is an effective approach
to measure the congestion. Time periods with measured
throughput greater than the ideal one, see the peaks in
Fig. 9(bottom), happen after the removal of a congestion
phase, when the system drains all the pending tuples en-
queued when it was a bottleneck.

Handling bursty scenartos. In this part we show why
the elasticity mechanisms may be not enough, and the rea-
sons for the combined used with the PID-based scheduler.

Fig. 10 illustrates an experiment with the skyline query
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Figure 10: Analysis of the PLQ stage in bursty scenarios: utilization factor, number of PLQ workers, and average splitting factor
measured per controller interval of 2.5 seconds (PID sampling period of 250 ms).

and panes of 100 ms. Again we focus on the PLQ stage.
We use two synthetic data streams with average rate of
80K tuples/sec. In the first, inter-arrival times are gen-
erated using a MAP distribution with Z = 1K which is
a case of remarkable burstiness [14, 22]. The second is
a self-similar traffic obtained with a Pareto distribution
with Hurst parameter of 0.6. Both the data streams are
out-of-order with average delay of 200 ms.

Fig. 10a shows the utilization factor measured at each
controller interval. In this case we force the scheduling
to avoid splitting panes. The PLQ stage is initially a
bottleneck with a high utilization. The blue bars repre-
sent the number of workers used at each interval. The
controller reacts by increasing the parallelism level which
rapidly reaches the maximum (in this case 60). In the
initial part of the execution the use of additional threads
is beneficial since the utilization factor lowers. However,
in both the traffic models after the first 20 seconds any
further increase in the parallelism level is useless and the
utilization factor stabilizes around a value of 3 in the MAP
traffic, which means that the PLQ stage is able to with-
stand only 1/3 of the input bandwidth. The reason is
that additional workers in this strategy are useful only to
exploit parallelism among panes, which may be relatively
small and insufficient to achieve the ideal throughput.

Fig. 10b shows the results using our two-level approach.
Here the system is able to keep the utilization factor close
to the desired setpoint of 0.9. The figure uses two stacked
bars per interval. The plot can be read as follows: for each
interval the yellow bar corresponds to the splitting factor
while the blue bar is the thread level used in response to
the utilization factor (blue point) measured at the previous
interval. An increase in the thread level is triggered when
the utilization was higher than the setpoint and vice-versa.
In case of large variations in the thread level (mostly in
the first execution phase) we observe that the PID-based
scheduler is not always able to maximize the splitting when
the PLQ stage is a bottleneck, because the controller in-
terval is not long enough and more time would be needed
to further lower the splitting threshold. However, in those
cases the PID-based scheduler does its best and the uti-
lization factor would have been worse without its help.
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A question arises: why is it not convenient to always
split all the panes evenly among the workers? To examine
this issue, Fig. 11(left) shows the results of some experi-
ments with the MAP traffic. We run the system several
times, each run with a different static thread level (from 1
to 12). In each run the splitting factor is forced to be equal
to the number of utilized workers. For each thread level we
report the average utilization factor measured throughout
the execution. By using more workers, we lower the uti-
lization factor because the pane partitions are smaller and
the processing time per tuple is reduced. However, higher
splitting factors lead to a greater filtering ratio, defined as
the number of tuples selected per pane to the total num-
ber of pane tuples. In the skyline query, the selected tuples
are the ones in the skylines of the pane partitions. In the
experiment, without splitting panes only 27% of the input
tuples reach the second stage, while with a high splitting
factor of 04,y = 12 the ratio is of 58%.
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Figure 11: Analysis of the splitting approach: even splitting
case (left) and PID-based splitting (right).

Fig. 11(right) shows the results with the PID. When the
thread level is not high enough the PID splits as much as
possible. With 7 workers the bottleneck can be eliminated
and the PID splits the panes long enough to reach the
setpoint. E.g., with eight workers we have 04,4, = 5.18
and the ratio is of 43% instead of 54% with oq,y = 8.

FEvaluation of the WLQ scheduling. In this part we
evaluate the feedback-based scheduling by focusing on the
optimizations presented in Sect. 3.2.

Fig. 12 shows an experiment executed under a MAP
traffic (Z 1K and average rate of 30K tuples/sec).



We use windows of w = 1 second with slide of 200 ms
(L, = 200 ms). We focus on the second stage by compar-
ing two scheduling strategies: fb-default is the one pro-
posed in [14] where only WIN_UPDATE tasks are dispatched
to the workers; fb-opt is the new strategy (Sect. 3.2) that
allows the WLQ emitter to further schedule MERGE tasks.

WLQ thread level WLQ utilization factor
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Figure 12: Analysis of different variants of the feedback-based
scheduling in the WLQ stage: controller interval of 2.5 seconds.

Fig. 12(left) shows the number of WLQ workers cho-
sen by the controller per interval, and Fig. 12(right) re-
ports the measured utilization factor. The general out-
come is that both the strategies are able to maintain the
utilization factor close to the setpoint. However, with the
fb-default strategy the WLQ stage utilizes more work-
ers on average. To understand this phenomenon, we can
look at the results in Fig. 13 where we plot for each inter-
val the fraction of time that the activated WLQ workers
have passed without doing useful work, i.e. they are idle.
In the hypothetical case of an optimal controller, the idle
time should be zero, meaning that the controller always
allocates the right number of resources per interval. This
condition is not realistic for two reasons:

e first, there are intervals where the input rate drops
and the WLQ stage becomes under-utilized. During
such intervals the idle time is inevitably high;
second, it is possible that although some results of
pane partitions are pending, no further WIN_UPDATE
tasks can be scheduled because the windows are cur-
rently busy. In this scenario the stage is a bottleneck
despite some workers remain idle for a certain time.

The second point is addressed by the fb-opt strategy: if
all the windows are busy but some results of pane parti-
tions are pending in the WL(Q emitter, they can be merged
by assigning useful MERGE tasks to some idle workers. The
effect is that the workers are better exploited and the idle
time is 45% lower on average, as Fig. 13 shows.

MERGE tasks are 37% of the total number of tasks. We
note that in the first 25 seconds (see Fig. 12) the utilization
factor and the number of workers is higher. The reason
is that the WLQ stage starts with only one worker and a
certain time is needed to drain all the tuples received in the
initial phase, when the stage was a bottleneck. However,
in a long running this initial phase is negligible.
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Figure 13: Idle time of the WLQ workers with/without the
scheduling of MERGE tasks.
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5.8. FElastic-PPQ at work

In this part we study the behavior of the whole system
with the following synthetic and real-world data streams:

e a stream (RW-DS) with non-stationarities (increas-
ing/decreasing trends). Inter-arrival times are expo-
nentially distributed with the mean changed every five
seconds according to a lognormal random walk model;
seven bursty streams, four MAP traffic traces
(MAP-DS) and three self-similar flows (SS-DS). The
maximum index of dispersion of 4K is considered a
very severe burstiness in past research papers [22],
while the highest Hurst parameter of 0.8 represents a
high level of self-similarity [19];

four real streams (Gamel-4) obtained from the Real-
time Locating System used for the DEBS 2013 grand
challenge [36]. Each dataset is a stream of eight-
attributed tuples received from the sensors embedded
in the shoes of players during a match played in the
soccer stadium of Nuremberg, Germany.

In the synthetic data streams the tuple delay is uniformly
distributed with mean 200 ms. Instead, the real data
streams have their own out-of-order characteristics shown
in Tab. 3, and they have been accelerated two times with
respect to the original traces. The table also shows the
average rate and the peak to mean ratio per stream.

Name Speed Delay
tuples peak to
per sec mean avg(ms)  max(sec)
RW-DS 11,816 4.17
MAP-DS Z = 1K 30,331 1.57
S MAP-DS T =2K 29,659 1.75
S MAP-DS T =3K 28,873 2.01
b=l MAP-DS 7 = 4K 30,189 2.03 200 ~ 0.4
& SS-DS H =0.6 25,582 2.24
SS-DS ‘H = 0.7 26,552 2.06
SS-DS ‘H = 0.8 26,028 3.83
Gamel 16,923 1.44 17.1 71.1
TS Game?2 19,272 1.16 14.1 85.5
o~ Game3 17,470 1.13 13.2 38.3
Game4 23,106 1.12 12.2 27.2

Table 3: Characteristics of the utilized data streams.

Detailed evaluation of Gamel. Fig. 14 describes the
system behavior with data stream Gamel. We use the sky-
line query with the sliding windows used at the end of the
previous section. As Fig. 14(left) shows, the arrival rate
fluctuates intensively over time. At the end of the execu-
tion we measured an average utilization factor of the two
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Figure 14: Detailed analysis of the Gamel workload trace: arrival rate per second (left), PLQ thread level and splitting factor
(middle), number of threads of the WLQ stage (right). Controller interval of 2.5 seconds (PID sampling period of 250 ms).

stages equal to 0.882 and 0.912, which are both close to
the utilization setpoint. Fig. 14(middle) shows the num-
ber of PLQ workers activated by the controller and the
average splitting factor applied by the PID at each con-
troller interval. Two considerations can be made. First,
the stage tweaks its thread level in light of changes in the
arrival rate, with the highest level near second 150 cor-
responding to the peak rate. Second, the splitting factor
is not always maximum because the controller may over-
provision the thread level and using the maximum splitting
is often useless to optimize throughput. Interestingly, the
rate variability in the last 50 seconds is amortized by ad-
justing the splitting factor without changing the thread
level. Finally, Fig. 14(right) shows the workers assigned to
the WLQ stage, which also keeps up with the arrival rate.
They are more than the first stage, because the WLQ stage
receives results of pane partitions (tens per second) and the
task processing time is several orders of magnitude greater
than the processing time of single tuples in the first stage.

To have an idea of the QoS perceived by the users,
Fig. 15 illustrates the number of window results produced
per second. We compared the throughput of the two-level
approach against the one of a non-elastic processing, where
the number of workers in the two stages is fixed to 6 and 38.
Such values are chosen by executing various runs with dif-
ferent static thread levels and by finding the minimum ones
that avoid the two stages being a bottleneck throughout
the execution®. This static configuration, which is unreal-
istic in general because not known a-priori, represents an
optimal case from the performance viewpoint, thus a valu-
able baseline to compare our autonomic approach with.

As the figure shows, the average throughput is close to
the maximum bandwidth of five windows per second in
both cases (difference less than 1%). This is achieved ow-
ing to the low overhead of our approach. In fact, the strat-
egy always runs for a negligible fraction of the controller
interval and it is always overlapped with the processing

5The sum of the two thread levels may exceed the maximum no.
of cores. This is another reason in favor of elasticity.
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flow. Instead, the scheduling logic is executed directly by
the two emitters. However, it requires few instructions
to update the counters and scheduling internal variables,
while the PID is evaluated every sampling period and not
for every tuple, thus its cost is amortized. We measured
an overhead in the average emitters service time bounded
by 8%. The main effect of elasticity is a slightly less sta-
ble throughput. We measured the coefficient of variation
(CV), the ratio of the standard deviation to the mean of
throughput. Cases with a C'V less than 1 are low-variance.
In our case the C'V is 0.86 and 0.66 in the two scenarios,
thus the variability increase is limited demonstrating the
effectiveness of our autonomic approach.

Summary of results for the other data streams.
The results are provided in Tab. 4 for the skyline query,
while Tab. 5 shows the results of the Top-d query with
6 = 100. The second query is slightly more computation-
ally demanding [14]. The tables report some parameters:
the average thread level of the PLQ and WLQ stages and
the average splitting factor of the first stage. In all cases
the measured throughput is very close to the theoretical
maximum bandwidth: Ay, measures the additional time
spent to complete the experiment with respect to the gen-
eration time of the whole stream. A limited increase is
tolerated, since a small latency is always paid to complete
the processing of the last window results after the com-
pletion of the stream transmission. As it is evident, each
experiment is completed in nearly the same time spent in
generating all the tuples Ay, < 3.1%. In terms of through-
put variability, with higher values of the index of dispersion



Stream Threads Split. Throughput

PLQ WLQ 0avg A (%) CV

RW-DS 1.77 12.6 1.48 0.40 1.60

o MAP-DS Z = 1K 4.28 41.0 3.37 1.39 0.82
‘5 MAP-DS Z = 2K 4.16 38.8 3.63 1.77 0.95
& MAP-DS Z =3K 4.30 37.2 3.54 2.37 1.29
2 MAP-DS Z =4K 6.01 36.8 4.86 2.64 1.85
& S$s-DSH =06 3.05 315 2.99 1.02 0.86
SS-DS H = 0.7  3.47 34.7 3.24 1.11 1.17
SS-DS H = 0.8 3.50 30.9 3.05 2.19 2.30
Gamel 3.82 15.65 2.74 1.21 0.86

Tg Game2 2.30 25.3 2.06 1.76 1.15
~ Game3 1.98 21.0 1.89 0.23 0.78
Game4 2.48 28.9 2.34 1.19 1.12

Table 4: Summary of results with the skyline query.

and the Hurst parameter the C'V increases.

The approach has also the benefit of reducing the power
consumption without impairing throughput. Fig. 16 shows
the consumption (in percentage) compared with the one
with all the cores of the machine working at full speed.
As we can observe, the power reduction is significant espe-
cially in the real-world data streams. It should be noted
that also a small power saving is meaningful, because of
the long-running nature of stream processing queries.

Power consumption

100
e 95
L 90 B ol
Pt i
g & S litssel
E 2 B <
5 80 e
* 3 i i
> sl =
70

Figure 16: Power consumption with the autonomic approach
(skyline query).

Sensitiveness to configuration parameters. The
length of the controller interval T,.pntro1 and of the PID
sampling period T};q may influence the system behavior.
To analyze this aspect we repeated the Gamel experiment
with the skyline query using different lengths of Teontrol
and T);q. Fig. 17(left) depicts the relative error between
the measured PLQ utilization factor and the setpoint.
Each line represents a different choice of the controller
interval. Within each interval the PLQ stage uses a sta-
ble number of workers, and the PID adapts the splitting
threshold to get closer to the setpoint. The more sampling
periods we have within each interval the better is the PID
accuracy while longer periods make the PID less reactive.
As an empirical rule we found that the number of sampling
periods within each interval must be in the order of tens
in order to get an error of 1-2%.

A similar consideration can be made for the controller
interval. If it is too long the system responds slowly to
deviations from the desired behavior that may become
large. Concretely, the system may be not able to adapt
to changes in the arrival rate within the interval like the
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Stream Threads Split. Throughput

PLQ WLQ 04vg A (%) CV

RW-DS 2.61 17.0 2.08 0.44 1.43

MAP-DS Z = 1K 5.43 49.5 4.31 1.92 0.96

'E MAP-DS Z = 2K 5.26 46.28 4.53 2.14 1.24
& MAP-DS T =3K 5.65 45.3 4.81 2.68 1.58
E MAP-DS Z =4K 6.95 43.06 5.13 3.06 1.99
% SS-DS H =0.6 3.71 38.6 3.41 1.32 0.97
8s-DS H = 0.7 3.83 41.8 3.27 1.87 1.34
8S-DS H = 0.8 4.01 37.9 3.68 2.74 2.97
Game1 4.11 277 2.98 1.45 0.96

?g Game2 2.81 335 2.32 2.27 1.23
~ Game3 2.59 31.7 2.09 0.57 0.93
Game4 3.10 35.3 2.62 1.56 1.96

Table 5: Summary of results with the top-d query.
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Figure 17: PID accuracy with various lengths of the controller
interval and the PID sampling period (left), coefficient of vari-
ation of throughput (right).
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ones in Fig. 14(left). The effect is that query results are
produced haltingly, which is not ideal for the real-time
analysis by the users. To confirm this, Fig. 17(right) re-
ports the throughput C'V with different controller intervals
where longer intervals imply greater instability.

5.4. Robustness to interferences with other applications

In this final part we study how Elastic-PPQ effectively
adapts to the external load originated by other applica-
tions running on the same machine.

We repeated the experiment with the data stream
Gamel. During the execution, we injected an external load
obtained by running the stress-ng utility for the Linux
OSS. This tool is designed to stress a computer system
in various selectable ways using a wide range of specific
stress tests (called stressors) that exercise CPU resources
(floating-point and control flow units), caches, memory
and I/O. We chose a selection of 15 tests that stress
CPU resources and the cache hierarchy: bsearch, cache,
hsearch, icache, lockbus, lsearch, malloc, matrix,
memcpy, gsort, str, tsearch, vecmath, wcs, z1ib. They
consist in well-known sorting algorithms, linear-algebra
computations, large string manipulations, and so forth.

Fig. 18 shows the results with different intensity levels of
the external load. The level is measured as the ratio of the

Shttps://github.com/ColinTanKing/stress-ng



number of injected threads that continuously run random
stressors to the total amount of virtual cores available in
the machine. As we can see from the figure, a higher in-
terference turns out in a higher thread level needed by our
system, see Fig. 18(left). Fig. 18(middle) shows the total
thread level (PLQ 4+ WLQ stages) utilized during each
interval of 2.5 seconds in two cases of a low and a high
external load intensity. The total thread level in both
cases keeps up with the changes in the arrival rate, see
Fig 14(left). However, workers perform slowly in the case
with severe interference, because fewer computational cy-
cles are available and due to the mutual interference (com-
petition for using processor’s units and private caches)
among threads executed on virtual cores in the same physi-
cal core. The results confirm that our system adapts to the
external load by allocating more workers. Except in the
case of very high intensity levels, no appreciable through-
put degradation is measured (see Fig. 18(right)) at the
expense of a higher throughput variability.

6. Related Work

A long research endeavor has been made to define
paradigms helping the design of autonomic and elastic ap-
plications in the Cloud. Cloud-based applications are usu-
ally defined as composition of services and components
that are linked and utilized by the execution flow that
transforms inputs into corresponding outputs. Descrip-
tion languages and models [37, 38] have been proposed
with the goal of enabling the dynamic composition of ser-
vices/components in order to adapt to changing users’
requirements. In addition to mechanisms that dynami-
cally link/remove components or services, an intensive re-
search effort has been spent to provide applications with
a fully autonomic logic able to derive automatically which
is the best reconfiguration plan allowing the applications
to achieve the current users’ requirements without human
intervention. Formal descriptive languages [39, 40] have
been proposed in order to deduce the behavior that must
be adopted in new contexts that have not earlier been ex-
amined by the application developer.

Average total thread level

Total thread level over the execution

Differently from the Cloud domain, in Data Stream Pro-
cessing the use of elastic solutions is more recent and not
yet established as the norm. The work in [7] presents the
development of an elastic stream processing framework for
IoT environments. The authors designed an elastic system
able to deal with changing rates by significantly reducing
the operating costs. The approach reacts to situations
where system QoS measurements exceed or violate pre-
defined crisp thresholds, and this may lead to instability
in case of very erratic workload. In fact, the approach is
mainly studied for long-term steady load variations, and
it is not designed for handling fast time-scale burstiness.

A very interesting work has been recently published
in [6]. The proposed methodology is able to control the
number of replicas in streaming operators. The authors
proposed two algorithms to be applied at different time-
scales. However, they have a different role with respect
to the innermost and outermost adaptation levels in our
approach. The short-term algorithm is used to deter-
mine whether an operator is a bottleneck in the present
time based on deterministic thresholds. Again, such crisp
thresholds are not easy to determine and values near to the
boundaries may under- or over-estimate the bottleneck de-
tection. The mid-term algorithm instead performs predic-
tions of the future workload based on a Markov model, and
it has been shown to be effective mainly for arrival rates ex-
hibiting non-stationarities like trends or cyclic variations.

The idea of using model-driven controllers has been re-
cently employed in [41] for generic sliding-window queries.
When different windows are assigned to different opera-
tors for processing, the same tuple can be transmitted to
multiple operators and this may increase the scheduling
overhead. The approach decides how to group windows in
batches assigned to the same operator in order to trade off
scheduling overhead with processing latency. Although in-
teresting for the use of control-theoretic controllers, in this
work inter-arrival time variabilities at different time-scales
have not been studied systematically though the approach
can be extended in this sense.

Some papers like the ones in [42, 3, 43] focus on the
state transfer in elastic stateful operators. In those cases,
resource scaling needs actions to migrate the state with-
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Figure 18: Effect of the external load on the Gamel data stream: average total thread level needed by Elastic-PPQ (left), total
thread level over the execution (middle), and throughput provided under different levels of external load intensity (right).



out altering the computation semantics. As shown in [44],
such actions may generate latency spikes and throughput
dips, and thus are suitable to handle long-/medium-term
variations in the arrival rate. Instead, in Elastic-PPQ the
pane splitting approach is aimed at avoiding such over-
head by allocating pane partitions without blocking the
tuple computations, and this revealed very useful to pro-
vide seamless processing over dynamic data streams.

As demonstrated in this paper, frequent sharp rises in
the traffic volume cannot always be neutralized with re-
source scaling only. The impact of such kind of bursti-
ness in traditional Cloud computing infrastructures has
been studied from the consumer’s perspective in [10].
This demonstrated that burstiness may be detrimental
for the elastic behavior of Cloud systems. The deterio-
ration can be pronounced either in under-provisioning or
over-provisioning scenarios, resulting in more QoS viola-
tions in the former case or in a sub-optimal operating cost
in the latter one. A recent work [20] focuses on the im-
pact of burstiness on the dynamic resizing of data centers.
The approach is based on an optimization problem solved
to compute the optimal resource allocation that guaran-
tees probabilistic bounds on the QoS parameters. The
approach accounts for fast time-scale burstiness by prop-
erly increasing the resource provisioning with respect to
the one needed under the equivalent non-bursty workload.
As we have seen in this paper, over-provisioning is not al-
ways sufficient to handle burstiness, and finer regulatory
mechanisms are needed to control load balancing.

7. Conclusions and Future Work

In this paper we propose Elastic-PPQ, a system for
parallel processing of sliding-window preference queries.
The approach features adaptation mechanisms suited to
address variabilities happening at different time-scales.
Short-term burstiness is addressed through adaptive
scheduling techniques. Long/medium-term arrival rate
variations instead are handled by a fuzzy logic controller.
The experiments demonstrated that our system is able to
keep up with the variability by optimizing throughput with
good resource utilization efficiency and power saving.

Our work can be extended in several ways. Additional
control knobs can be considered, such as the possibility
to apply load shedding (randomly discard input tuples to
reduce the stream pressure) and CPU frequency scaling
to reduce power consumption. Since the complexity of
fuzzy logic rules increases significantly with the number of
knobs, machine learning techniques can be used to autom-
atize this process. Furthermore, another research direction
is to study the applicability of our two-level autonomic ap-
proach to support a wider class of sliding-window queries.
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