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Abstract A representative part of real-world parallel applications is becoming
more dynamic and long-running, demanding online (at run-time) adaptations.
Stream processing is one of the application scenarios that demand continu-
ous processing of data items arriving in real-time. However, it is challenging
for humans to monitor and manually self-optimize complex and long-running
parallel executions continuously. Moreover, although high-level and structured
parallel programming aims to facilitate parallelism, several issues still need to
be addressed for improving abstractions. This paper extends self-adaptiveness
for supporting autonomous and online changes of the parallel pattern composi-
tions. Online self-adaptation is achieved with an online profiler that character-
izes the applications, combined with a new self-adaptive strategy and a model
for smooth transitions on reconfigurations. The solution provides a new ab-
straction layer that enables application programmers to define non-functional
requirements instead of hand-tuning complex configurations. Hence, we con-
tribute with additional abstractions and flexible self-adaptation for responsive-
ness at run-time. The proposed solution is evaluated with different structures
and processing characteristics on robust applications. The results show that
it is possible to provide additional abstractions, flexibility, and responsive-
ness while achieving performance comparable to the best static configuration
executions.
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1 Introduction

Large amounts of data are being generated due to the proliferation of devices
(e.g., sensors, cameras) to sense the external world. In this scenario, parallel
computing is relevant for processing fast enough the high amount of data
being generated [15,22]. Moreover, the continuous data arrival requires stream
processing applications to run for long or infinite periods, where such long
executions are often subject to fluctuations in the environment (e.g., resource
availability) and at the application level (input rate, workload) [27]. Hence,
self-adapting entities (e.g., degree of parallelism, cores and their frequencies)
during the execution is important for achieving responsiveness [5,18,26,6].

From a programming perspective, structured parallel programming facili-
tates the task of parallelizing applications. Programmers can instantiate high-
level pattern constructors and combine them in compositions [3,25,2]. In this
scenario, online changing the pattern composition configurations∗ has been
proposed for abstracting complexities from application programmers and in-
creasing the adaptation space to provide flexibility [24]. This can reduce the
burden on application programmers in such a way that configurations are
adapted transparently [23]. However, the configuration space is usually large,
which us challenging to find optimal configurations at run-time.

Moreover, more generic strategies for self-adaptive decision-making are
needed, and dynamic changes can have detrimental effects on the Quality of
Services (QoS). Hence, in previous work [27], we contributed with mechanisms
for online self-adaptiveness of parallel patterns. The solution was integrated
with a C++ programming framework (FastFlow [1]) and experimentally eval-
uated. In this extended version, we provide the following contributions:

– An autonomous self-adaptive strategy that avoids suboptimal configura-
tions, which encompasses a lightweight online profiler of the application
stages and an optimized decision-making for accuracy. The new strategy
also supports latency as a new Service Level Objective (SLO). SLO refers
to a metric of interest and its proper value to be enforced [14,12].

– A model for smooth transitions between the parallel pattern configurations.
A smooth transition is important because changing the configurations can
have a critical impact on the QoS of applications (see Section 3.3).

– Extended validation of the proposed solution, including new scenarios and
applications. Noteworthy, we provide a custom version of the PARSEC’s
Ferret application to regulate the Input Rate (IR) and support user-defined
SLOs (throughput, latency).

This paper is organized as follows. Section 2 shows the motivational context
of this work. Then, Section 3 presents the proposed solution and Section 4
provides an experimental evaluation. Moreover, Section 5 discusses related
approaches and Section 6 concludes this paper.

∗The term composition refers to the application topology (a.k.a. stream graph, graph
topology). Here, the terms composition and configuration are used interchangeably.
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2 Problem statement and motivation

The use of high-level parallel programming methodologies is a potential alter-
native to provide coding abstractions for application programmers [3], which
can reduce the application programmers’ burden. The main goal of high-level
parallel programming is to reduce programming efforts while ensuring rea-
sonable performance and portability. In this vein, pattern-based parallel pro-
gramming provides composable recurrent structures instantiated by users/pro-
grammers, who can combine the patterns creating different configurations. In
the scenario of stream processing applications running in multicore machines,
there are pattern-based parallel programming frameworks. From the industry,
a relevant example is Intel Threading Building Blocks (TBB) [28] and from
academia, there are frameworks like FastFlow [1], GrPPI [8], and SPar [10].

In TBB, the application programmer/user can enable parallel execution by
creating a parallel pipeline, declaring each function as a filter. Moreover, the
programmer is responsible for defining whether a stage is parallel or sequential.
In FastFlow, the user can also create pipelines with the application’s routines
and replicate (run in parallel) specific routines/stages using the Farm pattern.

From a runtime system’s perspective, TBB creates tasks that are scheduled
to a pool of threads, where dynamic scheduling controls thread oversubscrip-
tion by avoiding context switching and time-sliced execution. But, TBB suffers
from other problems related to the scheduling overhead with fine-grained tasks
and I/O blocking operations within tasks. FastFlow, on the other hand, avoids
these issues with a runtime where nodes are fixedly mapped onto threads, and
the runtime can statically merge the nodes without changing the user func-
tions. Nevertheless, FastFlow has a rigid execution model that may not be
suitable for stream processing that are more irregular and dynamic applica-
tions. This model may increase the demand for resources without guaranteeing
performance gains. Hence, we argue that there is a need to support adaptation
for both of them.

In previous work [27], we evinced that stream processing applications that
compute data in real-time require the application programmers to create a
configuration of sequential or replicated stages. However, maintaining such a
configuration for the entire execution can be limited because it has a high
impact on QoS. Moreover, we have seen that it is not intuitive for application
programmers to define these configurations. For instance, it was demonstrated
that a video stream processing application that executes under fluctuations
in the data IR or environment, the best configuration combining replicated,
sequential, and merged stages varies with different scenarios that occur at
run-time and from one programming framework to another.

The complexity of creating stage configurations increases when facing ro-
bust applications with several stages that can run sequentially or in parallel.
For instance, Figure 1 shows the structure of the Ferret [21] application from
the PARSEC benchmark suite, where we can note that the four middle stages
were implemented as thread pools that can run in parallel. However, the prof-
itability of running them in parallel can vary from how intensive and balanced
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Fig. 1: PARSEC’s Ferret pipeline structure. Extracted from [7].

the stages are. Additionally, the expected performance and QoS should also be
considered for deciding whether sequential or parallel executions are applied.

Ferret has a robust program structure, and it is known that it can be
modeled with different shapes by composing and nesting parallel patterns [7],
which we generically call configurations. A demonstrative example is provided
in Figure 2 showing different implementations of the Ferret application with
the frameworks TBB and FastFlow, where the setup described in Section 4.
These results are from a new streaming version of the Ferret that computes
data at a given IR and provides stream processing performance metrics like
throughput and latency. For instance, in Figure 2a the data arrives at a fixed
IR of 10 items per second, where 10 is a suitable throughput (items/s) for
sustaining the IR. Latency is another relevant metric that corresponds to the
time taken to compute a given item, where low latency is a constraint for many
applications [25].

Here we show performance results from 15 relevant configurations, which
are described in Section 4.2.2. Each configuration is a different scenario where
stages are sequential, parallel, or merged. For instance, configuration 12 cor-
responds to the native implementation using Pthreads where all stages are
parallel†. Notable, although configuration 12 demands more resources with 4
parallel stages, it is not the best performing latency.

In fact, the best performance is when running in parallel the last stage,
which is the most intensive one. In TBB, a reasonable latency is only achieved
when the last stage is defined as parallel. Although defining such a configura-
tion is easy, it is not intuitive and has a significant impact on the QoS. The
problem is that defining such a configuration is up to the application program-
mers who are not experts in performance. Consequently, a potential miscon-
figuration would compromise the overall performance. Moreover, the first two
stages are light because, in FastFlow, a configuration with these two stages
merged (reducing resources consumption) showed no performance impact. It
is important to note that there are no results from configurations 13, 14, and
15 with TBB because merging functions would require major changes to the
application business logic code, which negatively impacts coding productivity.

A relevant implication from the Figure 2 is that determining the best con-
figuration can be complex and error-prone, which is not a suitable responsi-

†The Pthreads version is not structured pattern-based, such results are not shown here
for the sake of visual clarity. The performance of FastFlow and TBB is comparable with the
native implementation. The reader interested in comparison can refer to reference [7].



Online and Transparent Self-Adaptation of Stream Parallel Patterns 5

 5

 10

 15

 20

1.Seq−Seq−Seq−Seq

2.Par−Seq−Seq−Seq

3.Seq−Par−Seq−Seq

4.Seq−Seq−Par−Seq

5.Seq−Seq−Seq−Par

6.Par−Par−Seq−Seq

7.Par−Seq−Par−Seq

8.Par−Seq−Seq−Par

9.Seq−Par−Par−Seq

10.Seq−Seq−Par−Par

11.Seq−Par−Seq−Par

12.Par−Par−Par−Par

13.Seq(f1,f2)−Par−Par

14.Par−Seq(f2,f3)−Par

15.Par−Par−Seq(f3,f4)

 10

 100

 1000

 10000

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

M
S

)

TBB−Throughput
FastFlow−Throughput

TBB−Latency
FastFlow−Latency

(a) Input Rate 10 items/s.
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Fig. 2: Example on a PARSEC’s Ferret configuring the stages with thread
pool. Latency is on logarithmic scale

bility for the application programmers. Moreover, the best configuration to be
used can vary at run-time because of the usual fluctuations on stream pro-
cessing applications [18,27]. For instance, the input rate can change due to
network fluctuations or variations in the number of devices producing data.
Resource availability can also fluctuate in shared/dynamic environments like
Clouds. Consequently, stream processing applications are expected to support
flexible adaptations at run-time. Considering that several aspects correlate in
a nonlinear manner, the user/programmer should not be expected to on the
fly hand-tune the configurations. In Section 3 we present the proposed solution
for providing abstractions and dynamic self-adaptation at run-time.

3 Proposed solution

Here we describe the solution that we envision for providing additional abstrac-
tions to application programmers and to enable flexible online self-adaptation
at run-time. In our perspective, a feasible solution is to support users/pro-
grammers to set only high-level goals like throughput or latency SLOs, which
can be offered as parameters or attributes [12,9].

3.1 General design goals and requirements

An effective approach for dynamic parallel pattern compositions is expected
to meet the following goals:

– Abstract from application programmers the demand to find the best config-
uration of parallel patterns. The programmers should set SLOs instead of
hand-tuning configurations. This can be achieved with autonomous strate-
gies that can provide a suitable QoS (achieves the SLO consuming fewer
resources).



6 Vogel et al.

– Enable dynamic and flexible reconfigurations at run-time for avoiding the
need to recompile and rerun long-running stream processing applications.

– Respond at run-time to changing conditions, where dynamic reconfigura-
tions can enable self-adaptiveness.

There are also important requirements for ensuring QoS and efficiency:

– No application downtime, the adaptation should not interrupt the data
processing and output provisioning.

– Smooth transition on reconfigurations. Change from one composition to
another can be necessary. However, this is expected to be stable without
intrusiveness and overheads like latency glitch and throughput spikes [24].

– A suitable solution is expected to be lightweight and execute without de-
manding a significant extra amount of resources.

– Efficiency: an optimal configuration is the one that meets user/program-
mer goals and that requires fewer computing resources. Consuming fewer
resources increases the system efficiency, reduces energy consumption, and
costs less (i.e., pay-per-use environments).

3.2 Decision-making strategy

A decision-making strategy is the core of a self-adaptive strategy responsible
for deciding the best actions to be enforced. However, assumptions are neces-
sary for designing a flexible and generalizable decision-making strategy. The
rationale for such assumptions is to abstract technicalities that have to be
implemented for each specific scenario. In Section 3.4 we show an example
of implementation in a C++ programming framework. The main necessary
assumptions are:

– Runtime system’s mechanisms are available for applying dynamic changes
to configurations and for changing from one configuration to another.

– The strategy receives alternative configurations to be considered at run-
time. Such configurations could be defined by a user or by an expert system.

– The strategy receives information for making decisions, which can be pro-
vided by external monitoring entities.

– The data to be processed comes at a given IR and the strategy is alerted
in case the IR changes.

The designed self-adaptive decision-making for the pattern composition
configurations is described here at a high-level abstracting lower implementa-
tion details. This description is expected to be sufficient for the reproducibility
of the proposed solution. The decision-making has the following steps:

1. Online profiling step: Lightweight instrumentation gathers execution
statistics from each stage, which help in characterizing how intensive and
balanced they are. The profiling step measures the actual processing ca-
pacity of each stage and ranks them by less to more intensive. Moreover, a



Online and Transparent Self-Adaptation of Stream Parallel Patterns 7

given stage is tagged if its average service time (time spent computing the
tasks) is at least 20% higher than all other service time of stages. This step
is executed at the beginning of the execution with the first configuration
provided. It can be repeated at any time, such as when a given application
enters a new processing phase. For increasing the profiling accuracy, it is
recommended that the first configuration executes all stages sequentially.

2. Evaluation: Assesses if the defined SLO is satisfied. If positive, goes to step
6 with the current configuration. If not, goes to step 3. The decision-making
strategy infers that two values are significantly different when they contrast
higher than 20% (a threshold). In [26] this parameter was ascertained as a
suitable one for stream processing applications.

3. Shortlisting configurations: Previous work [27] applied experimental
runs with all configurations. In practice, this can affect QoS because bad
configurations could be used. The new proposed strategy aims to reduce
the number of experimental runs and still cover the suitable parts of the
configuration space. This is possible by using the profiling step’s informa-
tion to search and shortlist the potentially optimal configurations. If more
than one configuration can be optimal, the strategy goes to step 4, or if
only one is suitable, sets this one as active and go to step 6. Also, a con-
figuration with the most replicated stages is set if the SLO is not being
achieved and there are no bottlenecks or optimal configurations.

4. Trial phase: Activates each suitable configuration candidate for a given
time interval and gathers statistics. The rationale for executing each short-
listed configuration is to evaluate which configurations in practice perform
better for the specific application, workloads, and environments. This mea-
sures each configuration’s actual processing capacity. Moreover, the time
interval is a relevant parameter that expert users can customize. However,
the default value from empirical results for testing each configuration is 5
seconds. The previous implementation from [27] tested all configurations
for only 1 second because this solution did not profile and shortlisted the
best one. It tried all configurations available. In practice, we have seen that
one second as time interval is too low and subject to unpredictable varia-
tions during the training step. In the current optimized version, 5 seconds
is the proper time interval because a suboptimal configuration will not be
tested as these do not pass the shortlisting step.

5. Selects the best configuration: This phase evaluates which configura-
tions from step 5 achieved the desired SLO. If no configuration achieved the
goal, enforces the one with the best value. On the other hand, if more than
one is optimal, select the one with light stages merged and fewer repli-
cated stages. This decision is to enforce the most optimal configuration
that maintains QoS and at the same time consumes fewer resources.

6. Stable phase: Stabilizes in a configuration and periodically evaluates if
the SLO is being satisfied. In practice, every 10 seconds, the current status
is verified. This comparison uses the same threshold from step 2 to avoid
the instability caused by fluctuations. Steps 3 to 5 are repeated if the data
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gathered indicates changes or if the SLO is violated. In this case, it is
searched for additional bottlenecks and potentially optimal configurations.

It is important to note that the decision-making strategy is not employing
an exhaustive search. In fact, up to 20 alternative configurations are supported.
However, only the suitable ones are to be activated and tested at run-time.
Moreover, Section 3.3 addresses the relevant aspect of how to achieve safety
and stability when transitioning from one configuration to another.

3.3 Transitioning between configurations

When reconfigurations are necessary at run-time, it should be smooth with-
out compromising the QoS. One solution is to employ a draining phase that
flushes all the tasks from the configuration to be stopped before activating
the new one. From a theoretical standpoint, a flush is relevant for avoiding
that two configurations run simultaneously, which would cause unpredictable
performance variability or losses (throughput spikes and latency glitches [24]).

One may think that the draining phase is a trivial problem solved by sim-
ply waiting for a random time. However, we have seen that choosing for how
long to wait for the draining to complete is a non-trivial value in practice.
On the one hand, not waiting for enough causes performance and resource
fluctuation, influencing the training step and QoS. On the other hand, wait-
ing for too long on reconfigurations can also hurt QoS and the designed goal
of avoiding application downtime. Consequently, we tackled this challenge by
developing an autonomous model that automatically estimates how long to
wait. Such a model is mainly expected to find a balance value being accurate,
generic, and lightweight. The draining time estimation is inspired by adap-
tive self-clocking from Jacobson/Karels scheme [16] for estimating the TCP
retransmission timeouts, our samples/entities subject to variance on parallel
applications are:

Number of items buffered: This aspect refers to buffer sizes used in the
runtime system and the number of computing elements (e.g., nodes) that use
buffers for communicating in a given composition. For a generalization pur-
pose, we assume that the runtime system provides mechanisms for collecting
this value or provides parameters for limiting the buffer’s sizes.

Computations’ service time: Considering that applications have signif-
icant contrasts in terms of grain and tasks computational intensiveness, the
service time is expected to be a broad metric and flexible for different appli-
cations. A monitor can gather data and feed the model with the information
of the average service time of the tasks being processed at a given moment,
which corresponds to a given active configuration.

Processing Capacity: Refers to the computation capacity of the active
configuration to process the tasks buffered and finalize the draining phase.
We have discussed in Section 2 that each configuration and programming
framework has specific processing capacities in terms of the number of nodes
and the mapping to threads. Consequently, only considering the service time
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and the number of buffered tasks would be suboptimal because the actual
computational capacity of each configuration varies. Generally, the processing
capacity considers the number of computing elements that compute a given
application’s business logic code. Additional nodes/elements that do not pro-
cess business logic code necessary in the programming framework should not
be included in the processing capacity.

From the provided description, it is possible to note that the model is not
simple and must consider the variability of service time, runtime parameters,
and processing capacity. Moreover, the model must continuously measure and
accurately estimate the time to drain. Considering the potential overhead of
the machinery to collect and process data at run-time, in Section 4.3, we
characterize the transitioning between configurations using this model.

3.4 Implementation

C++ frameworks and libraries available were considered for implementing the
proposed solution. There are industry and academic solutions such as Intel
TBB [28], FastFlow [1], and SPar [10]. Considering the support for performing
adaptations at run-time, TBB has mechanisms only for dynamic task distri-
bution and load balancing, where other mechanisms have to be implemented
by hand. Considering that we are interested in higher-level abstractions, Fast-
Flow is more flexible by supporting dynamic adaptation on several aspects like
the parallelism degree and communication queues’ concurrency modes [6,25].
Thus, FastFlow was used for implementing the proposed solution.

Abstracting specific and complex implementation technicalities, the pro-
posed self-adaptive strategy was implemented in FastFlow in the form of a
ready-to-use C++ header-only library. The solution works by default in Fast-
Flow’s blocking mode. Figure 3 provides a representation of the implementa-
tion. The Manager is the entity that implements the self-adaptive strategy
and is embedded in the data source and uses the runtime system’s mechanisms
for applying changes in an autonomous mode. Another entity is Monitor im-
plemented as another embedded entity within the Sink stage that gathers data
and feds the Manager. Figure 3 represents a scenario where a pipeline with 3
stages is active and others configuration declared remain inactive. Moreover,
the lower part of Figure 3 demonstrates the achievable flexibility because sev-
eral other configurations can be created and activated at run-time if necessary.

Fig. 3: Implementation in FastFlow.
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In the current implementation, the applications’ business logic code is
reused by alternative configurations. For using the proposed solution, the ap-
plication programmers have to include self-adaptive strategy headers and add
two extra code lines for calling the Manager and Monitor. Moreover, the
higher accuracy of the profiling step demands on each application stage that
a timer is initialized and that the Monitor is called.

The programmer can declare custom configurations using the FastFlow
interface. For instance, the three staged pipeline used in Figure 3 can be de-
clared and added with two C++ code lines, and other compositions can be
declared and included with similar coding productivity. The characteristics of
the configurations (e.g., buffer sizes, stages are sequential, parallel, or merged)
also have to be defined at a higher parametric description. The application
programmer can be assisted with tools for designing additional configurations
and coding, such as RPL [17] and SPar’s compiler [10].

4 Evaluation

4.1 Experimental setup

A multicore machine equipped with an Intel Xeon processor 2.40 GHz (12
cores- 24 threads) and 32 GB of memory was used for running experiments.
The operating system is Ubuntu Server 16.04 and G++ compiler (7.5.0) with
-O3 flag. The FastFlow runtime system’s buffer sizes were set to 1.

The strategy is characterized in a scenario simulating IR changes. The
performance is evaluated with static configuration executions using the same
configurations as a baseline. We call static configuration the executions where
a given configuration is compiled and maintained during the entire execu-
tion. The execution’s correctness was ascertained by hashing the outputs. In
Section 4.2 we describe the applications and configurations tested. Then, in
Section 4.3 the decision-making is characterized with the different SLOs sup-
ported and application characteristics, Section 4.4 evaluates the performance
of self-adaptive executions compared to baseline static executions, and Sec-
tion 4.5 provides an overview of the results.

4.2 Applications and configurations

The evaluation of the proposed solution covers different applications and con-
figurations. Considering that each application has a specific number of stages,
workload pattern, and balance between stages, for each application we created
a scenario of relevant configurations to be available for the self-adaptive strat-
egy to use (or not) at run-time. In this evaluation, configurations using parallel
stages use the default value of 2 replicas (parallelism degree) per stage.
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4.2.1 Synthetic application

Synthetic is an application where 10,000 tasks with a total service time of 24
milliseconds (ms) are computed. This application has three functions where
different configurations can be composed with a sequential or parallel stage.
Configuration 1 has the three sequential stages representing scenarios where
the performance demand is not high, and the stages are balanced. Configura-
tion 2 has the first stage computing in parallel and stages 2 and 3 are sequen-
tial. Such a configuration can be suitable when the stages are not balanced,
and the parallel stage is the bottleneck. Configuration 3 has the second stage
computing in parallel and the stages 1 and 3 sequential and Configuration 4
has the third stage computing in parallel and the stages 1 and 2 sequential.

In Configuration 5 stages 1 and 2 execute in parallel and the third stage
is sequential, such a configuration is relevant when the performance demand
is higher and the sequential stage is lighter than the others. Configuration 6
has stages 2 and 3 execute in parallel and the first stage is sequential and in
Configuration 7 all stages execute in parallel, which can be relevant when the
performance demand is higher and the stages are balanced. It is important to
note that Configuration 7 tends to consume more resources.

The configurations that are suitable vary from application characteristics
and the performance demand. In this synthetic application, many other con-
figurations could have been declared and made available for the self-adaptive
strategy. However, these 7 are representative enough for evaluating the ac-
curacy and performance of the proposed solution. Additionally, this synthetic
application allows flexible customizations of load balancing between the stages.
Two application versions were created for evaluating the self-adaptive strat-
egy: one where the stages are balanced and the other that has unbalanced
stages. In the balanced version, if we attribute a total computing weight of
6 each stage would have a weight of 2, meaning they are perfectly balanced.
With the balanced stages, the optimal configurations are 1 and 7. On the other
hand, the unbalanced version has also a total stages’ weight of 6. However, the
first stage has a weight of 1, the second weight of 3, and the third stage has a
weight of 2. In this case, the major bottleneck is the second stage and if the
performance demand is high the third stage can become the second bottleneck.

4.2.2 Ferret

Ferret is a stream-parallel benchmark that searches for similarities on data
items like audio, images, and video [21,7]. For the evaluation, we modified the
original ferret version to a streaming version. This streaming version computes
data items at a fixed speed instead of reading the data as fast as possible from
the disks, simulating a scenario where the data comes in real-time from the
network at a given speed to be computed. The streaming version also covers
the instrumentation to collect stream processing metrics like throughput and
latency, instead of the execution time. We used the PARSEC native as the
input set, which is a representative workload.
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Ferret can be modeled with several configurations. In this evaluation, we
created 15 alternative configurations for challenging the self-adaptive strategy
to find the best ones at run-time considering different scenarios. The configu-
rations from 1 to 12 explore possible combinations of sequential and parallel
stages, whereas configurations 13, 14, and 15 cover the merging of sequential
stages. The merging can be relevant for cases where the stages are unbalanced
and the lighter can be merged. Importantly, the self-adaptive strategy has a
profiling step for characterizing each application and its workload.

4.2.3 Person Recognition

The Person Recognition is a stream processing application [11] where we used a
customized version that has three functions to detect and verify people in video
streams. It receives a video input and applies a denoising step for improving
the quality. Then, it detects and marks the faces with a red circle. These faces
are compared with the training set of faces. The experiments were run using
as input a 30 seconds video with a resolution of 260 pixels.

In the Person Recognition, we used 5 alternative configurations from refer-
ence [27] that cover sequential, parallel, and merged stages. In Configuration 1
all application functions are merged in a sequential stage (1S.). Configuration
2 separates the functions into two stages (Pipe-2S.), whereas Configuration
3 runs with one more stage(Pipe-3S.). Considering that some applications or
performance goals are not suitable for sequential stages, Configuration 4 shows
an example of a pipeline with a parallel stage (P.S.1) running all functions,
which in FastFlow is a Farm parallel pattern. Considering that functions can
be decomposed into multiple parallel stages, Configuration 5 provides a varia-
tion of Configuration 4 where two parallel stages (P.S.2) are employed, which
can be useful for applications that are not embarrassingly parallel.

4.3 Self-adaptive strategy characterization

This section characterizes the decision-making of the self-adaptive strategy.

4.3.1 Decision-making with throughput SLO

The first results to characterize the solution are from the synthetic application.
The proposed solution is compared to the previous one called PDP21 [27].
Figure 4a shows the results of balanced application stages where the defined
SLO is to have a throughput (items/s) outcome equal to the IR. Representative
for stream processing scenarios, there are two changes in the IR as fluctuations
that can occur at run-time.

The PDP21 strategy started trying all configurations. Considering that
the SLO was being achieved, the new strategy avoided the unnecessary train-
ing in step 2 of the decision strategy (see Section 3.2). Reacting to the IR
change around the second 30, the new strategy accurately on one step went
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to configuration 7 that executes all stages in parallel, inferred by the profiling
step that detected balanced stages. By contrast, the PDP21 strategy tested
all configurations again, resulting in lower throughput and higher latency for
several seconds due to testing suboptimal configurations. Then, after the sec-
ond 50, the IR dropped, and the executions went back to configuration 1 that
sustained the SLO.
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(a) Balanced stages.
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(b) Unbalanced stages.

Fig. 4: Characterization with the synthetic application.

The outcome from Figure 4b with the unbalanced stages is distinct. The ex-
ecution starts with the throughput (items/s) lower than the IR. Consequently,
the new strategy searches for better configurations, which results in shortlisting
and entering the trial phases with configurations 3, 5, 6, and 7. The rationale
behind such as decision is that the profiling correctly detected the second stage
as the bottleneck (Section 4.2.1) and shortlisted the configurations where the
second stage is parallel as an attempt to overcome the bottleneck. Even dur-
ing the trial phase, it is noticeable that the performance improved in terms
of throughput and latency. Then, the strategy stabilized with configuration 6
that provided QoS and demands fewer threads than configuration 7.

The PDP21 strategy had to apply all configurations to find the best one.
By contrast, the new strategy inferred the best configuration with fewer steps,
which is very relevant for applications [18]. The strategies used different time
intervals for testing each configuration, the new strategy uses the default value
of five seconds, and PDP21 tests configurations for one second. Five seconds
is expected to be a time interval suitable for a wider range of applications
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and can also be customized for specific application characteristics. Another
relevant aspect evinced in figure 4 concerns the transitioning model. Notably,
the transitions between configurations are smooth without throughput drops
or latency glitches. The new strategy is also characterized with more realistic
applications where we only show results from the new strategy for the sake of
visual clarity.
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(b) Person Recognition with a changing IR.

Fig. 5: Throughput (items/s) Characterization.

Figure 5 provides results with two applications. Figure 5a shows Ferret
where is notable that the metrics collected in real-time present fluctuations due
to the application’s processing characteristics. Importantly, the self-adaptive
strategy’s profiling step detected the Rank stage as the bottleneck and short-
listed configurations where this stage executes in parallel. Then, after the trial
phases, it stabilized with configuration 13 that presented a suitable perfor-
mance, and that consumes fewer resources with the first stages merged.

The results from the Person Recognition application emphasize the accu-
racy of the decision-making, which chooses the best configuration according
to IR changes. In a scenario with SLO violations, configurations 4 and 5 were
shortlisted and tried to achieve higher performance. Hence, the strategy ap-
plied configuration 4. Under a lower IR, the self-adaptive strategy returned to
configuration 1 to increase efficiency by demanding fewer resources. Although
the throughput reduced during some reconfigurations, the transitioning model
showed accuracy because there was no application downtime.
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4.3.2 Decision-making with latency SLO

Figure 6 shows results from the self-adaptive strategy with latency SLO that
is a contraint. Figure 6a evinces Ferret with a SLO of 200 ms with fluctuations
due to Ferret’s characteristics. The strategy stabilizes with configuration 13,
overcoming the bottleneck on stage Rank. Near the second 100, a significant
application fluctuation increased the latency. Hence, the strategy detected an
SLO violation and searched for a better configuration because some change
could have occurred. The third pool stage (Vec) was detected as an additional
bottleneck, where the strategy shortlisted and tried configurations 10, 12, and
13, where the two bottlenecks are executed in parallel. However, the strategy
returned to configuration 13 that remained the most suitable configuration.
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(a) Ferret SLO 400 ms.
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(b) Person Recognition SLO 600 ms.

Fig. 6: Latency Characterization.

Figure 6b evinces a latency constraint of 600 ms, where a fluctuating IR
varies from 1.5 to 3 FPS. A reconfiguration may be needed when the IR
changes because not sustaining the IR increases the buffering and latency.
This occurred after the second 50 when the IR increased. The active config-
uration did not sustain the IR, which increased the number of items buffered
and the latency. Hence, the strategy detected the latency violation and self-
adapted to configuration 4. After the second 300, there is a fluctuation (also
seen in Figure 6b) that caused the throughput to decrease and the latency
to increase. This fluctuation were not long enough for a reconfiguration be-
cause the latency SLO was being achieved when the self-adaptive entered the
training step. Notably, the transition between configurations occurs without
application downtime, which indicates that the model’s estimation is accurate.
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4.4 Performance evaluation

In this section, we compare the final performance of the self-adaptive execu-
tions to static ones using real-world applications. The results from the execu-
tions are an average of 10 runs and we also show the standard deviation, which
is difficult to visualize in the figures because it is very low. Figure 7 shows re-
sults from Ferret, where the self-adaptive strategy was able to effectively adapt
and find the best configuration (13) for achieving a performance competitive
with the best static configurations. The best throughput in FastFlow, the run-
time system of the self-adaptive solution, was with configuration 12 where the
self-adaptive throughput was 6.3% lower. However, in the latency metric, the
self-adaptive was 39.7% better than static FastFlow with configuration 12.
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Fig. 7: Performance comparison with Ferret. Latency on logarithmic scale.

Figure 8 provides results from Person Recognition, where a notable out-
come is that the self-adaptive executions have a good performance competitive
with the best static scenarios. This is due to the accuracy of the self-adaptive
strategy, especially the profiling, trial, and transitioning steps.
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Fig. 8: Performance comparison: Person Recognition Application
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4.5 Results summary

The evaluation provided here shows that our solution for online self-adapting
the parallel patterns:

– has effective mechanisms for reconfiguring and maintaining program’s ex-
ecutions correctness;

– accurately characterizes the applications for finding bottleneck stages;
– transparently reacts to unpredictable fluctuations (IR, workload) that oc-

cur at run-time;
– locates in a few steps, the best configuration according to different SLOs

(throughput, latency) and that demands fewer resources.
– the model for transitioning is sufficiently accurate as no application down-

time neither latency glitches occurred due to reconfigurations (Section 4.3);
– the new abstraction and responsiveness through self-adaptation is effective

achieving a competitive performance (Section 4.4), which indicates that
the overhead of instrumentation and self-adaptation can be negligible.

5 Related work

A number of entities can be adapted at run-time [15]. Although being com-
plex to manage with applications’ metrics like throughput and latency, batch-
ing can be used as an optimization in some application scenarios [4,23]. The
number of cores and their frequency can be changed at run-time for reducing
energy consumption [6] as well as dynamic tuning the communication queues’
concurrency modes [25].

There are also works dynamically changing the degree of parallelism of
parallel stages [5,18,26]. However, these optimizations are not flexible enough
for the adaptations that real-world stream processing applications demand. In
this vein, changing the application structure was proposed as a more powerful
and flexible entity to be dynamically adapted [24].

Concurrent recompilation has been proposed for reducing application down-
time [24]. However, the techniques needed for controlling downtime are in-
trusive, which can affect the computing (ordering, throughput) and consume
additional resources. In practice, we have seen that this approach is hard to
generalize to other applications and programming frameworks.

There are approaches used profiling for guiding the deployment of stream
applications [20]. By contrast, we focus on more critical requirements and sce-
narios with online profiling, where reconfigurations are online without pausing
the applications and restarting their executions from scratch.

The study of [13] proposed Grizzly, a solution that encompasses adap-
tive compilation to change the executions at run-time, which is a reaction to
changes in applications’ data characteristics. Grizzly’s decision-making per-
forms only speculative optimizations where in practice the accuracy can vary.

Contrasting with the related approaches, we provide a strategy that uses
online profiling and tries only the suitable candidate configurations. This de-
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sign is an attempt to be generic enough to a wide range of applications and
frameworks. In this vein, it is possible to avoid the demand to rerun the appli-
cations to apply changes and not demanding intrusive techniques (e.g., input
duplication, resource throttling, output smoothing). Recompilation is unnec-
essary because multiple configurations are created, and the best one for SLO
and efficiency is found at run-time. Considering that our solution increases
the self-adaptation space, we can combine it with other less flexible entities,
for instance, self-adapting the degree of parallelism that is representative for
configurations with parallel stages and where high throughput is desirable. To
the best of our knowledge, this is the first approach that provides an accurate
decision-making strategy for choosing the best parallel pattern configuration
to be used and that online self-adapts when it is necessary.

6 Conclusion

In this paper, we presented a solution for supporting self-adaptive pattern com-
positions for stream processing applications. A relevant implication of these
results is that self-adaptiveness can provide new efficient abstractions and au-
tonomous responsiveness for applications that compute data in real-time.

The components of our solution can be generalized to be used in other
scenarios. For instance, the online profiler has the potential to be used for
other application classes and workloads. Moreover, we expect that the decision-
making strategy is generic enough to be customized with other programming
frameworks and execution environments, self-adapting other entities, and ap-
plicable to regular parallel applications [19]. Hence, we are in the process of
documenting and open-sourcing the components of the self-adaptive strategy.

This study is limited in some aspects. We designed the solution to be
generic, but mechanisms in the programming frameworks are necessary for
achieving self-adaptive pattern compositions. Currently, the FastFlow frame-
work supports such mechanisms. In future works, we intend to support ad-
ditional applications and workloads in our solution. Moreover, we intend to
evaluate our solution for self-adapting other parallel patterns.
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