A Multicore Parallelization of Continuous
Skyline Queries on Data Streams

Tiziano De Matteis, Salvatore Di Girolamo and Gabriele Mencagli

Department of Computer Science, University of Pisa
Largo B. Pontecorvo, 3, 1-56127, Pisa, Italy
{dematteis, digirolamo, mencagli}@di.unipi.it

Abstract. Skyline queries are preference queries frequently used in multi-
criteria decision making to retrieve interesting points from large datasets.
They return the points whose attribute vector is not dominated by any
other point. Over the last years, sequential and parallel implementations
over static datasets have been proposed for multiprocessors and clus-
ters. Recently, skyline queries have been computed over continuous data
streams according to sliding window models. Although sequential algo-
rithms have been proposed and analyzed in the past, few works targeting
modern parallel architectures exist. This paper contributes to the liter-
ature by proposing a parallel implementation for window-based skylines
targeting multicores. We describe our parallelization by focusing on the
cooperation between parallel functionalities, optimizations of the reduce
phase, and load-balancing strategies. Finally, we show experiments with
different point distributions, arrival rates and window lengths.

Keywords: Continuous queries, Skyline queries, Sliding window, Par-
allel programming, Multicores.

1 Introduction

Skyline queries are a particular class of preference queries that compute the set
of Pareto-optimal points from a given set. They have become commonplace in
real-time applications working on input data on-the-fly, such as network mon-
itoring, sensor networks, stock market trading and social media. Usually, data
are available in the form of continuous streams [1], i.e. sequences, possibly of
unlimited length, of points (tuples) received from heterogeneous sources.

Most of the existing research works have focused on centralized [2] or parallel
solutions [3, 4] for traditional skyline queries over static datasets. Computing the
skyline over data streams is more challenging [5]. Due to the unbounded stream
length, the query is evaluated on substreams (windows) corresponding to equal-
sized time intervals. Tuples enter the window at their arrival and expire after a
fixed time interval called window length (denoted by T.,). In the literature a lazy
algorithm and an eager variant [5] have been proposed to maintain window-based
skylines with different features in terms of space and time efficiency.

Parallel implementations of continuous skyline queries raise critical issues: ¢)
how to partition the window among a set of parallel Workers, and i) how to keep

the partitions evenly sized in response to new point arrivals, pruning activities,
and the expiration of old points. Existing works have only partially studied
these problems. In [6] the authors have described an approach in which the
computational load is moved from a centralized server to a set of data sites that
interact with the server to notify changes in their local skyline. In [7] the authors
have presented a parallel approach in the domain of uncertain streams, in which
the associativity of the skyline operator does not hold. Both the approaches do
not take into account any pruning phase of obsolete points, which is crucial to
reduce memory occupancy at the expense of a harder load balancing.

In this paper we propose a parallelization of continuous skyline queries on
multicores. We describe our parallelization as a MAP pattern with an asyn-
chronous reduce. We study optimizations related to the reduce phase, and we
show the effect of different load-balancing strategies. Then, we study the perfor-
mance of our parallelization with different point distributions, arrival rates and
window lengths. The results show good performance which proves the efficiency
of our implementation and the effectiveness of our load-balancing strategy.

This paper is organized as follows. Sect. 2 describes related works. Sect. 3
introduces some prerequisites and a description of the parallelized sequential al-
gorithm. Sect. 4 shows our parallelization which will be evaluated on a multicore
architecture in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

Skyline queries have been originally designed for static datasets by focusing
on index structures to cope with high dimensional data (B-Trees, R-Trees, R*-
Trees) [2]. Existing parallel solutions [3] share the idea of partitioning the datasets
into regions processed in parallel and finally merging the results thanks to the
associativity of the skyline operator.

On data streams a first work [8] has addressed n-of-N skyline queries, i.e.
the skyline is computed over a count-based window of the last n received tuples
(N is an upper bound to the window size). Time-based windows have been
firstly used for continuous skyline queries in [9], with the algorithm LookOut.
This solution does not perform any pruning strategy yielding to high memory
occupancy. More recently in the work [5] the authors have proposed the lazy
and the eager sequential algorithms for computing the skyline over streams with
a time-based sliding-window semantics. The former method delays most of the
computational work until the expiration of a skyline point. The latter, instead,
performs a pre-computation phase at each new point arrival in order to minimize
memory consumption at the expense of a higher processing burden.

Most of the previous approaches are centralized. Works proposing parallel
solutions are [6, 10]. In the first one a centralized server collaborates with intelli-
gent data sites that notify the server of the changes affecting the global skyline.
The role of data sites is to avoid sending useless data by reducing the bandwidth
usage. A similar idea has been applied in [10] for continuous skylines over wire-
less sensor networks. Part of the logic is moved to the sensors that filter input

data saving network bandwidth and energy. Parallel skyline queries over uncer-
tain data streams (with imprecise stream elements) have been discussed in [7]
by proposing a parallel implementation for multicores. This solution is highly
dependent from the case of uncertain streams, with parallel servers maintaining
skyline probabilities without performing pruning actions. This solution is dif-
ferent from our work, which focuses on time-based sliding-window skylines over
certain data streams with the pruning of obsolete points.

3 Continuous Skyline Queries: Eager Algorithm

The goal of the skyline operator is to determine the points received in the last
T, time units that belong to the skyline set. Each point = is represented as a
tuple of d > 1 attributes z = {x1,x2,...,24}. Given two points = and y, we
say that x dominates y (denoted by & < y) if and only if Vi € [1,d] z; < y;
and 3j | ; < y;. The skyline of a given set S is the subset of all the points
not dominated by any other point in S. The output of the skyline operator is a
stream of skyline updates expressed in the format (action, p, t), where action
indicates whether point p enters (ADD) or exits (DEL) the skyline at the specified
time t. The continuous skyline operator is characterized by three properties:

— Point maintenance: if a new point x is not a skyline point at its arrival time,
it cannot be discarded immediately because it could become a skyline point
when all its dominators expire;

— Point expiration: a skyline point = will be definitely removed from the system
when it reaches its expiration time;

— Pruning: once a point x arrives, the older points dominated by it (obsolete)
can be discarded since they will not be able to enter the skyline in the future.

The received points that cannot be pruned (non-obsolete points) must be stored
in a data structure denoted by DB. This data structure implements an abstract
data type with the following operations: the insertion of a new point, the removal
of an existing point, and the search of the critical dominator of a given point p
(see Def. 1). Several implementations can be used. Common solutions are arrays
and index structures for spatial searching such as R-trees and R*-trees [2, 5].
In this paper we study a parallelization of the eager algorithm [5]. This
algorithm performs the pruning of obsolete points: only the points currently in
the skyline and those points candidate to enter the skyline in the future are
stored in DB. This property comes at the expense of a larger computational
effort w.r.t similar algorithms [6, 10, 7] such as the lazy variant which does not
perform pruning. The eager algorithm is based on the following concept:

Definition 1. The Skyline Influence Time of a point p (SIT,) is the expiring
time of the youngest point r € S dominating p (r is the critical dominator of p).

The algorithm maintains an event list £L£. Two types of events are sup-
ported: i) skytime(p,t) indicates that point p will enter the skyline at time ¢, ii)
expire(p,t) indicates the exit of point p from the skyline at time ¢. The rationale

of the eager algorithm is to perform most of the work during the reception of
a new point in order to update the event list correspondently. Then, the events
are processed chronologically by emitting the changes in the skyline set through
ADD and DEL updates transmitted onto the output stream of the computation.
At the reception of a new point p the algorithm executes the following steps:

1. Pruning phase: all the points in DB dominated by p must be removed and
their associated events cleared from £L. If a removed point was part of the
skyline, a DEL update is emitted onto the output stream,;

2. Insertion phase: the new point p is added to DB;

3. Search phase: the critical dominator r of p in DB must be found. If it exists,
we add the event skytime(p, t&*P) into EL where t&*P is the expiring time of
7, i.e. SIT, = tZ*P. Otherwise, if r does not exist, p becomes a skyline point
immediately and we add the event expire(p, t;*7) into the event list.

The algorithm processes the events by using an internal timer. When an
event is triggered, there are two possibilities:

— in the case of a skytime(p,t) event the point p is added to the skyline and
an ADD update is emitted. A new event expire(; P,y) is added to £L;

— in the case of an expire event the associated point (which is part of the
skyline) is discarded from DB and its removal from the skyline is notified
through a DEL update.

This behavior allows us to define an important property:

Lemma 1. If a point p reaches its expiration time t;*F at that time the point is
part of the skyline.

Proof. By contradiction let suppose that a point r, which dominates p, exists
and its expiration time is after the one of p. Since expiration times are defined
as t7"? = 17" + T, and t;"P = t;"" + T, this means that has been received by
the system after p (¢2"" > tg”’). This is impossible because, in that case, being r
younger than p and dominating it, p would have been pruned when r arrived. [J

Therefore, for each non-obsolete point p in DB there are two possible situa-
tions. If a new point r dominating p is received before the timer reaches SIT), p
is pruned and its skytime event cleared from £L. Otherwise, when the internal
timer reaches SIT, the corresponding skytime event is executed, p enters the
skyline and an ADD update is emitted. When point p reaches its expiration time,
for Lemma 1 it is part of the skyline. The point is deleted and a DEL update is
emitted. The expiration time of p matches the skyline influence time of the points
critically dominated by it, that are exactly the ones that have to be inserted into
the skyline as a consequence of p’s expiration.

4 Parallelization Design

Our parallelization is based on the data-parallel paradigm. It is a composition
of a MAP pattern with an asynchronous reduce phase. The data structures DB

and £L are partitioned among a set of Workers interfaced with the input stream
and the output stream through an Emitter and a Collector functionality.

The implementation targets shared-memory architectures such as modern
multi/manycores. Emitter, Collector and Workers are implemented by standard
POSIX threads. Threads cooperate by exchanging pointers to shared data struc-
tures through push and pop operations on shared queues. In our implementation
we use the lock-free queues provided by the FastFlow library [11], which exhibit
great performance on cache-coherent multi-core chips.

4.1 Implementation

In the following we describe in detail the functionalities of our implementation
and their cooperation pattern. The parallelization is sketched in Fig. 1.

e peemmmmmmmmmemeeeen
(ADD, p, time)
(DEL, p, time)

Fig. 1: Scheme of the parallel implementation: Emitter (E), Worker (W) and Collector
(C) threads interacting through push and pop operations on FastFlow queues.

Emitter: the role of the Emitter is to interface the input stream (implemented
by a TCP/IP socket) with the parallel computation. For each received point p
the Emitter performs the following sequence of actions:

1. it assigns a timestamp ¢,"" according to the current system time;

2. it assigns the ownership of p to a specific Worker Wy, which will store p in
its DBy, until the internal time reaches p’s expiration time ¢;*7 = 7™ + Ty;

3. pis multicasted to all the Workers. The Emitter performs a push operation
on every input queue of the Workers. The message is the pair (p, k), where
p is the tuple data structure and k is the index of the owner.

The role of the Emitter is critical for load balancing, i.e. to keep the size of the
partitions of DB as similar as possible. To do that, the Emitter should implement
clever owner selection policies. This aspect will be discussed in Sect. 4.2.

Workers: each Worker receives from the Emitter a stream of pairs (p, k). Any
Worker W, performs the following actions:

1. the pruning from its local partition DB; all the points dominated by p; the
private event list £L£; is cleared from the events related to the pruned points;

2. if a pruned point was in the skyline, a DEL update is generated;

3. W; calculates the local ST T; corresponding to the expiration time of the
younger dominator of p in DB;. If p has no dominator in DB; then SIT} is
zero. W; sends the value of SIT) to the Collector for the reduce phase;

After these actions all the Workers except the owner discard p, thus the
owner has a very limited additional overhead. The reduce phase is necessary to
determine the global value of SIT,, which is the maximum between the local
SIT; for all the partitions, i.e. SIT, = max?zl{SIT;}. Because of its fine-grained
nature, the reduce is centralized in the Collector: C receives the values of SIT;
from the Workers, calculates the global SIT, and sends it to the owner W}, that:

4. if SIT, = 0 p must be added to the skyline immediately: an expire(p, t;*")
event is added to £L£; and an ADD update is transmitted to the Collector.
Otherwise, a skytime(p,SIT,) event is added to ELg.

Workers are responsible for processing events in the correct order by pro-
ducing skyline updates to the Collector. Each Worker has an internal notion of
time that moves forward at each reception of a new point from the Emitter, i.e.
when a point p is received, the current time is set equal to ¢3™". Before starting
the computation related to the received point, each Worker executes (unrolls)
all the events in its £L£; with timestamp smaller than ¢7™". ADD and DEL updates
are transmitted to the Collector when skytime and ezpire events arise.

Collector: this thread receives two types of messages from the Workers:

— reduce messages with the local SIT; of a point p from Worker W;. Once
all the SIT; for 4 = 1,...,n have been received, the Collector computes
max?zl{SIT;} and sends this value only to the owner of point p;

— skyline updates need to be buffered by the Collector in order to transmit them
onto the output stream by respecting the chronological order. To do that, the
Collector buffers the updates and keeps them ordered by timestamp using a
priority queue. The Collector maintains the timestamp of the last received
update from each Worker (denoted by Ist-t;). All the buffered updates with
timestamp smaller or equal than min* ,{lst-t;} can be safely transmitted
onto the output stream of the computation.

4.2 Optimizations

In this section we discuss two optimizations: i) we design an asynchronous reduce
for the computation of the global SIT of each new point; i) we study proper
owner selection policies to balance the workload among Workers.

Asynchronous reduce: the value of the SIT of the last received point is the
result of a reduce involving the Workers and the Collector threads. In the basic
implementation the reduce is executed synchronously. The owner of the current

point p cannot start the computation on the next point r until the reduce result
is made available by the Collector.

According to the semantics of the eager algorithm the reduce can be per-
formed asynchronously. Let the owner of the current point p be the Worker Wy.
Instead of waiting the value SIT), explicitly from the Collector, W), can process
subsequent points received from the Emitter while SIT, is not available yet. For
each successive point r the Worker Wp:

— searches the youngest dominator of r in its DBj: this operation uses the
expire time of the stored points and their spatial coordinates, thus it is
independent from SIT);

— all the points v € DBy such that r < v can be pruned. If p is one of the
pruned points, the value of SIT, is no longer necessary.

In conclusion the asynchronous reduce works as follows:

1. when a new point is received by a Worker, whether it is the owner or not it
participates in the reduce phase without waiting for the result;

2. each Worker waits for messages either from the Emitter (a new point) or
from the Collector (reduce result);

3. when the reduce result is received from the Collector: i) if the point has been
pruned the SIT is ignored; ii) otherwise, a new event (skytime or expire) is
inserted into the event list of the owner according to the value of SIT (if it
is equal or greater to zero, see Sect. 3).

This optimization leads to a significant improvement in the performance
achieved by our implementation, as it will be shown in Sect. 5.

Owner selection policies: the ownership must be assigned in order to keep
the partitions DBy, ..., DB, evenly sized. This problem is particularly critical
in continuous skyline queries, since the cardinality of the partitions can change
significantly due to the variability of the arrival rate and the effect of the pruning.

In the literature a similar problem has been studied for skyline queries over
static datasets. Local skylines are computed for each partition and then merged
to define the global skyline. The partitions are usually determined using the spa-
tial coordinates of points as in the grid-based and angle-based schemes proposed
in [4]. In our case such approaches are not sufficiently effective: i) in the case of
points not uniformly distributed the partitions can have very different cardinali-
ties; 4) many skyline points can fall in few partitions, thus in our parallelization
some Workers might provide a very marginal contribution to the skyline def-
inition. In this paper we apply owner selection policies independent from the
spatial coordinates of points. We consider four heuristics:

— Round robin (RR): the ownership is interleaved among Workers, i.e. point z;
is assigned to Worker W; such that ¢ = (j mod n) + 1;

— On demand (0D): the ownership of a new point is assigned to the first Worker
able to accommodate it in its input queue;

— Least Loaded Worker (LLW): each new point is assigned to the Worker with
the smaller partition of DI;

— Least Loaded Worker with Ownership (LLW+): this policy is an extension
of LLW in which, in addition to the size of the partitions, the Emitter takes
into account for each Worker the number of enqueued points for which it
has been designated as the owner.

For the last two policies the Emitter must know the size of the partitions and
the number of enqueued points owned by each Worker. We use shared counters
between the Emitter/Workers threads, implemented as std :: atomic < int >
of the standard C++ library with atomic increment/decrement operations.

Fig. 2 shows a comparison on an Intel multicore composed of two Xeon Sandy
Bridge E5-2650 CPUs for a total of 16 cores operating at 2 GHz with 32GB or
RAM. Each core has private L1d (32KB) and L2 (256KB) caches. Each CPU
has a shared L3 cache of 20MB. We use a configuration with 4.5K non-obsolete
points distributed in 12 partitions (one per Worker). We measure the difference
between the biggest and the smallest partition, i.e. A = |[DB™*®| — |DB™™"|.
We use five double precision floating-point numbers per point (d = 5). Higher
dimensionalities have minor effects on the results.

Load balancing with Round-robin policy Load balancing with On-demand policy

0)
£ 160 T T T T £ 160
g 120] | |8 120 } ‘ ‘
5 go ! R A []
% S a——
2 o 2 o
< 0 le+07 2e+07 3e+07 4e+07 5e+07 4 0 le+07 2e+07 3e+07 4e+07 5e+07
Elapsed execution time Elapsed execution time
(a) Round-robin policy. (b) On-demand policy.
z Load balancing with LLW policy 7 Load balancing with LLW+ policy
S 160 £ 160
2 120 2 120
© 80 ° 80
E 43 ; PR T i g 48 RPN N e
z 0 1le+07 2e+07 3e+07 4e+07 5e+07 21/ 0 le+07 2e+07 3e+07 4e+07 5e+07
Elapsed execution time Elapsed execution time
(c) LLW policy. (d) LLW+ policy.

Fig. 2: Load balancing results: independent distribution. Average window size of 4.4K
points. The same qualitative behavior is observed for the other point distributions.

The results show that the last two policies are able to produce partitions with
very similar cardinalities over the execution. This is an expected result because
the first two policies are independent from the actual load of the Workers. The
best policy is LLW-+. Numerically we have the following values (A9 + o2):
RR:64.02 + 229, 0D:34.13 + 1791, LLW:3.15 + 4.28, LLW+:2.55 + 4.05. As we can
observe: i) load-aware policies are able to obtain smaller A9 with a significantly
lower variance; i) by taking into account the number of owned enqueued points,
the LLW+ policy is able to achieve a 20% improvement than LLW.

5 Experiments

In this section we study the performance of our parallelization on the Intel mul-
ticore. We use the gcc compiler version 4.8.1 with the —03 optimization flag.
We set the affinity of each thread on a different core. The maximum number
of Workers is 12 in our machine, since we have four threads for the Genera-
tor, Emitter, Collector and Consumer. Mapping two threads onto the same core
(hyperthreading) is not beneficial due to the aggressive busy-waiting synchro-
nization performed by pop and push operations on the FastFlow queues [11].

Data distribution and memory usage: the effect of the pruning depends on
the spatial distribution of data. Analogously to existing works [5], we consider
three point distributions: the anticorrelated, correlated and independent ones
as shown in Fig. 3a for 2D points. In the correlated case a small set of points
dominate the others and the pruning phase is very intensive. The anticorrelated
case in on the opposite, with a large number of points that are part of the skyline
set. The third one is an intermediate case with points uniformly distributed in
the space. Fig. 3b shows the number of points maintained in DB with respect to

Non-obsolete points / received points per sliding window

10000

Correlated. wmmzm | ! !
Independent. 3CH
Anticorrelated. m—

8000

6000 -

4000

2000

Non-obsolete points (maintained in DB)

: ¥ e 100K 200K 500K 800K 1M 2M 4M 6M 9M
independent Points received per window (|W[)

(a) Point distributions. (b) Effect of pruning.

Fig. 3: Space distribution of points (anticorrelated, correlated and independent) and
effect of the pruning on the number of stored points.

the total number of points received per sliding window (denoted by |[W|). This
number is given by the product between the arrival rate of the input stream
and the window length, i.e.)W| = A x Ty,. The number of non-obsolete points is
at least three orders of magnitude smaller than the number of received points.
The pruning phase increases the processing time per tuple (all the dominated
points must be identified and removed) but it greatly saves memory occupancy.
In the worst case of the anticorrelated distribution, with 9M points received per
window we need to maintain only ~ 9K non-obsolete points in DB (with four
doubles per point we need ~ 280KB instead of ~ 275MB).

These results have an important implication on the implementation design.
Only a little portion of the received points needs to be stored by the algorithm.

10

Furthermore, since our parallelization is a data-parallel solution, the set of non-
obsolete points is partitioned among n Workers further decreasing the size of
each DB;. According to [5,7], many existing applications of continuous skyline
queries (e.g. analysis of social media such as Twitter, Facebook and so on) are
executed with window lengths of few tens of seconds and arrival rates of several
thousands of points/sec, leading to a total number of points per sliding window in
the order of few millions of tuples. With these sizes, the {DB;}_; data structures
are implemented by dynamic arrays (usually one per dimension, to increase data
locality in the cache hierarchy of multicores) without relying on additional index
structures (e.g.R-tree and R*-trees) that are beneficial with larger datasets.

Effect of asynchronous reduce: we measure the benefit of the asynchronous
reduce on throughput. Throughput is the average number of points processed
per second. With different configurations in terms of arrival rate and window
length, we achieve an average gain between (10 + 20)%. Fig. 4 shows a scenario
with an arrival rate of 100K points/sec generated according to the independent
distribution with a window length T, = 20 seconds. The average gain is of ~ 10%

Throughput / parallelism degree Percentage gain of Asynchronous reduce
14000 T T T T T 20 L T
R Synchronous reduce. —%— Gain, ez
S 12000 | Asynchronous reduce. —&— A
" —~
& 10000 o g
) - g
k= 8000 = =)
2 /,/ S
= 6000 g
=1 =4
g 8
S 4000 5
3 o
2 2000 /
= 'd
0
12 3 45 6 7 8 9 101112 12 3 45 6 7 8 9 101112
Parallelism degree (number of Workers) Parallelism degree (number of Workers)
(a) Throughput. (b) Percentage gain.

Fig. 4: Comparison between synchronous and asynchronous reduce. Scenario: A = 100K
points/sec, Ty, = 20 sec, independent distribution and LLW+ owner selection policy.

with a peak of ~ 15% with 12 Workers. As we can observe from Fig. 4b, the gain
increases with the parallelism degree. The reason is that even the LLW+ policy
is not able to produce perfectly equal partitions. With high parallelism degrees
the partitions of DB are smaller and a slight difference in their cardinality has a
negative effect (higher in percentage) on throughput. The asynchronous reduce
is able to mitigate this slight load unbalance among Workers, by achieving better
throughput compared with the synchronous reduce implementation.

Throughput and scalability: we show the throughput and the best scalability
achieved by our parallelization. For each distribution we use a different scenario
in terms of arrival rate and window length. The results are shown in Fig. 5. For

11

all the scenarios the maximum number of cores (12) is not sufficient to achieve
the maximum throughput (equal to the arrival rate of the stream), hence we are
able to study how the throughput increases up to the maximum number of phys-
ical cores of our machine. Tab. 5d shows: the best throughput achieved with the

Throughput / parallelism degree Throughput / parallelism degree
30000 ——— : _ 300000) ‘LLv‘vE. ——
n 5 On demand. —8—
§ 25000 | OnMdemant. —o— A g 250000 LLW, —e— s
) Round robin. —a— //; 5 Round robin, —&— — 8
g 50000 S 200000 — = 1
2 /'// = e
S 15000 ?‘ z g 150000 %
2 10000 /% 2 100000 /
S / Ed /
g so00 /s 2 50000
= iy = 'd
0 0
12345678 9101112 123456 78 9101112
Parallelism degree (number of Workers) Parallelism degree (number of Workers)
(a) Anticorrelated: T, = 10 sec, A = (b) Correlated: T\, = 60 sec, A = 250K
80K points/sec. points/sec.
Throughput / parallelism degree
90000 s ‘ X
—~ LLW+. —%— Anticorr. Corr. Indep.
S 75000 |- On demand. —8— P
s o o A (12)
B oop | ROUM robin. —A— . B 28K p/s 237K p/s 78K p/s
2 -~
S 45000 A St 1165 8.16 10.7
=2 g?
2 30000 |DB| 4,598 1,192 4,226
[=2]
=3
o
g 15000] (W| 800K 15M 1M
123456 789101112 P 0.994 0.999 0.996
Parallelism degree (number of Workers)
(c) Independent: T, = 10 sec, A = (d) Summary of the numerical results
100K points/sec. (p/s = points /sec).

Fig. 5: Throughput achieved with different point distributions.

highest parallelism degree (B(1?)), the best scalability (S('?)) measured as the
ratio between the throughput with 12 Workers and the one with just one single
Worker thread, the number of non-obsolete points (|DBJ), the total number of
points received per sliding window ((|W]), and the pruning probability P. The
best throughput and scalability results are reported only for the LLW+ policy.
With the correlated distribution we achieve the lowest scalability. Although this
scenario is characterized by the highest value of the arrival rate and window
length, the number of non-obsolete points is small due to a very high pruning
probability. In this case the computation is very fine grained and a slight differ-
ence in the cardinalities of the partitions (also of few units) prevents to achieve a
near-optimal scalability also with the LLW+ policy and the asynchronous reduce.
Near optimal results are achieved with the other two distributions.

12

6

Conclusions

This paper presented a map-reduce parallelization of the skyline operator on
data streams, optimized with an asynchronous reduce phase and smart load
balancing strategies. The experiments confirmed that the LLW+ policy is the
best one, and near-optimal scalability can be achieved with the anticorrelated
and independent distributions. The correlated case is the most challenging due
to the very fine-grained nature of the computation, and deserves to be further
investigated in the future with possible run-time mechanisms enabling dynamic
adaptiveness to sustain highly variable input rates [12].

References

1.

10.

11.

12.

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. PODS ’02, New York,
NY, USA, ACM (2002) 1-16

Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, Washington, DC, USA,
IEEE Computer Society (2001) 421-430

Im, H., Park, J., Park, S.: Parallel skyline computation on multicore architectures.
Inf. Syst. 36 (2011) 808-823

Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for ef-
ficient parallel skyline computation. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’08, New York, NY,
USA, ACM (2008) 227-238

Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams.
Knowledge and Data Eng., IEEE Transactions on 18 (2006) 377-391

Lu, H., Zhou, Y., Haustad, J.: Efficient and scalable continuous skyline monitoring
in two-tier streaming settings. Inf. Syst. 38 (2013) 68-81

Li, X., Wang, Y., Li, X., Wang, Y.: Parallelizing skyline queries over uncertain
data streams with sliding window partitioning and grid index. Knowl. Inf. Syst.
41 (2014) 277-309

. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient skyline computa-

tion over sliding windows. In: Data Engineering, 2005. ICDE 2005. Proceedings.
21st International Conference on. (2005) 502-513

Morse, M., Patel, J., Grosky, W.I.: Efficient continuous skyline computation. In:
Data Engineering, 2006. ICDE ’06. Proceedings of the 22nd International Confer-
ence on. (2006) 108-108

Xin, J., Wang, G., Chen, L., Zhang, X., Wang, Z.: Continuously maintaining sliding
window skylines in a sensor network. DASFAA’07, Berlin, Heidelberg, Springer-
Verlag (2007) 509-521

Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An effi-
cient unbounded lock-free queue for multi-core systems. In: Proceedings of the 18th
International Conference on Parallel Processing. Euro-Par’12, Berlin, Heidelberg,
Springer-Verlag (2012) 662-673

Mencagli, G., Vanneschi, M.: Qos-control of structured parallel computations: A
predictive control approach. 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science 0 (2011) 296-303

