
PPOIJ: Shared-Nothing Parallel Patterns for Efficient
Online Interval Joins over Data Streams

Gabriele Mencagli
gabriele.mencagli@unipi.it

University of Pisa
Pisa, Italy

Yuriy Rymarchuk
y.rymarchuk@studenti.unipi.it

University of Pisa
Pisa, Italy

Dalvan Griebler
dalvan.griebler@pucrs.br

Pontifical Catholic University of Rio
Grande do Sul

Porto Alegre, Brazil

Abstract
Joining data streams is a fundamental stateful operator in
stream processing. It involves evaluating join pairs of tuples
from two streams that meet specific user-defined criteria.
This operator is typically time-consuming and often repre-
sents the major bottleneck in several real-world continuous
queries. This paper focuses on a specific class of join opera-
tor, named online interval join, where we seek join pairs of
tuples that occur within a certain time frame of each other.
Our contribution is to propose different parallel patterns for
implementing this join operator efficiently in the presence
of watermarked data streams and skewed key distributions.
The proposed patterns comply with the shared-nothing par-
allelization paradigm, a popular paradigm adopted by most
of the existing Stream Processing Engines. Among the pro-
posed patterns, we introduce one based on hybrid parallelism,
which is particularly effective in handling various scenarios
in terms of key distribution, number of keys, batching, and
parallelism as demonstrated in our experimental analysis.

CCS Concepts: • Information systems→ Stream man-
agement; • Computing methodologies→ Parallel com-
puting methodologies.

Keywords: Stream Processing, Online Interval Join, Parallel
Patterns, Multicores, Parallel Programming
ACM Reference Format:
Gabriele Mencagli, Yuriy Rymarchuk, and Dalvan Griebler. 2025.
PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Inter-
val Joins over Data Streams. In The 19th ACM International Confer-
ence on Distributed and Event-based Systems (DEBS ’25), June 10–13,
2025, Gothenburg, Sweden. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3701717.3730542

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
DEBS ’25, June 10–13, 2025, Gothenburg, Sweden
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1332-3/2025/06
https://doi.org/10.1145/3701717.3730542

1 Introduction
In the rapidly evolving landscape of data-driven applica-
tions, the need for efficient data processing has become criti-
cal across industries such as IoT, finance, and cybersecurity.
Data stream processing [3] (DSP) is a well-established com-
puting paradigm that enables the continuous processing of
data streams. The primary goal of DSP applications, also
known as continuous queries, is to extract actionable intelli-
gence, insights, and hidden knowledge from data streams,
efficiently and effectively reporting results to end-users. Con-
tinuous queries achieve this by transforming input streams
through a series of operators connected in data-flow graphs.
These operators perform a wide range of transformations,
from relational operations on structured streams to general
computations on streams with arbitrary data types.

Stream Processing Engines [5] (SPEs) are frameworks de-
signed to support the execution of continuous queries across
various computational resources, ranging from single scale-
up machines to distributed architectures and cloud envi-
ronments. To enhance query processing speed, SPEs enable
parallel processing by executing different operators simul-
taneously on different or the same data. Additionally, they
replicate each operator into multiple instances, which are
run by different threads on separate data items.

Scaling operator performance through parallel processing
can be challenging for stateful operators that maintain in-
ternal data structures representing the stream history. Since
the results of these operators depend on their internal state
as well as the current inputs, parallelization techniques must
address the challenge of correctly partitioning the state and
distributing input items to the operator replicas.
This paper investigates parallel solutions, also known as

parallel patterns, for the online interval join (OIJ) opera-
tor [17]. The OIJ operator has numerous practical applica-
tions. For instance, an online shopping platform can rec-
ommend products to users based on predefined features by
joining data inputs from historical orders within a specific
time period. To achieve this, the OIJ operator retains recently
received inputs from two input streams. Upon the arrival
of a new input, it identifies eligible join pairs by searching
for inputs in the opposite stream that fall within a specified
time interval relative to the timestamp of the new input.

https://orcid.org/0000-0002-6263-7723
https://orcid.org/0009-0007-4745-6012
https://orcid.org/0000-0002-4690-3964
https://doi.org/10.1145/3701717.3730542
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3701717.3730542

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Mencagli et al.

One of the main challenges in the OIJ parallelization is to
provide load balancing among replicas, which might depend
on the frequency of distinct keys in the streams. A clever
assignment of keys to replicas does not always solve the im-
balance. In cases of skewed distributions or a limited number
of keys, the processing of inputs with the same key attribute
must be parallelized across multiple replicas of the opera-
tor. A previous work, SplitJoin [11], distributes all inputs to
all replicas, resulting in communication overheads and lim-
ited scalability. A recent solution, Scale-OIJ [18], overcomes
such a limitation by leveraging a novel sharing technique
that allows more replicas to process the same key. However,
this approach relies on shared data structures, introducing
implicit synchronization across threads.
In this paper, we propose a set of parallel patterns for

the OIJ operator. These patterns follow the shared-nothing
parallelization paradigm, where replicas do not share data.
This approach avoids synchronization and race conditions,
addressing limitations of previous works [11, 18]. Our con-
tributions are as follows:
• we first propose a data parallel pattern where inputs
are distributed to all replicas, mimicking SplitJoin [11].
However, we eliminate some limitations of SplitJoin
such as the use of a single physical input stream and
the strict ordering requirement of inputs that must be
processed in order in SplitJoin;
• despite enhancements, we critique the data parallel
approach for its high communication overheads de-
spite perfect load balancing. We propose a hybrid par-
allelism pattern where the same key is processed by
more replicas (but not necessarily all) without sharing
state, unlike prior work [18]. Our heuristic solution
dynamically determines the set of replicas for each key,
balancing workload with minimal splitting and trading
off load balancing with communication overheads;
• we discuss implementation pitfalls for all proposed
patterns to avoid missing or duplicate results.

Additionally, we provide an experimental analysis comparing
the patterns against standard key-based parallelization and
state-of-the-art solutions.
The structure of this paper is as follows. § 2 introduces

the background and motivation. § 3 presents the definition
of our patterns, while their implementation is discussed in
§ 4. § 5 presents our experimental evaluation, § 6 reviews
related works, and § 7 draws the conclusions of this paper.

2 Background
This section introduces key concepts essential for the up-
coming discussion on stream processing, the OIJ operator,
and theWindFlow library. TheWindFlow library serves as
our target DSP framework, where we will examine the per-
formance of the OIJ operator using various parallel patterns
as implementation strategies.

2.1 Data Stream Processing
DSP has its origins in the database community years ago [3].
Initially designed to process structured streams—unbounded
sequences of data records, also known as tuples—DSP has re-
ceived renewed attention in recent years. Continuous queries
are directed acyclic data-flow graphs. In these graphs, ver-
tices represent operators that perform intermediate data
transformation stages, while edges model data streams that
connect two operators and represent data dependencies.
Operators are stateless if they process incoming tuples

without keeping any history of the received inputs. Each
output tuple is computed solely based on the corresponding
input tuple. More complex operators maintain an internal
state. These are called stateful operators, where the state
can be user-defined or built into the underlying SPE. Among
stateful operators with a built-in state concept, windowed
operators [16] play a central role in DSP. They often perform
aggregation over tuples within the same window boundary,
defined by the number of tuples or timestamps, and parti-
tioned by the key attribute associated by the user to each
input tuple.

2.2 Join Operators
Join operators [15, 17] are fundamental in DSP because they
enable users to identify correlations and dependencies be-
tween two different streams. However, they pose implemen-
tation challenges since the original join operators of rela-
tional algebra would require maintaining the entire history
of past tuples received from each input stream, which is im-
practical due to computational and memory constraints. For
this reason, the join semantics has usually been restricted
by considering only the most recent tuples as potential can-
didates for the join predicate.

Modern SPEs provide two classes of join operators.Window-
based join applies the join predicate to pairs of tuples (one per
stream) that belong to the same corresponding window, e.g.,
the same time range [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑). Consecutive windows can
be non-overlapping (tumbling) or overlapping (sliding). In
contrast, the OIJ operator considers one of the two streams
as the base stream, while the other is the probe stream. The
operator emits pairs ⟨𝑡𝑎, 𝑡𝑏⟩, where 𝑡𝑎 belongs to stream A
(base) while 𝑡𝑏 from stream B (probe), provided that: i) the
timestamp of 𝑡𝑏 (denoted by 𝑡𝑏 .𝑡𝑠) lies within a relative time
interval to the timestamp 𝑡𝑎 .𝑡𝑠 ; ii) the two tuples have a com-
mon key attribute, i.e., 𝑡𝑎 .𝑘 == 𝑡𝑏 .𝑘 ; iii) an optional joining
condition cond over the fields of 𝑡𝑎 and 𝑡𝑏 evaluates to true.

The OIJ operator is configured to use two time boundaries,
lwr, upr specified by the user. Let R(𝑡𝑎) be the set of OIJ
results triggered per tuple 𝑡𝐴 ∈ A. This set is defined as:

R(𝑡𝑎) = {⟨𝑡𝑎, 𝑡𝑏⟩ | 𝑡𝑎 .𝑡𝑠 + lwr ≤ 𝑡𝑏 .𝑡𝑠 ≤ 𝑡𝑎 .𝑡𝑠 + upr, (1)
𝑡𝑏 ∈ B,

PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Interval Joins over Data Streams DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

𝑡𝑎 .𝑘 == 𝑡𝑏 .𝑘,

cond(𝑡𝑎, 𝑡𝑏) == 𝑡𝑟𝑢𝑒}
The results of the OIJ are defined as follows: A ⊲⊳𝑜𝑖 𝑗 B =⋃
∀𝑡𝑎∈A R(𝑡𝑎). Fig. 1 illustrates an example of OIJ processing

with two streams, where tuples are represented by circles.
The lower and upper bounds are used to identify a partition
of tuples from the probe stream that should be considered
in the join processing with each tuple from the base stream.

Stream A
(base)

Stream B
(probe) 1 2 3 4 5 6

1 32 4 5

lower bound upper bound

Figure 1. Online interval join (OIJ).

The computational steps of the basic OIJ algorithm can
be outlined as follows:
• a new input tuple is received from one of the two
streams;
• if the tuple is 𝑡𝑎 from the base stream A, the OIJ op-
erator computes the joining condition cond with all
previously received tuples 𝑡𝑏 from the probe stream B
that have the same key attribute and respect the time
constraint 𝑡𝑎 .𝑡𝑠 + lwr ≤ 𝑡𝑏 .𝑡𝑠 ≤ 𝑡𝑎 .𝑡𝑠 + upr;
• if the tuple is 𝑡𝑏 from the probe stream B, the OIJ op-
erator computes the joining condition cond with all
previously received tuples 𝑡𝑎 from the base stream A
that have the same key attribute and respect the time
constraint 𝑡𝑏 .𝑡𝑠 − upr ≤ 𝑡𝑎 .𝑡𝑠 ≤ 𝑡𝑏 .𝑡𝑠 − lwr;
• all pairs of tuples that meet the aforementioned con-
ditions are emitted, and the input tuple is stored in
the state buffer of tuples for the base/probe stream,
respectively;
• tuples that are no longer useful for joining with future
tuples (i.e., they are too old based on their timestamp)
are purged from the corresponding state buffer.

The last point poses some challenges based on the assump-
tions made about the ordering of tuples in the input streams.
Further details on this point will be provided at the end of
this section.

2.3 Motivation
OIJ is a computationally expensive task of continuous queries.
Its parallelization is crucial to achieve adequate levels of
throughput and limited latency, as required by various real-
world use cases. A critical aspect of parallelization is the
choice underpinning the assignment between keys and OIJ
replicas. This is illustrated in Fig. 2(left), where we assume
two OIJ replicas and three keys, 𝑘0, 𝑘1, 𝑘2, with frequencies
of 60% for 𝑘0 and 20% for both 𝑘1 and 𝑘2.
The first case (key-based parallelism) shows a strategy

where each key is assigned to exactly one replica, leading
to load imbalance. The second strategy (data parallelism)

0.00

0.25

0.50

0.75

1.00

1 2 4 6 8
Broadcast degree

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

50%

K0 K1

50%

K0 K2

K
ey

-b
as

ed
Pa

ra
lle

lis
m Rep. #0

60%

K0

40%

K1 K2Rep. #1

50%

K2K1K0

50%

K2K1K0

Rep. #0

Rep. #1

Rep. #0

Rep. #1

D
at

a
Pa

ra
lle

lis
m

H
yb

rid
Pa

ra
lle

lis
m

Figure 2. Three parallelization strategies for the OIJ (left),
impact of tuples broadcasting (right).

assigns all keys to both replicas, evenly distributing the load
but incurring higher overheads due to key splitting (i.e., repli-
cation of internal data structures and broadcast distribution
of all-tuples-to-all-replicas). The broadcast distribution of
all tuples to all replicas is detrimental to performance, as
shown in Fig. 2(right) by the normalized throughput of a
light computational benchmark with varying broadcast de-
grees (i.e., the number of recipients a single tuple reaches).
The third case (hybrid parallelism) aims for good load bal-
ancing with limited key splitting, trading off balancing with
runtime overheads. This paper implements and studies these
three strategies using the shared-nothing paradigm.

2.4 WindFlow Library
Different parallelization strategies for the OIJ operator will
be discussed in this paper, specifically in the context of the
C++17 WindFlow header-only library1 for DSP [10]. In this
section, we will introduce the basic features of WindFlow
and its runtime system.

2.4.1 Graphs of MultiPipes. WindFlow supports the de-
velopment of data-flow graphs like in other SPEs like Flink
and Storm. The distinguishable feature is that this happens
using a programming abstraction called MultiPipe. This ab-
straction implements a logical pipeline of consecutive opera-
tors. From a physical perspective, each operator is replicated
according to its parallelism level (i.e., each replica processes
different input tuples arriving at the operator in parallel). De-
pending on the operator characteristics, the communications
between replicas of consecutive operators in the MultiPipe
can be either direct (one-to-one communications only) or
shuffle (each replica of the left-hand side operator connects
to all replicas of the right-hand side operator). Fig. 3 shows
an example of an application composed of three MultiPipes,
where the third one starts with an OIJ operator having two
replicas. Outputs of the first MultiPipe are tuples of the base

1WindFlow is publicly available in GitHub: https://github.com/ParaGroup/
WindFlow

https://github.com/ParaGroup/WindFlow
https://github.com/ParaGroup/WindFlow

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Mencagli et al.

stream A, while those of the second MultiPipe are tuples of
the probe stream B.

SRC1
(0)

SRC1
(1)

Map
(0)

Map
(1)

Filter
(0)

Filter
(1)

SRC2
(0)

SRC2
(1)

FlatMap
(0)

FlatMap
(1)

FlatMap
(2)

MultiPipe 2

MultiPipe 1
OIJ
(0)

OIJ
(1)

SINK
(0)

MultiPipe 3

base stream (A)
probe stream (B)

Figure 3. Example of aWindFlow application with the OIJ
operator.

It is worth noting that both the base and the probe streams
can be concretely implemented by different physical streams.
In the figure, the base stream is generated by all the replicas
of the Filter operator ending the first MultiPipe, so it is
physically implemented by two streams per replica of the
OIJ. Analogously, the probe stream is implemented by three
streams from each FlatMap replica in the second MultiPipe
(still per OIJ replica).

2.4.2 Runtime system. WindFlow is built on FastFlow[2],
a parallel library for efficient pipelining and data shuffling.
Each operator’s replica runs on a dedicated thread, while
replicas of different operators can be executed by a single
thread using chaining. Data exchange occurs through lock-
free Single-Producer Single-Consumer queues, with each
position holding a memory pointer to the data (usually heap-
allocated). This data can be a single tuple or a batch if batch-
ing is used to reduce communication costs. To ease the load
on the system memory allocator,WindFlow uses a recycling
technique with Multi-Producer Single-Consumer lock-free
queues for feedback channels. The FastFlow layer also sup-
ports distributed channels for streams connecting threads in
different processes via the MCTLmessage-passing library[4],
though such channels are not yet supported by WindFlow.

The general approach of FastFlow is based on the shared-
nothing paradigm (i.e., message-passing). While this is obvi-
ous for distributed channels, where messages are transmit-
ted by value, the same conceptual paradigm is also adopted
for communication between threads of the same process
through lock-free queues. In this case, pointers are passed
from a producer to a consumer by conceptually releasing

the ownership of the data. Therefore, apart from lock-free
queues, no data sharing is natively provided by FastFlow.

2.4.3 Out-of-order data streams. Tuples might arrive
at operators unordered by timestamp, necessitating stream
progress mechanisms for stateful operators like window-
based aggregates and joins.WindFlow useswatermarking [1]
for this purpose. Receiving a watermark 𝑤𝑚 means no fu-
ture tuple with a timestamp lower than𝑤𝑚 can be accepted
(otherwise, the tuple is dropped). Unlike SPEs like Storm
and Flink, which use user-generated punctuations to convey
watermarks, WindFlow embeds watermarks within tuples
(pointstamp). Punctuation messages are automatically gener-
ated by the runtime system only when no data is transferred
through a stream for a monitored period, and can be manu-
ally generated by users at sources during delays. This tech-
nique allows watermarks to propagate without additional
messages if tuples flow continuously.

3 OIJ Parallel Patterns
The parallel patterns in PPOIJ are based on several choices
regarding: i) how tuples are distributed from the preceding
operator to the replicas of the OIJ; ii) the number of OIJ
replicas involved in computing the joining pairs of tuples
relative to the same key attribute. In all cases, the patterns
do not require data sharing and can be easily implemented
on single machines as well as in distributed architectures.

3.1 Key-based Parallelism
The KP-OIJ pattern, used by many SPEs like Apache Flink,
assigns each key to one OIJ replica. Fig. 4 illustrates this con-
cept. Tuples with the same key are routed to the same replica,
with point-to-point distribution. The replica maintains state
buffers for the base and probe streams of its assigned key,
processing tuples in sequence (not necessarily ordered by
timestamps). Watermarks purge tuples from state buffers
when they are no longer useful.

3.2 Data Parallelism
The second pattern is based on data parallelism. The idea is
to partition the state buffers of the probe stream and the base
stream for each key among all theOIJ replicas. Consequently,
each replica owns one partition of the state buffer for both
the base and probe streams and for each key. The conceptual
steps are as follows: i) each tuple is broadcast to all the
OIJ replicas; ii) each replica, in parallel, evaluates the join
condition with all tuples in its partition of the state buffer of
the opposite stream; iii) only one of the replicas is responsible
for storing the received tuple in its partition of the state buffer
of the probe (base) stream. Fig. 5 illustrates the core concept
of the DP-OIJ pattern. The key features of this solution are:
i) the broadcast distribution of tuples to the OIJ replicas; and
ii) the partitioning of the state buffers for tuples from both
the base and probe streams of each key. Watermarks are

PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Interval Joins over Data Streams DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

Figs/KP-OIJ.pdf

Figure 4. OIJ operator with key-based parallelism (KP-OIJ).
Example with two OIJ replicas.

used to purge from the state buffers those tuples that are no
longer useful.

Figs/DP-OIJ.pdf

Figure 5. OIJ operator with data parallelism (DP-OIJ). Ex-
ample with two OIJ replicas.

3.3 Hybrid Parallelism
The hybrid solution combines the low overhead of KP-OIJ
(point-to-point distribution) with the improved load balanc-
ing ofDP-OIJ (equal tuple processing by replicas). The funda-
mental concept of the hybrid solution (HP-OIJ) is to assign
each key to a subset of the OIJ replicas, rather than just one
(as in KP-OIJ) or all (as in DP-OIJ).

We introduce the splitting degree of the key𝑘 ∈ K , denoted
byS(𝑘) ∈ [1..𝑁], where 𝑁 > 0 is the number ofOIJ replicas.
This value identifies the number of replicas responsible for
computing join pairs for key 𝑘 . Each key is assigned to a

subset of the OIJ replicas. Fig. 6 illustrates this with three
replicas handling two keys: the first key is assigned to the
first two replicas, and the second key to the last two. State
buffers for the same key are partitioned among the assigned
replicas and remain private. Watermarks purge tuples from
state buffers when they are no longer useful.

distributed to OIJ(0) and OIJ(1) distributed to OIJ(1) and OIJ(2)

state
buffers

probe

base

preceding
operator

(generating
base stream)

preceding
operator

(generating
probe stream)

OIJ
(0)

OIJ
(1)

OIJ
(2)

OP1 OP2

probe

base

probe

base

probe

base
state

buffers

replicas
of the OIJ

replicas
of the OIJ

Figure 6. OIJ operator with hybrid parallelism (HP-OIJ).
Example with three OIJ replicas.

The assignment of keys is pivotal in obtaining good load
balancing with moderate key splitting, if possible. The gen-
eral idea is to monitor the frequency of the keys at run-
time (see § 4) and to assign OIJ replicas to keys. Let K =

0, 1, . . . , 𝐾 − 1 be the distinct keys, and N = 0, 1, . . . , 𝑁 − 1
the set ofOIJ replicas. Let 𝑓𝑖 ∈ [0, 1] be the relative frequency
of the 𝑖-th key such that

∑𝐾−1
𝑖=0 𝑓𝑖 = 1. We denote by 𝑥𝑖 𝑗 a bi-

nary variable equal to 1 if and only if the 𝑖-th key is assigned
to the 𝑗-th replica, and 0 otherwise. Let 𝑦𝑖 𝑗 be the fraction
of the frequency of the 𝑖-th key that is assigned to replica 𝑗 .
The problem can be formally stated as follows:

minmax
𝑗∈𝑁

�����𝐾−1∑︁
𝑖=0

𝑦𝑖 𝑗 −
1
𝑁

����� (1)

subject to
𝑁−1∑︁
𝑗=0

𝑥𝑖 𝑗 ≥ 1 ∀𝑖 ∈ [0..𝐾 − 1] (2)

𝑁−1∑︁
𝑗=0

𝑦𝑖 𝑗 = 𝑓𝑖 ∀𝑖 ∈ [0..𝐾 − 1] (3)

𝑦𝑖 𝑗 ≤ 𝑥𝑖 𝑗 · 𝑓𝑖 ∀𝑖 ∈ [0..𝐾 − 1],∀𝑗 ∈ [0..𝑁 − 1] (4)

𝑦𝑖 𝑗 =
𝑓𝑖∑𝑁−1

𝑗 ′=0 𝑥𝑖 𝑗 ′
∀𝑖 ∈ [0..𝐾 − 1],∀𝑗 ∈ [0..𝑁 − 1]

if 𝑥𝑖 𝑗 = 1 (5)

The goal (1) is to minimize the maximum load difference
where: (2) each key must be assigned to at least one replica;
(3) the entire frequency of each key must be assigned to
replicas; (4) each replica can be assigned to a fraction of

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Mencagli et al.

the frequency of each key; (5) if a key is assigned to more
replicas, each will receive an even fraction of its frequency.

The combinatorial optimization problem described above
is NP-hard, since it can be considered a variation of the
multi-way partition problem, which aims to split a multi-set
of numbers so each partition’s sum is approximately equal.
Our problem adds complexity by allowing the same key to be
assigned to multipleOIJ replicas, evenly splitting the volume
of tuples of that key. Balancing the load while minimizing
splits (to reduce communication overheads) is complex, as it
requires minimizing the number of replicas per key while
ensuring no replica has an excessive load. We propose a
heuristic solution in Alg. 1. The algorithm takes as input a
threshold 𝜃 ≥ 1, an array 𝑓 of frequencies (one per key), a
key-to-replicas mapping 𝑘𝑒𝑦2𝑅, and a maximum splitting
degree𝑚𝑎𝑥_𝑠𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔 that can be utilized by the heuristics.

Algorithm 1: Assign keys to OIJ replicas
Input: 𝜃 , 𝑓 , 𝑘𝑒𝑦2𝑅, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 , 𝑁
Output: Balanced assignment of keys to OIJ replicas

1 Initialize 𝑠𝑝𝑙𝑖𝑡 with zeros of size 𝐾 ;
2 Initialize 𝑘𝑒𝑦𝑠 with (𝑖, 𝑓 [𝑖]) for 𝑖 ∈ [0..𝐾 − 1];
3 Sort 𝑘𝑒𝑦𝑠 in descending order of frequencies;

4 for each (𝑖, 𝑓 [𝑖]) in 𝑘𝑒𝑦𝑠 do
5 Find𝑚𝑖𝑛𝑅 with minimum load in 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠;
6 𝑚𝑖𝑛𝑅.𝑙𝑜𝑎𝑑 ←𝑚𝑖𝑛𝑅.𝑙𝑜𝑎𝑑 + 𝑓 [𝑖];
7 𝑠𝑝𝑙𝑖𝑡 [𝑖] ← 1;
8 𝑘𝑒𝑦2𝑅 [𝑖] .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑚𝑖𝑛𝑅);

9 if isBalanced(replicas, 𝜃) then
10 return;

11 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ← false;
12 while not balanced do
13 for each (i, f[i]) in 𝑘𝑒𝑦𝑠 do
14 if 𝑠𝑝𝑙𝑖𝑡 [𝑖] < 𝑁 then
15 Find𝑚𝑖𝑛𝑅 in 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 with minimum load that

does not have key 𝑖;
16 for each replica 𝑗 in 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 already assigned

to key 𝑖 do
17 𝑗 .𝑙𝑜𝑎𝑑 ← 𝑗 .𝑙𝑜𝑎𝑑 − (𝑓 [𝑖]/𝑠𝑝𝑙𝑖𝑡 [𝑖]) +

(𝑓 [𝑖]/(𝑠𝑝𝑙𝑖𝑡 [𝑖] + 1));
18 𝑚𝑖𝑛𝑅.𝑙𝑜𝑎𝑑 ←𝑚𝑖𝑛𝑅.𝑙𝑜𝑎𝑑 + 𝑓 [𝑖]/(𝑠𝑝𝑙𝑖𝑡 [𝑖] + 1);
19 𝑠𝑝𝑙𝑖𝑡 [𝑖] ← 𝑠𝑝𝑙𝑖𝑡 [𝑖] + 1;
20 𝑘𝑒𝑦2𝑅 [𝑖] .𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (𝑚𝑖𝑛𝑅);
21 if isBalanced(replicas, 𝜃) then
22 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ← true;
23 break;

24 if isBalanced(replicas, 𝜃) || all_max_split_reached then
25 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 ← true;

26 return;

Each key is initially assigned to the least loaded replica. If
the load exceeds a threshold, the algorithm redistributes keys
among replicas until balance is achieved or the maximum
splitting degree is reached. During this phase, the same key
might be assigned to multiple replicas, evenly splitting the
load. The isBalanced function checks if the ratio of the
maximum load to the average load exceeds a threshold 𝜃 ,
returning false if it does, and true otherwise. It also ensures
all replicas receive a non-zero load.

4 Implementation
The WindFlow implementation2 of the three parallel pat-
terns uses the shared-nothing paradigm. Each OIJ replica
has two private state buffers per key: one for the probe
stream and one for the base stream. It also maintains a pri-
vate hash table (an std::unordered_map from the C++ STL)
that maps keys to a descriptor structure with pointers to the
state buffers, providing average constant-time key searches.
Buffers, ordered by timestamp, facilitate logarithmic com-
plexity look-ups via binary search. They are periodically
purged of old elements based on received watermarks. Since
old tuples are removed from the beginning of the buffer, it is
implemented as a double-ended queue (std::deque).
Although no race conditions and synchronization are

needed to manipulate state buffers, the complexity of the
shared-nothing implementation is concentrated in the distri-
bution and collection of tuples. In WindFlow such activities
are performed by Emitters (E) and Collectors (C) functionali-
ties as depicted in Fig. 7.

OP (base)
OP

logic E

OP (probe)
OP

logic E

OIJ replica

C OIJ
logic

OIJ replica

C OIJ
logic

.

.

.

collection logic of
tuples from

preceding operators,
and delivering of

them to the internal
OIJ logic

distribution
logic of

tuples to the
OIJ replicas

Figure 7. Shared-nothing implementation of the OIJ.

4.1 KP-OIJ Implementation
Each emitter distributes tuples to the OIJ replicas by deliver-
ing all tuples with the same key to the same replica. This is
done by computing the key’s hash value and mapping it to
the destination replicas’ index range. In batching mode, the
emitter maintains a partial batch per destination and fills it
based on the tuple’s key. Once filled, the batch is transmitted.
Before allocating a new batch, the emitter tries to recycle
an existing one from a feedback lock-free queue where pro-
cessed batches can be reused without re-allocating memory

2The source code of the patterns has been partially integratedwithWindFlow,
and it is available in GitHub: https://github.com/DropB1t/WindFlow.

https://github.com/DropB1t/WindFlow

PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Interval Joins over Data Streams DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

from scratch (see § 2.4). This recycling approach is adopted
by all patterns of this section.
The collector receives tuples non-deterministically from

any input stream and delivers them in any order to the com-
ponent processing the OIJ logic. While any ordering is toler-
ated, watermarks must be properly propagated downstream.
This is achieved by maintaining the maximum watermark re-
ceived from each input stream and calculating the minimum
among them.

4.2 DP-OIJ Implementation
The DP-OIJ implementation requires specific emitter and
collector functionalities. Each tuple must be delivered to all
OIJ replicas, necessitating broadcast communication, which
is performed by value on distributed channels. For channels
between threads of the same process, the tuple or batch
to be delivered to multiple destinations is passed using a
shared pointer. This approach grants read-only access to
the destinations and uses an atomic counter to ensure the
tuple/batch is correctly destroyed (actually recycled) after
all destinations have read it.

The collection phase requires special care. The nondeter-
ministic arrival order from multiple input streams might
result in incorrect behavior that violates OIJ computational
semantics. Consider an OIJ operator with two replicas (𝑅0
and 𝑅1). Let 𝑎1 and 𝑏1 be two input tuples from the base and
probe streams, respectively. Assuming the pair (𝑎1, 𝑏1) needs
to be generated, two incorrect behaviors might occur if the
collection phase is handled as in KP-OIJ.

Example 4.1 (Duplicate join pairs). This scenario is illus-
trated in Fig. 8 as a sequence diagram. Tuples 𝑎1 and 𝑏1 are
sent to both replicas but received in different orders. 𝑅0 re-
ceives 𝑎1 first, suppose it is the designed replica to save 𝑎1
based on its hash, then receives 𝑏1 and emits (𝑎1, 𝑏1). Mean-
while, 𝑅1 receives 𝑏1 first, suppose it is designated to saves
it, then receives 𝑎1 and also emits (𝑎1, 𝑏1).

Stream
Base

Stream
Probe OIJ R0

State
buffer R0

OIJ R1
State

buffer R1

a1 arrives
insert a1

b1 arrives
generate
(a1, b1) b1 arrives insert b1

a1 arrives
generate
(a1, b1)

Figure 8. Duplicate output results.

Example 4.2 (Missing join pairs). This scenario is shown in
Fig. 9. 𝑅0 receives𝑏1 first but does not save it, then receives 𝑎1
and saves it. No pair (𝑎1, 𝑏1) is emitted. Similarly, 𝑅1 receives
𝑎1 first but does not save it, then receives 𝑏1 and saves it. No
pair (𝑎1, 𝑏1) is emitted.

Stream
Base

Stream
Probe OIJ R0

State
buffer R0

OIJ R1
State

buffer R1

a1 arrives
b1 arrives

no pair
(a1, b1)

generated

b1 arrives insert b1
a1 arrives

insert a1
no pair
(a1, b1)

generated

Figure 9. Missing output results.

Both scenarios share the same issue: tuples are received by
the OIJ replicas in a different order. To address this, we im-
plemented a specific collector for DP-OIJ. This collector uses
a static round-robin ordering of input streams, alternating
between a probe stream and a base stream. It buffers tuples
received from a different stream relative to the expected one
according to the circular ordering. The same behavior is
adopted if the transmission occurs in batches. Watermarks
are correctly propagated by considering the minimum wa-
termark among the internal queues (one per stream).

4.3 HP-OIJ Implementation
HP-OIJ associates a different splitting degree per key based
on the estimated frequencies. This solution shares some chal-
lenges about tuples’ ordering with theDP-OIJ solution. How-
ever, a fixed round-robin ordering of input streams in the
collector is no longer sufficient to guarantee correctness.

Example 4.3 (Wrong ordering of tuples). Suppose two OIJ
replicas, 𝑅0 and 𝑅1, receive tuples from emitters 𝐸0 and 𝐸1
(base and probe streams). Keys 𝑘0 and 𝑘1 are assigned to 𝑅0,
with 𝑘1 also assigned to 𝑅1. The replicas alternate reading
from 𝐸0 and 𝐸1. 𝐸0 delivers 𝑡1 of key 𝑘0 to 𝑅0, then 𝑡3 of key
𝑘1 to both replicas. 𝐸1 delivers 𝑡2 of key 𝑘1 to both replicas.
Thus, the replicas read key 𝑘1 tuples in different orders.

To avoid the aforementioned problem, HP-OIJ needs a
careful implementation:

• emitters must distribute tuples to the destination repli-
cas based on the current assignment obtained with
Alg. 1. If batching is enabled, the emitter must pre-
pare batches of tuples all having the same key (while
in KP-OIJ and DP-OIJ batches may contain tuples of
different keys);
• collectors must guarantee that the replicas associated
with a given key will receive tuples of that key in the
same order. Therefore, the condition already applied
to collectors in DP-OIJ is now on a key-basis, needing
a buffer of tuples per input stream an for each distinct
key, i.e., O(𝐾 ·𝑀) buffers with 𝐾 the number of keys
and𝑀 the number of emitters sending tuples to each
OIJ replica (this matches the number of replicas of the
two preceding operators in the data-flow graph).

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Mencagli et al.

In HP-OIJ, watermarks are also considered on a key-basis.
The watermark conveyed by a tuple is used by theOIJ replica
to purge old tuples from the state buffers of that key only,
as watermarks of different tuples are no longer monotoni-
cally increasing in this parallel pattern. To emit watermarks
correctly, each join pair emitted by an OIJ replica will in-
corporate a watermark equal to the minimum of the last
watermarks received by the same replica across all keys.

A final, fundamental concern of HP-OIJ is that Alg. 1 re-
quires prior knowledge of the key frequencies. To address
this issue, HP-OIJ behaves as KP-OIJ during and initial pe-
riod of the execution that we call calibration phase. Each
emitter monitors its transmitted tuples’ distribution. After
calibration, emitters send their local distributions to the first
OIJ replica (master), which computes the global distribution
and applies Alg. 1. The resulting key-replicamapping is trans-
mitted through feedback channels (see § 2.4) to the emitters,
allowing on-the-fly usage without data stream interruption.
For correctness, a replica assigned to a key during calibra-
tion must remain assigned (possibly with others) after Alg. 1.
Thus, lines 4-10 are skipped when HP-OIJ is configured to
estimate key frequencies at runtime.

4.4 Final Comparison
To elucidate the implementation differences among the three
presented patterns, we present in Tab. 1 the implementa-
tion strategies for the emitters and collectors, as well as the
watermarking strategy adopted by each pattern.

Pattern Emitters Collectors Watermarks

KP-OIJ Point-to-
point
distribution

Standard collector
multiplexing input
streams

Global
low-watermarks

DP-OIJ Full-
broadcast
distribution

Round-robin
gathering policy from
input streams

Global
low-watermarks

HP-OIJ Partial-
multicast
distribution

Round-robin
gathering policy per
distinct key

Key-based
low-watermarks

Table 1. Summary of the implementation characteristics of
the OIJ patterns.

5 Evaluation
This section is devoted to presenting the performance assess-
ment of the parallel patterns for OIJ introduced before. Our
goal is to highlight their pros and cons, and the effectiveness
of the hybrid solution in several practical scenarios.

Hardware. Our experiments were conducted on a server
equipped with an AMD EPYC 9534 CPU, featuring 64 cores
operating at a base frequency of 2.45 GHz and boosting up
to 3.7 GHz with turbo boost. The CPU includes an L3 cache

of 256 MiB, while each core has an L1 cache of 32 KiB for
instructions and 32 KiB for data, and an L2 cache of 1 MiB.
Simultaneous Multithreading (SMT) was disabled during the
experiments. The machine runs Ubuntu 22.04.5 LTS.
Tools and compilers. This work utilizesWindFlow ver-

sion 4.2.0, compiled with gcc version 12.3.0 at the highest
optimization level (flag -O3). Additionally, for comparison
we employ Flink version 1.16.3 with Java 11.0.25. Each
test is conducted five times, and whenever possible, the 95th
confidence interval is displayed as error bars in the plots.
Workloads. The query consists of two source operators

producing the base and probe streams, respectively, which
feed into the OIJ operator. Results are transmitted to the
final Sink operator. The sources are designed to generate
a parameterized workload. The input tuples are generated
based on the Stock and Rovio datasets from the AllianceDB
benchmark suite [19], which provides real-world traces re-
lated to financial markets and advertisement campaigns. The
sources can generate streams with a configured number of
distinct keys and a parameterized distribution. We consider
two scenarios: uniform distribution and skewed distribution.
The latter is obtained using a self-similar distribution with
a given skew factor 𝑠 in the range (0, 1) (the smaller the
value, the more skewed the distribution). Such a distribution
has been considered realistic of the skewness of real-world
streaming workloads [8]. The input stream is generated at
the fastest sustainable speed by the sources. The OIJ uses a
controllable interval 𝐼 expressed in seconds (converted into
two time boundaries lwr and upr, see § 2).

Baselines. We compare the three patterns (KP-OIJ,DP-OIJ,
and HP-OIJ) in WindFlow among themselves. Additionally,
we provide a comparison against the OIJ operator imple-
mented by Flink. We also conduct an experimental compari-
son against the approach named Scale-OIJ [18], which shares
some similarities with our research, although it is based on
a different design and implementation (i.e., shared memory
and lock-free concurrent data structures shared by replicas).

Evaluation metrics. Our evaluation focuses on two per-
formance metrics: throughput and latency. Throughput is
measured as the average number of input tuples the query
can process per second. Latency is the end-to-end elapsed
time from when a tuple is materialized in the source to when
the corresponding output result is received by the sink. To
achieve this, each join pair incorporates a timestamp that is
the maximum of the timestamps of the two tuples (from the
base and probe streams, respectively) that compose the pair.

5.1 Performance Comparison
In this section, we assess the impact of various parameters
on the performance of the three patterns to understand the
achievable trade-offs.

Impact of the number of keys and distribution. Fig. 10
shows the throughput of the three patterns with varying

PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Interval Joins over Data Streams DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

key numbers 𝐾 under a uniform distribution. Results are
reported for intervals 𝐼 = 10 seconds (left) and 𝐼 = 30 sec-
onds (right). Experiments used eightOIJ replicas and batches
of 32 tuples. With a uniform distribution, load balancing is
straightforward if enough keys exist. For 𝐾 ≥ 25, KP-OIJ
provides higher throughput due to its simple runtime im-
plementation. With very few keys, KP-OIJ fails to balance
the load, leaving some replicas idle. In such cases, HP-OIJ
achieves higher throughput. Although DP-OIJ achieves per-
fect load balancing, its runtime overheads with full broadcast
make it useful only in the extreme case of 1 key.

0

10M

20M

1 2 3 4 5 10 25 50 100 250 500 1000
No. of keys

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Uniform keys distribution (I= 10000)

0

10M

20M

1 2 3 4 5 10 25 50 100 250 500 1000
No. of keys

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Uniform keys distribution (I= 30000)

Figure 10. Throughput with different number of keys (uni-
form distribution) and OIJ intervals 𝐼 .

Fig.11 shows results with a skewed key distribution gen-
erated with a moderate skew factor of 0.35. The experiment
indicates that DP-OIJ is the best solution with a small num-
ber of keys, as high key splitting is necessary to balance the
load and achieve high throughput. With more keys, HP-OIJ
is optimal, balancing the load with moderate splitting and
lower runtime overheads for distributing tuples. Except in
a few cases with many keys, KP-OIJ is generally ineffective
with skewed distributions.

0

10M

20M

1 2 3 4 5 10 25 50 100 250 500 1000
No. of keys

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Skewed keys distribution (I= 10000)

0

 5M

10M

15M

20M

1 2 3 4 5 10 25 50 100 250 500 1000
No. of keys

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Skewed keys distribution (I= 30000)

Figure 11. Throughput with different number of keys
(skewed distribution, 𝑠 = 0.35) and OIJ intervals 𝐼 .

To better highlight HP-OIJ’s behavior in a skewed sce-
nario, Fig.12(left) reports the average splitting degree adopted
with hybrid parallelism for different numbers of keys. As
expected, with few keys available, the splitting degree is

almost at its maximum, similar to DP-OIJ. However, it is
greatly reduced when more keys are available. This show-
cases HP-OIJ’s ability to adapt, mimicking DP-OIJ when
few keys are present and reducing splitting as more keys
become available, based on their measured frequency dis-
tribution. Fig.12(right) illustrates the load balancing factor
(where 1 indicates perfect balancing). While DP-OIJ con-
sistently achieves perfect balancing by definition, KP-OIJ
approximates the best scenario when many different keys
exist in the input stream. Meanwhile, HP-OIJ achieves load
balancing nearly identical to DP-OIJ, confirming the effec-
tiveness of the heuristics described in Alg. 1.

2

4

6

8

1 10 100 1000
No. of keys

Av
g.

 s
pl

itt
in

g
de

gr
ee

Avg. splitting degree

2

4

6

8

0 10 20 30 40 50
Keys

B
al

an
ce

ne
ss

kp
dp
hp

Load balancing

Figure 12. Average splitting factor (left) of HP-OIJ and bal-
anceness of the different patterns (right).

How the number ofOIJ replicas impacts performance.
Changing the number of replicas impacts the throughput
of OIJ. Fig. 13 shows results with a skewed distribution, 50
distinct keys, and two intervals, varying the number of repli-
cas for the three patterns. HP-OIJ achieves better scalability
in both cases, while KP-OIJ is limited by the skewed dis-
tribution and DP-OIJ by its runtime overheads. Increasing
parallelism beyond the maximum shown yields only small
performance improvements.

 4M

 6M

 8M

10M

12M

1 2 4 6 8 10 12 14
No. of OIJ replicas

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Skewed keys distribution (I= 10000)

 4M

 6M

 8M

10M

1 2 4 6 8 10 12 14
No. of OIJ replicas

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Skewed keys distribution (I= 30000)

Figure 13. Scalability (skewed distribution, 𝑠 = 0.35) and
different OIJ intervals 𝐼 .

How the skewness of the input stream impacts perfor-
mance. We previously adopted a skewed distribution with a
moderate factor of 0.35. To assess performance under vary-
ing skewness, we analyzed different skewness factors (lower
values indicate more skewness, with 0.5 representing a uni-
form distribution). Fig. 14 shows results with two intervals

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Mencagli et al.

and parallelism fixed at eight for all patterns. As observed,
DP-OIJ’s performance is almost independent of the skew
factor, as it uses the all-tuple-to-all-replicas paradigm regard-
less of frequency distribution, resulting in evenly sized state
buffers among OIJ replicas. KP-OIJ performs better with less
skewness, improving load balancing by assigning each key
to one replica. HP-OIJ is slower than DP-OIJ with extreme
skewness, as its splitting degree is nearly maximum and
its more complex implementation (§ 4.3) results in higher
overheads when mimicking DP-OIJ. Conversely, with low
skewness, HP-OIJ is slightly worse than KP-OIJ but clearly
superior in intermediate skewness scenarios.

10M

20M

0.2 0.3 0.35 0.4 0.45 0.5
Skewness (s)

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Impact of skewness (I= 10000)

0

 5M

10M

15M

20M

0.2 0.3 0.35 0.4 0.45 0.5
Skewness (s)

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Impact of skewness (I= 30000)

Figure 14. Impact of skewness in the keys distribution.

How patterns benefit from batching. Fig.15(left) and
Fig.15(right) show the impact of batching with 𝐼 = 30 sec-
onds, eight replicas, and 50 keys. Without batching (i.e.,
𝑏 = 1), KP-OIJ performs best in both scenarios. This is ex-
pected with a uniform distribution, as KP-OIJ achieves good
balancing and high throughput. However, with a skewed
distribution (𝑠 = 0.35), small batching is crucial to amortize
communication overheads for both DP-OIJ and, to a lesser
extent, HP-OIJ, where the same tuple might be sent to mul-
tiple replicas. In the skewed case, a very small batch of 2
tuples allows HP-OIJ to outperform KP-OIJ due to better
load balancing.

10M

20M

1 2 4 8 16 32 64 128
Batch size

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Uniform keys distribution (I= 30000)

 2M

 4M

 6M

 8M

10M

1 2 4 8 16 32 64 128
Batch size

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

dp hp kp

Skewed keys distribution (I= 30000)

Figure 15. Impact of batching.

5.2 Latency Analysis
We evaluate latencies under two distribution scenarios: uni-
form and skewed (𝑠 = 0.35). Using an interval of 𝐼 = 10
seconds and eight replicas for all patterns, Fig. 16 shows the
CDF of latencies collected during the tests. In the uniform dis-
tribution scenario (left),HP-OIJ uses minimal splitting to bal-
ance the load, resulting in latencies similar to KP-OIJ. Here,
DP-OIJ has a higher average latency of 27.9 ms compared
to HP-OIJ’s 2.05 ms. With moderate/low splitting, HP-OIJ
maintains low latencies as the buffering delay in the collec-
tors (with separate queues per key and channel) is almost
zero.

0.00

0.25

0.50

0.75

1.00

0 200 400 600
Latency (ms)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

dp
hp
kp

CDF of latencies

0.00

0.25

0.50

0.75

1.00

0 500 1,000 1,500
Latency (ms)

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

dp
hp
kp

CDF of latencies

Figure 16. Latency with uniform distribution (left) and
skewed distribution (right).

Figure 16(right) presents the results of the same experi-
mentwith a skewed distribution. Interestingly,DP-OIJ achieves
low latency values, with a mean of 33.2 ms and a p95 la-
tency of 241.1 ms. This is due to DP-OIJ’s ability to perfectly
balance the size of the state buffers, which are equally par-
titioned among the replicas. Consequently, the latency to
produce a single join pair, computed by one replica, is pro-
portional to the size of the state buffers maintained by that
specific replica. In contrast, KP-OIJ exhibits high latency due
to significant load imbalances, with a mean latency of 94.8
ms and a p95 latency of 714.7 ms. HP-OIJ shows the worst
latency results in this scenario, with a mean latency of 111.2
ms and a p95 latency of 828.6 ms, which is significantly worse
than DP-OIJ and slightly worse than KP-OIJ. Upon further
investigation and profiling, we discovered that the higher
latencies are primarily caused by the time tuples spend in
the collector queues. The size of these queues grows with the
skewed distribution, as the collectors must ensure the same
ordering of tuples with the same key across different replicas.
This is the latency cost associated with hybrid parallelism
under the shared-nothing paradigm.

5.3 Comparison with State-of-the-Art
In this final section, we present the results of our comparison
with Flink, an open-source SPE, and the research prototype
Scale-OIJ [18].
Flink is an open-source JVM-based SPE with a large user

community. It offers features like transparent fault-tolerance,
scaling out, and integration with various external messaging,

PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Interval Joins over Data Streams DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

log, and database systems, though these can impact perfor-
mance. TheOIJ operator in Flink uses internal parallelization
similar to the KP-OIJ pattern described in this paper.
Scale-OIJ is a prototype introduced in [18] and is part of

OpenMLDB, a machine learning database written in C++. It
shared some ideas used in our hybrid parallelism approach.
However, Scale-OIJ is based on a shared-memory implemen-
tation, utilizing concurrent data structures to manage state
buffers shared by the threads running the OIJ replicas. Fur-
ther details on its design and the differences from our work
are discussed in § 6. Our paper does not include a direct com-
parison with SplitJoin [11], as Scale-OIJ has already demon-
strated superior performance, as detailed in [18].
For the comparison, we adapt the benchmark from the

Scale-OIJ repository. This benchmark generates tuples with
a key of type std::string synthetically, and other fields
of types int and std::string. The number of keys and
the parallelism degree of the OIJ implementation are con-
figurable command-line parameters. We use the authors’
dynamic scheduling to balance the workload by allowing
more replicas to access the state buffers of the same key
concurrently. Due to the more complex tuple generation and
joining conditions, the overall throughput is lower than in
the previous experiments. We adapt the same benchmark to
run with WindFlow using the HP-OIJ pattern and develop
an equivalent implementation for Flink based on a Java trans-
lation of the code.

Throughput. Fig. 17 presents the experimental results for
100 keys (left) and 1000 keys (right). Since both Scale-OIJ and
Flink process data one tuple at a time, we compare two ver-
sions ofWindFlow: onewith batching disabled (windflow_b1)
and the other with the default batching value used through-
out the paper (windflow_b32).

0

2M

4M

6M

1 2 4 8 12 16 24 32
No. of OIJ replicas

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

flink scaleoij windflow_b1 windflow_b32

Comparison with SoA (100 keys)

0

 2M

 4M

 6M

1 2 4 8 12 16 24 32
No. of OIJ replicas

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

flink scaleoij windflow_b1 windflow_b32

Comparison with SoA (1000 keys)

Figure 17. Throughput comparison between WindFlow,
Flink and Scale-OIJ.

Scale-OIJ, due to its shared-memory implementation us-
ing concurrent data structures, demonstrates better through-
put in both scenarios with a low number of OIJ replicas
(fewer than 4). However, with increased parallelism,WindFlow
utilizing the HP-OIJ pattern outperforms Scale-OIJ both
without andwith batching enabled. The latter achieves higher

peak throughput, allowing for better scalability as communi-
cation costs are more effectively amortized. While Scale-OIJ
avoids explicit communication overheads through shared-
memory parallelism, the concurrent access to shared data
structures by replicas (despite being lock-free) does not yield
benefits in the considered scenario. Flink exhibits a much
lower throughput, scaling better with more keys due to a
better assignment of keys to replicas.
Latency. Fig. 18 illustrates the latency results from the

previous experiment, which involved 100 keys and a par-
allelism level of 8. In this analysis, we exclude the laten-
cies recorded by Flink due to their higher values, which
would make the plot less comprehensible. Both Scale-OIJ
and WindFlow (without batching) achieved similar through-
put, whileWindFlow (with batching) outperformed the other
two. As observed, the latency distributions for Scale-OIJ and
WindFlow (without batching) are quite similar. However,
enabling batching in WindFlow results in slightly higher
latency values, with a maximum bounded at less than 27 ms.

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Latency (ms)

C
D

F

scaleoij windflow_b1 windflow_b32

CDF of Latency

Figure 18. Latency comparison between WindFlow and
Scale-OIJ.

6 Related Works
Stream joins are challenging operators that can bottleneck
continuous queries. Their stateful nature introduces seman-
tic issues, requiring restrictions on stream portions to iden-
tify valid join pairs. One solution is using slidingwindows [15],
which consider the most recent tuples. Variations like in-
terval joins are also studied. Kang [7] proposed a general
algorithm for stream joins, involving processing a tuple by
scanning the opposite stream’s window, inserting the new
tuple, and removing expired tuples.
Parallelization techniques for stream joins have been ex-

tensively studied. Handshake join [14] uses a pipeline of
workers exchanging tuples in opposite directions, evaluating
the join condition when a pair arrives. However, its high
latency depends on the streams’ arrival rates. A solution [12]
proposed a forwarding approach for streams with low or
intermittent speeds. CellJoin [6], designed for the IBM Cell
multiprocessor, uses a shared-memory implementation with
dynamically partitioned stream windows among workers.
Research has also focused on novel algorithmic solutions,

DEBS ’25, June 10–13, 2025, Gothenburg, Sweden Mencagli et al.

such as chain index [9] and PIM tree [13], rather than par-
allel solutions. The integration of efficient data structures
is orthogonal to our work, which focuses on parallelization
patterns. The shared-nothing paradigm adopted in our work
facilitates the use of different data structures for state buffers,
as they do not need to be concurrent and thread-safe.

SplitJoin [11] is closely related to our DP-OIJ pattern. In
SplitJoin, each tuple is broadcast to all replicas of the join
operator, which compute the join pairs with that tuple in par-
allel by accessing their partition of the state buffer. Despite
its similarities to our DP-OIJ pattern, SplitJoin has several
limitations that our work addresses. Firstly, to ensure correct-
ness, as discussed in § 4.2, SplitJoin requires a strict ordering
of input tuples. This is achieved using a distribution tree for
delivering tuples to replicas and another tree for collecting re-
sults, executed by dedicated distributor entities running the
internal tree nodes. This approach increases thread oversub-
scription and core consumption. Secondly, SplitJoin assumes
that tuples from both streams are provided to the OIJ oper-
ator through a single physical stream. However, in recent
SPEs, multiple replicas of preceding operators can produce
tuples at high speed, as illustrated in Fig. 3.

Particularly important in our analysis was Scale-OIJ [18],
which focused on efficientOIJ implementations. The idea un-
derpinning their work has some analogies with our HP-OIJ
pattern: assigning one key to only anOIJ replica might result
in load imbalance, so more replicas can contribute to process-
ing tuples of the same key. However, the Scale-OIJ approach
adopts shared-memory parallelization, which is feasible only
within a multicore. State buffers are implemented as con-
current data structures, while tuples are distributed to one
replica only. A replica receiving a tuple must access the par-
tition of the state buffers of the same key owned by other
replicas. Such concurrent accesses, although lock-free, limit
the performance of this solution as described in § 5.3. Fur-
thermore, this solution is not applicable in distributed SPEs
without involving external data storage, which is detrimental
to performance. Additionally, the ability to process out-of-
order data streams in Scale-OIJ is achieved by expressing a
user-defined maximum lateness, without adopting streams
with watermarks, which represent the de-facto solution for
out-of-order data streams in modern SPEs.

7 Conclusions
This paper explores parallel patterns for online interval joins
on data streams, focusing on shared-nothing parallelizations.
We propose a hybrid parallelism approach with the HP-OIJ
pattern, where key assignment to OIJ replicas is determined
after an initial calibration phase. Keys can be assigned to
multiple replicas to balance the computational load. We ex-
amine the implementation and correctness requirements.
Experimental analysis shows our solution’s effectiveness
compared to state-of-the-art methods. Future work includes

implementing our patterns in other SPEs like Flink and study-
ing performance in distributed architectures.

Acknowledgments
This workwas partially supported by the Italian PRIN project
OUTFIT (2022BAL2F3), and by the European Union - Next
Generation EU under the Italian National Recovery and Re-
silience Plan (NRRP), Mission 4, Component 2, Investment
1.3, CUP C59J24000110004, partnership on “Telecommunica-
tions of the Future" (PE00000001 - program “RESTART").

References
[1] Tyler Akidau, Edmon Begoli, Slava Chernyak, Fabian Hueske, Kathryn

Knight, Kenneth Knowles, Daniel Mills, and Dan Sotolongo. 2021.
Watermarks in stream processing systems: semantics and comparative
analysis of Apache Flink and Google cloud dataflow. Proc. VLDB
Endow. 14, 12 (July 2021), 3135–3147. https://doi.org/10.14778/3476311.
3476389

[2] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. 2017. Fastflow: High-Level and Efficient Streaming on Multi-
core. John Wiley & Sons, Ltd, Chapter 13, 261–280. https://doi.org/10.
1002/9781119332015.ch13

[3] Henrique C. M. Andrade, Bugra Gedik, and Deepak S. Turaga. 2014.
Fundamentals of Stream Processing: Application Design, Systems, and
Analytics (1st ed.). Cambridge University Press, USA.

[4] Federico Finocchio, Nicoló Tonci, and Massimo Torquati. 2024. MTCL:
A Multi-transport Communication Library. In Euro-Par 2023: Parallel
Processing Workshops: Euro-Par 2023 International Workshops, Limassol,
Cyprus, August 28 – September 1, 2023, Revised Selected Papers, Part I
(Limassol, Cyprus). Springer-Verlag, Berlin, Heidelberg, 55–67. https:
//doi.org/10.1007/978-3-031-50684-0_5

[5] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Kat-
sifodimos. 2023. A survey on the evolution of stream processing
systems. The VLDB Journal 33, 2 (Nov. 2023), 507–541. https:
//doi.org/10.1007/s00778-023-00819-8

[6] Buğra Gedik, Rajesh R. Bordawekar, and Philip S. Yu. 2009. CellJoin: a
parallel stream join operator for the cell processor. The VLDB Journal
18, 2 (April 2009), 501–519. https://doi.org/10.1007/s00778-008-0116-z

[7] J. Kang, J.F. Naughton, and S.D. Viglas. 2003. Evaluating window joins
over unbounded streams. In Proceedings 19th International Conference
on Data Engineering (Cat. No.03CH37405). 341–352. https://doi.org/10.
1109/ICDE.2003.1260804

[8] Flip Korn, S. Muthukrishnan, and Yihua Wu. 2006. Modeling skew in
data streams. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data (Chicago, IL, USA) (SIGMOD ’06).
Association for Computing Machinery, New York, NY, USA, 181–192.
https://doi.org/10.1145/1142473.1142495

[9] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. 2015. Scalable
Distributed Stream Join Processing. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (Melbourne, Vic-
toria, Australia) (SIGMOD ’15). Association for Computing Machinery,
New York, NY, USA, 811–825. https://doi.org/10.1145/2723372.2746485

[10] Gabriele Mencagli, Massimo Torquati, Andrea Cardaci, Alessandra
Fais, Luca Rinaldi, and Marco Danelutto. 2021. WindFlow: High-Speed
Continuous Stream Processing With Parallel Building Blocks. IEEE
Transactions on Parallel and Distributed Systems 32, 11 (2021), 2748–
2763. https://doi.org/10.1109/TPDS.2021.3073970

[11] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacob-
sen. 2016. SplitJoin: a scalable, low-latency stream join architecture
with adjustable ordering precision. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (Denver, CO, USA)
(USENIX ATC ’16). USENIX Association, USA, 493–505.

https://doi.org/10.14778/3476311.3476389
https://doi.org/10.14778/3476311.3476389
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1007/978-3-031-50684-0_5
https://doi.org/10.1007/978-3-031-50684-0_5
https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/s00778-023-00819-8
https://doi.org/10.1007/s00778-008-0116-z
https://doi.org/10.1109/ICDE.2003.1260804
https://doi.org/10.1109/ICDE.2003.1260804
https://doi.org/10.1145/1142473.1142495
https://doi.org/10.1145/2723372.2746485
https://doi.org/10.1109/TPDS.2021.3073970

PPOIJ: Shared-Nothing Parallel Patterns for Efficient Online Interval Joins over Data Streams DEBS ’25, June 10–13, 2025, Gothenburg, Sweden

[12] Pratanu Roy, Jens Teubner, and Rainer Gemulla. 2014. Low-latency
handshake join. Proc. VLDB Endow. 7, 9 (May 2014), 709–720. https:
//doi.org/10.14778/2732939.2732944

[13] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2020. Parallel Index-
based Stream Join on a Multicore CPU. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 2523–2537. https://doi.org/10.1145/3318464.3380576

[14] Jens Teubner and Rene Mueller. 2011. How soccer players would do
stream joins. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data (Athens, Greece) (SIGMOD ’11).
Association for Computing Machinery, New York, NY, USA, 625–636.
https://doi.org/10.1145/1989323.1989389

[15] Juliane Verwiebe, Philipp M. Grulich, Jonas Traub, and Volker Markl.
2022. Algorithms forWindowedAggregations and Joins on Distributed
Stream Processing Systems. Datenbank-Spektrum 22, 2 (2022), 99–107.

https://doi.org/10.1007/s13222-022-00417-y
[16] Juliane Verwiebe, Philipp M. Grulich, Jonas Traub, and Volker Markl.

2023. Survey of window types for aggregation in stream processing
systems. The VLDB Journal 32, 5 (Feb. 2023), 985–1011. https://doi.
org/10.1007/s00778-022-00778-6

[17] Junyi Xie and Jun Yang. 2007. A Survey of Join Processing in Data
Streams. Springer US, Boston, MA, 209–236. https://doi.org/10.1007/
978-0-387-47534-9_10

[18] Hao Zhang, Xianzhi Zeng, Shuhao Zhang, Xinyi Liu, Mian Lu, and
Zhao Zheng. 2023. Scalable Online Interval Join on Modern Multi-
core Processors in OpenMLDB. In 2023 IEEE 39th International Confer-
ence on Data Engineering (ICDE). 3031–3042. https://doi.org/10.1109/
ICDE55515.2023.00232

[19] Shuhao Zhang. 2024. AllianceDB. https://github.com/intellistream/
AllianceDB. [Online; accessed 25. Sep. 2024].

https://doi.org/10.14778/2732939.2732944
https://doi.org/10.14778/2732939.2732944
https://doi.org/10.1145/3318464.3380576
https://doi.org/10.1145/1989323.1989389
https://doi.org/10.1007/s13222-022-00417-y
https://doi.org/10.1007/s00778-022-00778-6
https://doi.org/10.1007/s00778-022-00778-6
https://doi.org/10.1007/978-0-387-47534-9_10
https://doi.org/10.1007/978-0-387-47534-9_10
https://doi.org/10.1109/ICDE55515.2023.00232
https://doi.org/10.1109/ICDE55515.2023.00232
https://github.com/intellistream/AllianceDB
https://github.com/intellistream/AllianceDB

	Abstract
	1 Introduction
	2 Background
	2.1 Data Stream Processing
	2.2 Join Operators
	2.3 Motivation
	2.4 WindFlow Library

	3 OIJ Parallel Patterns
	3.1 Key-based Parallelism
	3.2 Data Parallelism
	3.3 Hybrid Parallelism

	4 Implementation
	4.1 KP-OIJ Implementation
	4.2 DP-OIJ Implementation
	4.3 HP-OIJ Implementation
	4.4 Final Comparison

	5 Evaluation
	5.1 Performance Comparison
	5.2 Latency Analysis
	5.3 Comparison with State-of-the-Art

	6 Related Works
	7 Conclusions
	Acknowledgments
	References

