Noname manuscript No.
(will be inserted by the editor)

Towards a Systematic Approach to the Dynamic Adaptation of
Structured Parallel Computations using Model Predictive Control

Gabriele Mencagli - Marco Vanneschi

Received: date / Accepted: date

Abstract Adaptiveness is an essential feature for distributed
parallel applications executed on dynamic environments like
Grids and Clouds. Being adaptive means that parallel com-
ponents can change their configuration at run-time (by mod-
ifying their parallelism degree or switching to a different
parallel variant) to face irregular workload or to react to un-
controllable changes of the execution platform. A critical
problem consists in the definition of adaptation strategies
able to select optimal reconfigurations (minimizing operat-
ing costs and reconfiguration overhead) and achieve the sta-
bility of control decisions (avoiding unnecessarily reconfig-
urations). This paper presents an approach to apply Model
Predictive Control (a form of optimal control studied in Con-
trol Theory) to adaptive parallel computations expressed ac-
cording to the Structured Parallel Programming methodol-
ogy. We show that predictive control is amenable to achieve
stability and optimality by relying on the predictability of
structured parallelism patterns and the possibility to express
analytical cost models of their QoS metrics. The approach
has been exemplified on two case-studies, providing a first
assessment of its potential and feasibility.

Keywords Adaptiveness - Model Predictive Control -
Structured Parallel Programming - Performance Modeling

1 Introduction
For distributed applications executed on dynamic envi-

ronments like Grids and Clouds, adaptiveness is a key prop-
erty to maintain an acceptable quality for the services pro-

Gabriele Mencagli and Marco Vanneschi
Department of Computer Science
University of Pisa

Largo B. Pontecorvo, 3

1-56127, Pisa, Italy

E-mail: {mencagli, vannesch} @di.unipi.it

vided to users [28,30]. The presence of dynamic events af-
fecting the execution platforms, such as caused by the time-
varying availability of networking and computing resources,
or related to the application semantics, featuring statically
unpredictable load distributions, may prevent any static ap-
plication configuration to be effective in reaching the desired
Quality of Service (QoS). Therefore, optimized reconfigura-
tion mechanisms and smart adaptation strategies need to be
defined to enhance such systems with supports to deal with
changing environments and dynamic computations.

In the case of distributed parallel applications adaptive-
ness assumes interesting characterizations. Workflow graphs
of arbitrarily interconnected parallel components can be dy-
namically modified by different classes of reconfigurations.
Reconfigurations can affect the parallelism degree: by mod-
ifying its parallelism degree a component can release under-
utilized resources or acquire resources necessary to reach
the desired performance. Reconfigurations can also change
the parallel implementation adopted by a component (par-
allel variant or version). As an example a computation de-
fined on an input stream of elements can be parallelized by
applying the calculation independently on each element in
parallel (task farming) or, if the elements are complex data
structures like arrays or matrices, by applying the calcula-
tion in parallel on partitions of the same data structure (data
parallelism). The different parallel variants solve the same
problem, i.e. they preserve the component input/output in-
terfaces, but are characterized by a different service time,
latency, load balancing and memory occupancy.

The decision-making process is a critical part of any
adaptive system. Reconfigurations must be carefully selected
by taking into account their positive effects on the computa-
tion and the cost for concretely applying them. Several prop-
erties and goals can drive the reconfiguration selection:

— reconfigurations can be aimed at reaching desired trade-
offs between different and potentially contrasting QoS

Gabriele Mencagli, Marco Vanneschi

goals (control optimality). Examples are the optimiza-
tion of aspects like performance, memory usage, and
number and types of used resources;

— when comparing strategies reaching similar QoS levels,
we could prefer the one improving the stability of con-
trol decisions. Informally a “stable” strategy avoids os-
cillating behaviors and minimizes the number of recon-
figurations. This may be of great importance when re-
configurations cause significant economic costs or tran-
sient reconfiguration overhead on the system.

Accordingly, adaptation strategies can be evaluated using
both guantitative and qualitative metrics. For instance, the
number of QoS violations - e.g. number of times observed
measurements exceed desired thresholds - average number
of nodes used by the computation, number of performed re-
configurations, average time between successive reconfigu-
rations of the same component, complexity of reconfigura-
tions (e.g. number of involved nodes) and so on.

A survey of adaptation strategies has been recently pre-
sented in [37] by comparing standard and advanced control-
based solutions and heuristics. This work has demonstrated
that Model Predictive Control [47] (MPC) is a powerful strat-
egy able to achieve good optimality and stability in uncertain
environments. MPC relies on two pillars: (i) the presence
of a mathematical model capturing the essential features of
the system; (ii) the definition of an optimization problem
respecting the model dynamics evaluated using predictions
over a future time horizon.

Existing works have discussed the application of MPC to
power and performance control of data centers, web servers
and embedded CPUs [33, 1], and for the dynamic allocation
of virtual machines on Clouds [34]. These works present
strategies to control physical or virtualized computing envi-
ronments without exploiting any knowledge about the logic
of applications executed on top of them. In this paper we
adopt a different perspective: MPC strategies can be defined
by reasoning directly on the target application, by coupling
the strategy with the application itself. To face the complex-
ity of parallel programming, we adopt a vision in which par-
allel programs are instances of a limited set of parallelism
patterns. This method, known as Structured Parallel Pro-
gramming [17,23] (SPP), permits to exploit the knowledge
of the computation/communication scheme to define para-
metric cost models [23,58] of the meaningful QoS metrics.
In this paper we show how to define MPC strategies for
structured parallel computations using their cost models to
choose the best application configuration. The result is an
approach with a high degree of systematicity and confirm-
ing the properties of MPC in terms of optimality and stabil-
ity. The research contributions are summarized as follows:

— we provide the basis for a systematic approach to the
definition of MPC strategies for parallel computations.

We discuss the contributions of SPP in each phase of the
approach;

— we show the flexibility of SPP in defining implementa-
tion variants of the same component, based on different
parallelism paradigms. This is a powerful way to extend
the concept of adaptiveness for parallel components;

— we exemplify the approach with two benchmarks. Al-
though such case-studies do not cover the entire space of
parallelism patterns, they are representative and widely
used in everyday life. Furthermore, they show the appli-
cation of MPC when different performance measures are
concerned, i.e. throughput and response time. The goal
of such case-studies is twofold: first they exemplify the
approach in a very tutorial-like manner, second they give
an insight into how much cost models of SPP are suitable
(and sufficiently precise) to drive an effective adaptation,
i.e. our MPC strategies are evaluated according to opti-
mality and stability criteria;

— to enact the MPC feasibility, which often represents a
critical issue, we show how traditional techniques can
be applied to the control of structured parallel compu-
tations. Branch & Bound strategies based on a combi-
natorial representation of the problem are discussed by
showing their effectiveness in the studied examples.

In the next section we provide a literature overview about
adaptive systems. Section 3 recalls the features of Structured
Parallel Programming and cost models. Section 4 presents
the central points of our approach and the contribution of
SPP. Section 5 exemplifies the approach on two case-studies.
Section 6 gives the conclusion of this work.

2 Related Work

A studied issue for adaptive distributed parallel applica-
tions has been represented by the design and development of
reconfiguration mechanisms. Reconfigurations are intrusive
actions that may induce performance degradation [52,4,22,
44]. Therefore, they must be designed according to highly
optimized protocols with a null or a little impact on the
computation performance. The literature has demonstrated
that the SPP vision [17,23] is a key factor to greatly sim-
plify the process of run-time modification of parallel com-
ponents [19,55,2]. This paper focuses on a further positive
aspect of SPP, i.e. parallelism patterns and their cost models
are amenable to be integrated into advanced optimal control
techniques, which represent interesting and attractive adap-
tation strategies.

Reconfigurations must be taken if the resulting config-
uration improves the achievement of QoS goals. A solution
consists in providing the correspondence between reconfig-
urations and resulting QoS through logic policy rules [29,
46], which specify a declarative mapping between events

Application of Model Predictive Control to Structured Parallel Computations 3

and corrective actions on the system. Frameworks adopting
this vision are described in [36,41] for emergency manage-
ment systems, and in [55,2] for generic distributed applica-
tions and structured parallel computations.

Rule-based strategies belong to a more general approach
to develop adaptation strategies based on heuristics [37].
Heuristic solutions start from an initial guess about optimal
application configuration and adjust this guess using intu-
itive rules often without relying on a mathematical model
of the system. An example is the work presented in [7], in
which power management of data centers has been stud-
ied using resource allocation policies taking into account
QoS expectations of using different system configurations
and the power usage characteristics of available physical
resources. In [38] a heuristic strategy has been proposed
to enable energy conservation for clusters that run Map-
Reduce jobs. Scaling up/down activities of cluster nodes are
triggered when the average utilization exceeds or becomes
lower than specified thresholds.

Despite their cost in terms of accuracy and precision,
heuristics are simple and with low complexity. However,
as discussed in [37] the use of model-free strategies makes
more difficult to prove the convergence to optimal solutions
and to reach advanced properties such as the stability of con-
trol decisions and their optimality. As thoroughly explained
in [37], standard and advanced control-based strategies may
reach these goals, but their applicability to parallel compu-
tations is still an open issue.

Standard control-based techniques like PID controllers
and Admission Control have been applied to the control of
physical computing infrastructures, e.g. data centers, clus-
ters and Clouds [53,42,27,34]. A seminal work describing
the issues of applying Control Theory to computing systems
has been described in [26] with applications to web servers
and enterprise applications. This work confirms that pro-
viding a sufficiently accurate model of the target system is
a first necessary pre-condition to apply control-based solu-
tions. A common modeling approach is based on statistical
models, achieved through observation of the system under
desired operating conditions. Empirical black-box models
have been used in several works like [42,26]. Combinations
of different control strategies and models have been devel-
oped in [43]. This work proposes a strategy in which the
system operating region is partitioned into sub-regions cou-
pled with a model and a corresponding adaptation strategy.
The idea, though interesting, it is difficult to be generalized,
and the identification of correct and effective operating sub-
regions can be a hard problem in presence of a large set of
observed variables and a discrete space of manipulable con-
trol parameters.

Advanced control-based solutions and MPC have been
applied to computing systems with special attention to high-
performance resources and virtualized computing environ-

ments [53,42]. Predictive control has been preliminary ap-
plied in [1,33] for controlling: (i) a server farm, by dynam-
ically varying the number of active nodes; (ii) a CPU, by
dynamically adjusting the clock frequency. Although these
past researches have some common points with the approach
proposed in this paper (e.g. disturbances are taken into ac-
count through statistical forecasting), they are heavily tai-
lored to the target physical platform without exploiting any
knowledge about the controlled computations (as in [26,42],
where models are extracted using black-box techniques). An
idea is to apply MPC to parallel applications by exploiting
the knowledge of the application structure to derive simple
yet powerful models based on structured parallelizations.
This is the goal of this paper, which joins the properties of
MPC and the features of SPP.

3 Structured Parallel Programming and Cost Models

In this section we recall some basic concepts of SPP.
SPP [17,23] is based on the utilization and composition of a
limited set of parallel programming paradigms, also called
parallelism patterns or forms, with a well-defined seman-
tics. Basic typical paradigms are:

— task-farm (master-worker), in which a stream of tasks is
scheduled for the execution by a set of identical workers,
thus exploiting replication of stateless functions. Task
scheduling is often implemented according to a load bal-
ancing strategy;

— data-parallel, in which a computation (stateless or with
internal state) operating on complex data structures (uni-
or multi-dimensional arrays) is replicated into a set of
workers, each one operating on a partition of the in-
put/output data (in addition, replication is often applied
to a subset of data structures). Data-parallelism is a very
general paradigm that can be specialized into several
variants, in particular map (workers are independent dur-
ing every execution step) or stencil-based (data depen-
dences exist among the computation of the various work-
ers, according to a cooperation scheme that may be static
and fixed, static and variable, or even dynamic, passing
from an execution step to the next ones), Moreover, dif-
ferent strategies for scheduling, data scattering, gather-
ing, multicasting, as well as for reducing, prefixing and
windowing, are adopted for different classes of algo-
rithms or application domains.

Data-parallelism can be applied to both stream-based
computations and to computations operating on a single set
of data, while farming is meaningful for task streaming only.
Task-farm and data-parallel variants of the same stream-based
computation have different features in terms of load balanc-
ing (easier to achieve in farming), service time, latency and

Gabriele Mencagli, Marco Vanneschi

memory capacity per node (better in data-parallelism). Al-
ternatively, different paradigms have different optimal par-
allelism degrees for achieving similar performance values.
Other parallel paradigms have been studied [17,23], such
as divide-and-conquer, multi-pipeline, specific instances of
data-flow computations, which often can be expressed in
terms of farming, data-parallelism or their combinations.

A lot of experience has been done in the last twenty
years by many research groups (including our group) in aca-
demic and industrial contexts about SPP. Accordingly, a rich
set of static and dynamic implementations is known for each
parallelism paradigm and its variants with respect to dif-
ferent parallel architectures with shared and/or distributed
memory. The clear semantics of each paradigm, thus the
knowledge of their machine-dependent implementation, ren-
ders it possible to define performance models, or more gen-
erally cost models, which is a distinguishable feature of SPP.
Cost models concern configuration and evaluation parame-
ters and metrics of a computation, such as the optimal par-
allelism degree, the service time, latency, completion time,
efficiency, scalability, as well as the memory requirements
and the power consumption. If a computation acts as a server
with respect to a set of clients according to a request-reply
interaction, then the response time is of main interest, i.e. in
such case proper optimizations of the server service time and
of the server latency are critical for the client performance.

Cost models are functions of application-dependent pa-
rameters (sequential calculation time, data size, inter-arrival
times, and their statistical distributions, possibly determined

through profiling or simulation) and of architecture-dependent

parameters (process/thread management mechanisms, inter-
connection structures, memories, interfaces, protocols, and
so on). An important feature of SPP is that all the perfor-
mance metrics are parametric in the parallelism degree.
Furthermore, it is possible that, according to the com-
plexity and/or to the performance unpredictability of the un-
derlying architecture, an analytical or numerical approach
to the resolution of the cost model reveals of unacceptable
complexity. In these cases, a simulation-based or a mixed
approach is the best one. In all cases (analytical/numerical
resolution or simulation) the cost model application has to
be integrated, and can be integrated, into the set of tools and
strategies for the dynamic reconfiguration control.

4 Adaptive Parallel Computations and Predictive
Control

In this section we describe our approach to apply MPC
to distributed parallel applications expressed according to
SPP. Applications can be represented as graphs of cooper-
ating computational modules (Figure 1). We use the term
module as a synonym of component. Modules can exchange

single values or streams of elements. Each module imple-
ments a computation activated by receiving values from a set
of input streams selected in a non-deterministic or in a data-
flow fashion. According to SPP, intra-module paralleliza-
tions are instances of a limited set of parallelism patterns.

stream

stream

Fig. 1: Computation graphs and internal structure of an Adaptive Par-
allel Module (ParMod).

/
% Operating

- Part

"]

d d: o
4
1 Control

Part
N

The core part of our approach is the concept of Adaptive
Parallel Module (shortly referred to as ParMod), an inde-
pendent and active unit featuring a reconfigurable structured
parallel computation and an adaptation strategy to maintain
the desired QoS in the face of dynamic execution conditions.

4.1 Adaptive Parallel Modules

A ParMod is structured as two cooperating parts (see
Figure 1) interconnected in a closed-loop fashion:

— the Operating Part executes a parallel computation in-
stantiating a structured parallelism form;

— the Control Part represents the ParMod controller, an
entity able to modify the Operating Part behavior through
the execution of reconfiguration activities.

The Operating Part computation can be executed accord-
ing to different alternative configurations. A configuration
consists in a specific selection of features such as: (i) the cur-
rent variant in terms of parallelism form and/or sequential
algorithm, (7i) the actual parallelism degree (number of im-
plementation processes or threads), and, (iii) the execution
platform on which the computation is currently deployed
and executed. Reconfigurations can be distinguished into:

— functional reconfigurations replace the parallel imple-
mentation of the Operating Part. The possibility to solve
the same problem with different parallel variants is a
powerful feature of SPP. As stated in Section 3, parallel
variants based on distinct paradigms can have different
performance, memory usage, and resource consumption.
Furthermore, the replacement of the used variant can be
executed transparently w.r.t the other parts of the appli-
cation. This is possible if alternative variants preserve
the interfaces of the module, i.e. the interconnections
and the types of input/output streams;

Application of Model Predictive Control to Structured Parallel Computations 5

— non-functional reconfigurations change the values of pa-
rameters of the current parallel implementation, e.g. the
parallelism degree, and/or the currently used resources.
Migration of a parallel computation (or of some of its
parts) on different resources is referred to as a geometric
change in [52]. It does not modify the computation struc-
ture (number of implementation processes/threads, their
interconnections and support data-structures used for co-
operation). Differently, parallelism degree variations are
structural changes [52] whose cost depends on the char-
acteristics of the parallelism form (e.g. when reconfig-
urations are executed during the execution flow and if
an internal state needs to be collected and re-distributed
before/after the reconfiguration).

The implementation of reconfiguration mechanisms and
the way in which adaptive applications can be defined is an
interesting research aspect. Variants of the same component
can be provided by different implementations of the same
class in object-oriented frameworks, or by using emerging
concepts such as elastic functions [56] capturing multiple
implementations with meta-information used by the run-time
system to choose the best one. In the case of coordination
languages for distributed parallel computing, proper program-
ming constructs can be used to provide multiple instantia-
tions of the same component [51,19,10]. A discussion about
the better way to express such multi-modal nature of adap-
tive systems is out of the scope of this paper, which explores
at a more abstract layer how multiple implementations based
on SPP are useful in the context of adaptive parallel appli-
cations and predictive control strategies.

Besides triggering reconfigurations, Control Part is in
charge of evaluating the adaptation strategy, which is the
main focus of this paper. The evaluation is performed pe-
riodically, according to two different approaches:

— in time-driven controllers the adaptation strategy eval-
uation is performed at equally spaced time instants. We
call the time interval between two subsequent decision
points as control step, i.e. the execution is discretized in
control steps of fixed length;

— in event-driven controllers the occurrence of an event
rather than the passing of time states the occurrence of
the next decision point. Therefore the adaptation strategy
is evaluated at not equally spaced time points.

The main advantage of event-driven controllers is the pos-
sibility to reduce the resource utilization of the controller.
Nevertheless, as stated in [49] and [25], “although there
are various benefits of using event-driven control like reduc-
ing resource utilization (e.g., processor and communication
load), their application in practice is hampered by the lack
of a system theory for event-driven control systems”. For this
reason in this paper we adopt a time-driven vision, although

the integration of our approach with event-driven controllers
deserves a future investigation.

The discrete-time closed-loop interaction between Op-
erating Part and Control Part consists in the following infor-
mation exchange performed at the beginning of each control
step:

— monitoring data, from Operating Part to Control Part,
are measurements that describe the current computation
behavior;

— reconfiguration commands, from Control Part to Operat-
ing Part, are messages triggering the execution of func-
tional and/or non-functional reconfigurations.

In the next subsections we focus in more detail on the
MPC strategy and the different elements to instantiate this
technique to the ParMod control.

4.2 Application of Model Predictive Control
The application of MPC consists in four elements as

shown in Figure 2: prediction, optimization, evaluation and
selection.

Model Predictive Control

@&) @)
Prediction Selection
(system model and (receding horizon
disturbance forecasting) technique)
A
&) &)
Optimization Evaluation
(feasible resolution (using a cost/utility
method) function)
ﬁ ﬁ

Fig. 2: Elements of Model Predictive Control.

In this section we will present a systematic approach to
apply MPC control strategies to adapt the behavior of adap-
tive parallel modules expressed according to the Structured
Parallel Programming paradigms.

4.2.1 ParMod model

The prediction element makes it possible to predict the
future behavior of the system. To enable that, a pre-condition
is the existence of a mathematical model stating the relation-
ship between the following set of variables:

— QoS variables (denoted by x(k) € R") represent infor-
mation that characterizes the quality of the execution at
the beginning of control step k;

Gabriele Mencagli, Marco Vanneschi

— control inputs u(k) € U are the reconfiguration choices
for step k, which belong to a discrete set of possibilities
U=A{uy,uy,...,u,} (e.g. all the feasible combinations
of parallelism degrees and existing parallel variants);

— disturbance inputs (d(k) € R™) model exogenous events
affecting the relationship between control inputs and QoS
variables. They can be related to the application seman-
tics (e.g. irregular workload, size and complexity of re-
ceived tasks) or to reasons related to the execution plat-
form (e.g. varying communication latency, or the execu-
tion time of sequential parts of parallel computation).

As previously highlighted, a key aspect of ParMods is
the presence of multiple alternative configurations:

Definition 1 (Multi-modal behavior of Operating Part). We
denote by C the set of alternative Operating Part configura-
tions (operating modes):

C={C,C,...,Cy}

Each C; is represented by the pair C; = (u;, ¢;), where u; is
the control input vector corresponding to the i-th ParMod
configuration, and ¢; is a model describing the system be-
havior when configuration C; is active.

Accordingly, each operating mode is governed by its own
characteristic model:

x(k+1) = ¢i(x(k),d(k)) i=1,2, ...,V (1)

When QoS variables correspond to stateful information, their
value at the beginning of the next control step can be ex-
pressed as a function of the present value, as in Expression 1.
In this case we speak about a dynamical model described by
a set of difference equations. Contrarily, if future QoS values
only depend on the current control inputs and disturbances
(as in steady-state performance models), we speak about a
static model expressible through a set of algebraic equations.

Overall, the future value of QoS variables at step k + 1
depends on the control inputs decided by Control Part for
step k, i.e. which configuration is currently used by the mod-
ule:

o1 (x(k), d(k)) if u(k)
o (x(k), d(k)) if u(k) =

uj
uz

x(k+1) = qs(x(k), dk), u(k)) =
oy (x(k), d(k)) ifu(k) =uy

In conclusion, the Operating Part model can be summa-
rized as follows:

Definition 2 (Operating Part Model). The Operating Part

model is defined as a tuple (X, D, U, ®) where: X C R"
is the space of the possible QoS states; D C R™ is the set
of disturbance variables; ¢/ is the finite and discrete set of
admissible control inputs. The model consists in a function

@ U x X x D — R" that maps a discrete-time model x(k +
1) = ¢;(x(k), d(k)) onto a configuration C; € C correspond-
ing to the actual control input vector u(k).

Predictability is a key point to use MPC. As described
in Section 3, a result of SPP is that each parallelism pattern
is composed of a limited set of functionalities (collectors,
distributors, workers) with a precise behavior: e.g. workers
perform the same computation on different data, the distrib-
utors/collectors perform a specific policy (scatter, gather, on-
demand scheduling). These knowledge is of great help in
defining cost models of QoS metrics.

Cost models of SPP play a decisive role in the definition
of model @. The importance of cost models in static sup-
ports and compilers for structured parallel libraries and lan-
guages has been recognized in the past [5,51]. Cost models
make it possible to allocate statically the resources needed
to run a given program, by determining the best parallelism
degree in order to minimize service time or to maximize
speedup. Such process can be performed at compile-time, or,
by exploiting the parametric implementation of parallelism
paradigms, at loading time. Furthermore, a more extensive
use of cost models permits to statically choose the most effi-
cient implementation of run-time support mechanisms (e.g.
distribution and collective operations), by evaluating their
impact on the underlying architecture. The idea of such a
static use of cost models is that they can be automatically
instantiated by recognizing how parallelism patterns have
been composed and nested in the application, and by using
profiled values for the independent variables of the models.

In the context of our approach, a static application of
cost models is useful at least to establish an initial config-
uration of parallel components. However, a high variability
and uncertainty of input parameters exists such that a dy-
namic use of cost models is necessary to keep updated the
application configuration to the actual execution conditions.
This is possible by:

— periodically instantiating and re-evaluating the cost mod-
els to drive adaptation strategies;

— using current measurements of the execution to obtain
up-to-date values of model input variables that enact an
effective comparison between alternative configurations.

Conceptually, the use of cost models to drive the adapta-
tion process could be integrated at the application level, i.e.
the programmer can directly express the cost models and
their dynamic evaluation in the application logic. However,
to face the complexity of parallel programming, we envi-
sion the presence of a high-level programming environment
in which the instantiation of cost models, and their dynamic
use to drive adaptation, is encapsulated into mechanisms
provided by the run-time support level (i.e. at a lower level
of abstraction). In this way programmer is only requested

Application of Model Predictive Control to Structured Parallel Computations 7

to properly use high-level constructs or annotations to ex-
press structured parallel variants of ParMods and identify
the model variables, while cost models can be automatically
derived by the run-time support.

4.2.2 Disturbance forecasting

The current configuration of a parallel module can be-
come ineffective to achieve the desired QoS. This can be due
to a change in the environment in which the computation is
executed, or when workload and load balancing conditions
change w.r.t the initial situation. In cost models this is cap-
tured by the presence of uncontrollable disturbances.

For the dynamic use of cost models, future disturbance
estimation is a crucial point. Time-series models are one of
the methods to make statistical forecasts of measurable dis-
turbances, by using past data to estimate the future behavior
along a prediction horizon. They are based on the assump-
tion that disturbance values are autocorrelated and character-
ized by non-stationarities such as trends and seasonal vari-
ations. A generic prediction filter is defined as follows:

d(k-+1]k) :lp(d(k—s),...,d(k),{a,,...,a,}))

where d(k +I|k) denotes the predicted disturbances for step
k+1 using the knowledge available at step k, with [=1,... A
and & the length of the horizon. We use the last s+ 1 past val-
ues to predict future values of the process; {@; } denotes a set
of fixed or automatically tunable parameters of the filter (e.g.
smoothing factors and gains).

In Section 5, devoted to experiments, we will exemplify
the use of time-series filters.

4.2.3 Optimization and receding horizon

The second element of MPC is the definition and on-
line resolution of an optimization problem over a prediction
horizon of & control steps, constrained by the modeled sys-
tem dynamics:

k+h—1
minJ(k) = Y L(x(i+1i),u(i) 3)
i=k
such that:

x(i+1) = @ (x(i),d(i),u(i)) fori=k,....k+h—1
u(i) el fori=k,....k+h—1

L is a step-wise cost notion accounting for the future val-
ues of QoS variables and the sequence of control inputs
used along the prediction horizon. The solution of the op-
timization problem is a trajectory (sequence) of control in-
puts, U(k) = {u(k),u(k+1),...,u(k+h—1)}, such that
J is minimized based on given disturbance predictions. The
cost function is used for the evaluation element of MPC (see

Figure 2), in which alternative control trajectories are com-
pared and evaluated according to the used cost metrics.

The selection element of MPC combines the advantages
of a long-term planning with the advantages of feedback
control. The optimization problem is solved at each control
step. Instead of applying the optimal control trajectory in an
open-loop fashion, only the first control input (reconfigura-
tion) of the sequence is really applied to the Operating Part.
The optimization problem is then re-evaluated at the begin-
ning of the next control step using the new observations from
the system (disturbances and QoS variables). The effect is
that the prediction horizon is displaced towards the future;
this explains the reason because MPC is often referred to as
receding horizon control in the literature [20,47].

The optimization element deserves a thoroughly discus-
sion. To be implementable, MPC requires to complete the
optimization process within the temporal constraints dic-
tated by the control step of the system. Therefore, compu-
tational efficiency is a critical issue. In the case of ParMod
control this aspect is even more important, since the com-
binatorial optimization problem theoretically implies an ex-
haustive search by testing all the possible feasible combi-
nations of reconfiguration decisions. This process can be
represented as a tree structure (named Evolution Tree as in
see [45]) representing the ParMod behavior over a h-step
horizon (see Figure 3).

Xi(k+1)

PAST FUTURE
|

.o u
Xi(k+1)

O
O

dk) d(k+1)

uvo

\

prediction horizon

Fig. 3: Example of ParMod Evolution Tree with a prediction horizon
of two control steps, h = 2.

Definition 3 (Evolution Tree). We denote by 7* the evolu-
tion tree at step k characterized by the following features:

— T*is afull tree, i.e. every node is a leaf or has exactly v
children, where v corresponds to the number of ParMod
configurations;

— the height of T* is equal to the length of the prediction
horizon;

Gabriele Mencagli, Marco Vanneschi

— each level I =0,1,...,h— 1 of the tree is assigned to a
disturbance input d(k +1);
— eachnodeiatlevel/ =0,1,...,Ahcorresponds to a reach-

able QoS state x(k+1), where i € {1, 2, ...} is an index
marking reachable states;

— each arc e is associated with an admissible discrete con-
trol input u® € U causing the transition;

— an arc e labeled with u® connects a node i at level [with
achild j at level /+ 1 iff the QoS state x/ (k+1+1) is di-
rectly reachable from state x'(k 4 [) applying control in-
putu’,ie.x/(k+1+1) =& (x'(k+1),d(k+1), u(k+1))
where u(k+1) =u°.

The number of tree nodes grows exponentially with the
length of the prediction horizon. Therefore, the optimiza-
tion problem is computationally prohibitive except for short
horizons and with a small number of control choices. Inter-
esting and general approaches to improve the feasibility of
predictive control consist in using Branch and Bound (B&B)
methods [21,45].

Branching is done by following one of the possible v
alternative control decisions at each node of the tree, which
generate Vv distinct sub-spaces. Bounding and pruning are
done by checking specific criteria in order to decide whether
a branch needs to be examined or not. This operation makes
it possible to discard a sub-tree rooted at a specific node with
the certainty (or the reasonable confidence) that the optimal
solution can not be found exploring that sub-space. A gen-
eral procedure, depicted in Figure 4, can be defined as fol-
lows:

— we assign to each node i of the tree a variable C' that
represents the total cost (according to cost function J)
spent to reach that node from the root. The cost of the
root is initialized to zero;

— for each node i we consider v potential branches. The
branch corresponding to a control input u is followed iff
the following inequality holds:

C'+L,(j,u) < C"™

L, (j,u) is a lower bound for the cumulative cost of all
the paths starting from node j and reaching a leaf of the
tree, where j is the node directly reached from i after
applying control input u, and C"** is an upper bound to
the cost of the optimal solution. If the inequality does not
hold, the sub-tree rooted at j can be discarded.

We will give a precise description of B&B techniques in
Section 5.2, when a specific scheme is instantiated to enable
the feasible execution of MPC strategy.

4.2.4 Summary of the approach

MPC can be applied to control ParMods by applying the
following sequence of phases depicted in Figure 5:

- ".\

b

l:"discarded‘, -

current
node

it C'+ L, Guw>c™

’ sub-tree

Fig. 4: Branch & Bound approach to the Evolution Tree exploration.

1. ParMods must be provided in multiple structured paral-
lel variants. Each variant is described by a corresponding
cost model;

2. the future evolution of QoS variables is predicted by a
model exploiting cost models of the parallel variants;

3. the control goals and their trade-off is described in terms
of an optimization problem constrained by the dynamics
captured by the model;

4. measured disturbances must analyzed in typical working
conditions, in order to tune a set of statistical predictive
tools, e.g. auto-regressive moving-average filters, neural
networks or Kalman filters;

5. the adaptation strategy needs to be evaluated during the
system execution taking corrective actions if it is not suf-
ficiently effective to achieve the desired goals (e.g. by
modifying model parameters or changing the formula-
tion of the optimization problem).

This approach should be considered a research method-
ology to apply MPC. The first two points inherit from past
researches on run-time supports and programming models
for SPP [3,32,35,14,6,5]. The design methodology of SPP
is sufficiently mature to enable the automatic derivation of
static and dynamic implementations of parallelism paradigms
and the instantiation of their cost models [58]. On the other
hand the other elements of our approach, mainly the def-
inition of the optimization problem and the use and tun-
ing of statistical filters, are phases still needing an impor-
tant human-intervention, and deserve future investigations
to flexibly provide them in new programming models and
tools with the sufficient degree of abstraction.

5 Experimental case-studies

This section is aimed at providing an exemplification of
our approach by presenting two case-studies of real-world

Application of Model Predictive Control to Structured Parallel Computations

Phase 1
(Describe the
computation in terms
of alternative parallel
variants, parametric
w.r.t the parallelism
degree)

Phase 2
(Express the
optimal control
problem: identify
QoS goals and their
importance)

Phase 3
(Tune the system
model in terms of

structured parallelism
paradigms and

evaluate its accuracy

in real conditions;

Phase 4
(Study typical
workload conditions
in which the system
operates and tune
proper statistical
predictive tools)

Phase 5
(Evaluate the
effectiveness of
the predictive
control strategy in
real executions)

re-evaluation of control strategy

Fig. 5: Phases of the approach: apply MPC to parallel components expressed using multiple structured parallel variants and their cost models.

distributed parallel applications needing adaptive behavior.
The examples are useful to understand how MPC can be
applied to parallel computations, and the effectiveness of
this techniques in terms of control optimality and stability,
which, as stated in Section 1, are important properties of
adaptation strategies.

5.1 First scenario: an Emergency Management System

The first case-study represents the core component of
an Emergency Management System [19,8,13] (EMS). EMSs
support civil protection during the management of natural or
man-made disasters (e.g. floods and earthquakes) through
the online and real-time computation of short-term forecasts
and the execution of decision support models. We consider
a simplified view of the system for detecting flood emer-
gencies studied in [11,10,9,12,39]. The application is com-
posed of three classes of components:

— a set of Generator modules receive data from sensors
deployed along and around an observed environmental
scenario (e.g. a river basin), with the aim at monitor-
ing measurements such as punctual precipitation, water
depth and speed;

— a flood forecasting ParMod (namely Solver) takes envi-
ronmental data from Generators and returns short-term
forecasts for a specific requested area;

— results are disseminated to a set of Clients components,
applying the results to further phases such as the temporal-
spatial analysis and automatic tools for decision support.

The Solver component adopts a bi-dimensional hydro-
dynamic model [15] solved using a finite difference method.
The resolution consists in a set of tri-diagonal linear systems
for each point of the environment discretization. A paral-
lelization of this problem operating on streams (described in
more details in [10]), can be done by a task-farm structured
parallelism pattern, in which each new system is scheduled
to an available worker. In this application we can identify
two distinct control goals:

1. maximize throughput: in order to reduce the completion
time to perform the flood simulation, the Solver ParMod

must be able to process and calculate the highest number
of tasks as possible;

2. minimize operating cost: we suppose that the Solver Par-
Mod is executed on a Cloud provider offering cluster-
on-demand/ HPCaaS services. Customers pay a cost for
each reserved computing unit and for the effective uti-
lization time [54,59]. Additional units can be elastically
allocated/deallocated to accommodate users’ requests.

The fulfillment of such goals requires to adapt the Solver
configuration in terms of used computing resources (i.e. non-
functional reconfigurations - dynamic modifications of the
parallelism degree).

5.1.1 Model definition and predictive control

A meaningful parameter for the Solver performance is
the current length of its input task queue. We model the fu-
ture evolution of the queue length using a dynamic model.
The next queue length is expressed as a function of its cur-
rent value Q(k) (QoS variable), mean inter-arrival time T (k)
(disturbance), and mean service time Ts(k). The service time
is expressed as a function of the current parallelism degree

n(k) of the Solver (control input):
T(k) > }
4
Ts(k) @

T(k), as it will be discussed in the sequel, represents the time
length of effective working phase during the last control step
k. The next queue length is given by the last queue length
plus the difference between the number of arrivals and the
number of served requests during the last control step. This
concept is schematized in Figure 6.

The ideal service time T (k) can be determined by apply-
ing the task-farm performance model, expressed as a func-
tion of the parallelism degree n(k):

T(k)
Ta (k)

Q@+Umu{mgw+<

T,
TS(k) = max {Tdistrv %k)er’ Tcoll} (5)

where Ty, and T,,;; are the mean distribution (scheduling)
and collecting times, and 7,4, is the average time to apply

Gabriele Mencagli, Marco Vanneschi

ParMod

Operating Part
inter-arrival time task-farm

Ta(k) — wm
—> [| (e ©) - Y
.- vy 177
queue length . 5 .
Qg 4 cvm Ty

@ ———————————————— ! w ~w —wy
Control Part

Fig. 6: The Operating Part of the Solver ParMod performs a task-farm
pattern, with a distributor D, a collector C and a dynamically reconfig-
urable set of workers W.

the whole computation on a single stream element. Such pa-
rameters can be dynamically profiled during the system ex-
ecution and are considered as constant terms in this applica-
tion (they model random variables with negligible variance).
As we can observe, by increasing the number of workers this
parallelism form is able to reduce the service time as long
as the distributor or the collector functionalities become a
bottleneck, i.e. the task-farm service time is the maximum
between the distribution and collection times and the overall
service time of the set of n(k) workers.

Reconfigurations may cause significant modifications in
the used infrastructure by frequently changing the configura-
tion in terms of virtual machines (VMs) and, consequently,
number of real processing nodes. During phases in which
the application can sustain the current workload using fewer
resources, it is economically useful to shrink the set of used
VMs (if the computation is deployed on several VMs host-
ing pools of task-farm workers), or by migrating it on a VM
configured with a smaller set of resources (e.g. with fewer
cores per CPU). In both the cases, creating and shutting
down VMs may take tens of seconds up to several minutes
to complete [59,50], and the computation could be blocked
waiting for the reconfiguration process to complete [52].
Such reconfiguration delay has been similarly considered in
past works such as in [53], in which a provisioning model of
virtual appliances has been proposed for the dynamic scal-
ing of virtualized data centers.

To capture this effect, T(k) represents the portion of the
control step length during which the ParMod is currently
processing input tasks. We model it in the following way:

() = {r if n(k) =n(k—1)

T — Tyeploy Otherwise

where 7 is the control step length, and Ty.p0y is equal to
the average time-to-deploy of virtual machines on the used
Cloud infrastructure.

In the MPC strategy we consider a prediction horizon
of h > 1 control steps. At the beginning of the current step
k, the Control Part monitors: (1) the actual number of re-
ceived tasks that are waiting to be scheduled; (2) the mean

inter-arrival time experienced during the last control step.
The operating cost can be defined as follows:

C(k) = Chode I’l(k) + Cfix Ay (k) (6)

This definition captures several aspects of existing billing
models used in Cloud environments [59]. Resources are pro-
visioned and reserved on-demand to the users by a service
provider for how long they are needed. In order to discour-
age too many resource re-organizations, providers can apply
fixed costs to each reconfiguration. For this reason in Ex-
pression 6 we account for two cost terms: Cpog, and Criy.
Ay(k) denotes the presence of a reconfiguration at control
step k and it is defined as follows:

An(k) = {1 if (k) # n(k—1)
0 otherwise
By applying statistical predictions of the future inter-
arrival time along the prediction horizon, Control Part finds
the optimal trajectory of reconfigurations that minimizes the
cost function defined below:

k+h
J=Y [wl Q(i) +wrCli— 1)])

i=k+1

where w; and w, are two positive weight coefficients. By
assuming wi >> wp, we are interested in a control trajec-
tory maximizing the number of completed tasks at the end
of the prediction horizon (i.e. by keeping the input queue as
empty as possible). If multiple trajectories exist that satisfy
this goal, Control Part selects the sequence with the mini-
mum operating cost. Finally, according to the receding hori-
zon principle, only the first element of the optimal trajectory
is applied while the rest is discarded.

From a qualitative viewpoint, MPC may give an effec-
tive outcome in the the following cases:

— if a persistent drop in the mean inter-arrival time is pre-
dicted, the control strategy can modify in advance the
ParMod configuration in order to minimize the number
of reconfigurations and adapt the parallelism degree di-
rectly to the optimal value;

— if the inter-arrival time is expected to be higher in the fu-
ture, Control Part may decide to release a proper amount
of computing nodes. If we are able to estimate how long
this condition holds, the Control Part can evaluate if the
release of a certain set of resources is effectively useful
(e.g. avoiding to re-acquire them nearly in the future);

— in the case of a temporary fluctuation in the mean inter-
arrival time, the Solver ParMod can avoid to acquire
or release computing resources repeatedly, avoiding to
make the operating cost higher without a real outcome
from the performance standpoint.

Application of Model Predictive Control to Structured Parallel Computations 11

5.1.2 Estimating disturbances through statistical
forecasting

EMSs are executed on geographically distributed envi-
ronments characterized by interconnection networks whose
availability and reliability is extremely varying. We execute
the application on a test-bed platform composed of two work-
stations (for the Generator and Client) and an AMD magny-
cours architecture featuring 24 homogeneous cores for the
Solver ParMod. In the experiments we do not use a real
Cloud platform, but we reproduce the relevant aspects of the
model described in the previous section, notably reasonable
reconfiguration delays and a realistic network behavior.

In our test-bed architecture, the information exchange
between Generator and Solver is performed through a TCP
connection over a network characterized by a time-varying
available bandwidth, packet loss probability and network la-
tency. The average time needed to transfer the data-structure
representing a task (from 4 to 32 MB depending on the space
discretization [19,10] used by the application) is influenced
by the behavior of the network resources along the path
through the application components.

To simulate dynamic network conditions, we use NC-
TUNS [40], a network emulator/simulator which allows the
integration of a simulated environment with real hosts run-
ning application components (see Figure 7). NCTUNS is ex-
ecuted on a workstation where we simulate a network topol-
ogy composed of two routers and a WAN object reproducing
wide-area network delays and packet loss probability.

NCTUNS Environment

, cross

traffic

7 —

Generator Client

(workstation)

iilm - (&

{ (6‘

host 2

(remote HPC architecture
of the Solver Parmod)

(workstation)

Fig. 7: Test-bed platform of the first experiment.

In the simulation environment we execute two virtual
hosts generating TCP/UDP traffic. To this purpose we use
the D-ITG [18] traffic generator able to reproduce phenom-
ena such as level shifts (sudden changes in the network load),
and trends corresponding to time periods in which the net-
work is under-loaded or, alternatively, progressively con-
gested. An example of trace-file of the inter-arrival time of
tasks to the Solver ParMod is depicted Figure 8, sampling
the results using time intervals (control steps) of 240 sec-
onds.

To predict future values of the inter-arrival time, we use
the Holt-Winters time-series filter able to capture trend non-
stationarities on the underlying time-series. This filter has
been already applied in [24] to predict the throughput of

TCP connections. We denote with Ty (k) the predicted mean
inter-arrival time at control step k. The Holt-Winters pre-
dictor is composed of two exponential (EWMA) filters for
the smooth (mean level) and the trend components. The pre-
dicted value at step k+ h with & > 1 is calculated as follows:

Ta(k+h) =T; (k) +hT;(k) (8a)
Ti(k) =aTy(k)+ (1 —a) (T{(k— 1)+ T4 (k— 1)) (8b)
Ti(k) = b (T3 (k) = T{(k— 1)) + (1 = b) T4 (k— 1) (8¢)

where Expression 8b describes the smoothing component
and 8c the trend one. Expression 8a makes h-step ahead
predictions by extending the time-series into the future w.r.t
the trend. Parameters a and b are the smoothing factors and
range between zero to one. The best values are calculated
using a fitting initial period of observations by minimizing
the sum of the squared one-step ahead forecast errors.

Mean inter-arrival time to the Solver: trace-file.

. 15 T T T ——— —
3 Mean inter-arrival time. ---------
o 12 i b
23 9 4o,

L " ,]
< LRI N
= 6 K A A ey A3, s
G - s i, e AT
s 3t T A
= 0 | | I LT |

0 50 100 150 200 250 300

Control step

Fig. 8: Time-series of the mean inter-arrival time to the Solver Par-
Mod (using tasks of 32 MB).

We apply the filter to the time-series of Figure 8. We
are interested in evaluating the percentage error between the
real and the predicted trajectories at each control step. To
this end, we calculate the Mean Absolute Percentage Error
(MAPE) over the entire execution. Table 1 reports the numer-
ical values of the errors. As we can observe the increase is
limited (lower than 5% with 4-step ahead predictions).

Horizon 4
4.23%

Horizon 3
4.01%

Horizon 2
3.81%

Horizon 1
3.56%

MAPE

Table 1: Global MAPE over the entire execution.

For this example the Holt-Winters filter is sufficiently
accurate to show the effectiveness of the predictive control
strategy.

5.1.3 Results and comparison with a heuristic strategy

The application has been implemented using the MP I
message-passing support. The Solver Operating Part is com-
posed of an emitter, a collector and a dynamic set of worker

Gabriele Mencagli, Marco Vanneschi

Reconfigurations of Solver Parmod - Rule-based Strategy.

g % ‘ "Rule-based
5 2 ule-based.]
o
E 18 q
I 12 s
T 6 g
g o i i i i i

0 50 100 150 200 250 300

Control step
(a) Rule-based strategy.
Reconfigurations of Solver Parmod - MPC Strategy.

g " MPC h=2
D 24t e 1
o
T 12 & 8
T 6 1
g o i i i i i

0 50 100 150 200 250 300

Control step

(c) 2-step ahead MPC.

Reconfigurations of Solver Parmod - MPC Strategy.

g " MPC h=1
o 24t i 1
o
E 18 q
E 12 |
T 6 1
S o i i i i i

0 50 100 150 200 250 300

Control step
(b) 1-step ahead MPC.
Reconfigurations of Solver Parmod - MPC Strategy.

g " MPCh=3
D 24+ = 1
h=l
é 18 + q
E 12 | 8
T er 1
S 9 i i i i i

0 50 100 150 200 250 300

Control step

(d) 3-step ahead MPC.

Fig. 9: Reconfiguration sequences using different adaptation strategies and lengths of the prediction horizon.

processes communicating through MPT send/receive prim-
itives. The emitter is responsible for scheduling each re-
ceived task to an available worker by performing an on-
demand distribution. The processes of the Operating Part
periodically transmit to a manager process in the Control
Part (denoted by M in Figure 6) measurements of the current
computation behavior (e.g. last sampled inter-arrival time
and queue length). Reconfigurations are triggered by the man-
ager by instantiating/removing workers using the MPT li-
brary function MP I_COMM_SPAWN. In order to emulate a re-
alistic time-of-deploy of Cloud environments, we apply a
variable delay after each reconfiguration, modeled as a nor-
mally distributed random variable with mean equal to 10%
the control step length (equal to 24 seconds), which repre-
sents a realistic delay of modern Cloud architectures featur-
ing pre-defined memory templates of virtual machines and
caching systems [50].

In order to demonstrate the effectiveness of MPC, we
compare the results with two strategies:

— a MAX configuration, in which we fix the parallelism de-
gree to the maximum value throughout the execution;

— a rule-based strategy already applied to the control of
parallel computations in [55,2]. Figure 10 shows two
condition-action rules to adjust the parallelism degree of
the Solver ParMod.

The rule-based strategy observes the current utilization
factor p(k) calculated as the ratio between the ideal service
time and the last sampled inter-arrival time. The smaller the
utilization factor is the more the parallelism degree is over-
sized, resulting in a waste of computing resources. In con-
strast, a high utilization factor corresponds to situations in
which the Solver is a performance bottleneck. We apply a
reconfiguration if the utilization factor exceeds two thresh-
olds T, and Tux.

if (p(k-1) > Tmax) then n(k) := min (MAX_DEGREE, n(k-1) + 1);

if (p(k-1) < Tmin) then n(k) := max (1, n(k-1) - 1);

Fig. 10: Rule-based strategy for the parallelism degree adaptation.

Figure 9 shows the reconfiguration sequence using the
MPC strategy with three prediction horizons and the rule-
based strategy (with T,;, = 0.95 and T, = 1.05). As we
can observe, the rule-based strategy accurately follows the
inter-arrival time time-series. It performs a high number of
reconfigurations influenced by the variance of the time-series.
The MPC strategy produces a significant stabilization by re-
ducing the amount of reconfigurations. This effect is due
to the exploitation of smooth predictions of the inter-arrival
time and by accounting for the reconfiguration delay asso-
ciated with parallelism degree variations (captured by the
Operating Part model, as described in Section 5.1.1).

Figure 11a shows the number of reconfigurations. As we
can observe, by increasing the controller foresight (up to a
horizon of 4 steps) reconfigurations are taken in advance.
This fact, coupled with the exploitation of linear trend pre-
dictions using the Holt-Winters filter, tends to produce a
higher number reconfigurations with longer prediction hori-
zons. However, with every horizon length the MPC strategy
performs a smaller number of reconfigurations compared
with the rule-based strategy (in the worst case we achieve
a reduction of 40%). This aspect, near to the concept of re-
configuration stability introduced in Section 1, can be for-
malized by introducing the following metric:

Definition 4 (MSI). The Mean Stability Index (MST) of an
adaptation strategy is the average number of control steps
between successive reconfigurations performed by the strat-

€gy.

Application of Model Predictive Control to Structured Parallel Computations 13

Total number of reconfigurations.

Mean Stability Index (MSI).

120 T T T — 15 T T T T
Reconfigurations. 2% MSI. Bees
96 | . 12 8
72 + . 9 §
48 . 6 1
24 + . 3r 1
0 B 0
Rule-based. MPCh=1. MPCh=2. MPCh=3. MPC h=4. Rule-based. MPCh=1. MPCh=2. MPCh=3. MPCh=4.
(a) Reconfiguration number. (b) Mean Stability Index.
Total Operating Cost. Total number of completed tasks.
2500 T T T T — T 8000 T T T T T T
Operating Cost. RzEsz Tasks. xR
2000 ~ 1 7000 - |
1500 .
6000 [1
1000 - q
500 | | 5000 .
0 4000

Rule-based. MPCh=1. MPCh=2. MPCh=3. MPC h=4. MAX.

(©) Operating Cost (Croge = 0.2 and Cfix =0.8).

Rule-based. MPC h=1. MPCh=2. MPCh=3. MPC h=4. MAX.

(d) Completed tasks.

Fig. 11: Comparison between adaptation strategies (MPC with different horizons and the rule-based strategy) and the static MAX configuration.

Figure 11b shows the MST achieved by different adapta-
tion strategies. As expected, the best MS T corresponds to the
strategy achieving fewer reconfigurations (i.e. 1-step ahead
MPC). In this case a reconfiguration is applied every 13
steps in the average case (5 times greater than the rule-based
approach). In terms of control optimality, we use a fixed cost
Crix four times greater than C,,,4.. The total operating cost is
defined as the sum of the step-wise cost C(k) over the entire
execution. As Figure 11c outlines, MPC strategies are able
to reduce the total cost of even 65% compared with the MAX
strategy, and they produce a further improvement w.r.t the
rule-based approach of 27% with a prediction horizon of 3
steps (the best strategy in terms of cost minimization).

In terms of completed tasks (Figure 11d), the best result
is achieved using a 2-step ahead horizon. In this case we are
able to complete the highest number of tasks (12% greater
than using the rule-based strategy). The performance loss
w.r.t the static MAX configuration is only of 4%, but as we
have seen with a significant reduction of operating cost.

We conclude this example by considering the compu-
tational burden of MPC. In this experiment the best hori-
zon length in terms of performance consists in using 2-step
ahead predictions. The resolution of the 2-step ahead MPC
problem consists in exploring an evolution tree composed of
601 states. In our test-bed platform the optimization process
has a negligible completion time compared with the control
step length (less than 1 millisecond). This consideration is
not valid anymore if we use architectures with higher par-
allelism degrees or if we use longer prediction horizons. In
that case search-space reduction techniques must be applied.
This aspect will emerge in the second case-study.

5.2 Second scenario: a Video Surveillance System

The second case-study consists in a video surveillance
system based on a client-server architecture [31,48]. The
application scheme is depicted in Figure 12. The applica-
tion is composed of a set of localized cameras which can
automatically change frame resolution and frame rate when
motion is detected in the monitored locations. Client compo-
nents receive video feeds from cameras and transmit them to
a Server component which applies noise-elimination filters,
feature extraction techniques and object classification algo-
rithms. In this application we consider two control goals:

1. maintaining acceptable levels of response time: surveil-
lance systems process large sequences of data in real-
time, applying time-consuming algorithms in order to
identify dangerous events and send alert messages to
users. For this reason the Server configuration needs to
be adapted to minimize the number of QoS violations,
i.e. when the response time exceeds thresholds estab-
lished by the users;

2. minimize reconfigurations: in order limit system failures
or malfunctions, it is requested to minimize the number
of reconfigurations performed by the Server.

For the sake of simplicity, in this example we limit the
Server activity to the application of noise-elimination filters,
which represent the preliminary phase of more complex im-
age processing algorithms. We consider two algorithms: (i) a
low-pass linear mean filter, which consists in replacing each
image pixel with the weighted average value of all the neigh-
bors in a square window surrounding the target pixel; (ii) a
median filter, which replaces each pixel with the median of
its neighboring entries.

14

Gabriele Mencagli, Marco Vanneschi

de-noised . MAP
- = frames i gather
ot
Server .- Scatter --

Operating Part

frames

l«ecanﬁguraﬁomT
Control 3
Part @\:ARM
. . on- -
- demandC;D/v@ ||

L B L de-noised
frames

Fig. 12: Client-Server graph of the second case-study.

Although the median filter is preferable in general (it is
able to preserve image edges while removing noise), the
Server component can switch to the simplest mean filter
whenever this choice is essential to avoid QoS violations.
We consider two parallel variants:

— a task-farm parallelization of the mean filter, in which
each image is scheduled by a distributor process to an
available worker that performs the filtering on the whole
image. Results are collected by a collector process;

— a map (data-parallel) parallelization of the median fil-
ter. The current frame is sliced by a scatter process into
sub-parts (with small overlapping regions for borders),
which are independently calculated by a set of worker
processes. The filtered image is reconstructed by a gather
process which transmits it to the requesting Client.

In this application reconfigurations belong to the two
classes described in Section 4.1: non-functional reconfigu-
rations of the Server parallelism degree, and functional re-
configurations of the used parallel variant.

5.2.1 Modeling the response time using structured
parallelism paradigms

In this section we show how to apply cost models of
structured parallelism patterns when modeling the response
time in computation graphs exhibiting request-reply inter-
actions. We apply a static steady-state queueing model de-
scribed by the following system of equations:

Ic =T +Rg
T¢
n:NC
client
B ©)
s = T

RQ = WQ(pS, Ts, TA) +Lg

Let Tg be the Server service time and T¢ the Client ef-
fective service time (we assume all clients identical), calcu-
lated as the sum between T (the Client ideal service time)
and the Server mean response time Rg. The second and the

third equation express the inter-arrival time Ty to the Server
and its utilization factor py. The last equation defines Ry as a
function of the mean waiting time Wy and the mean latency
of the Server Lg. The solution of the system is subject to
the constraint pg < 1, since at steady-state the Server service
time can not be greater than its inter-arrival time.

This model accounts for the nature of different paral-
lel variants of the Server. Ry depends on the server service
time and latency. Independently from the used parallelism
degree, the task-farm variant is not able to improve latency,
since each worker applies the computation on each received
task sequentially. Contrarily, the map variant, based on data
partitioning, has effects both on the service time and the la-
tency aspects of the Server performance.

We identify the following meaningful variables of the
Operating Part model: (i) a QoS variable Rp(k) represents
the mean response time of the Server during the last control
step k — 1; (ii) M(k) models a disturbance identifying the
average size of video frames received during control step
k; (iii) the control variables are n(k) € [1, n"™] for the par-
allelism degree, and a binary value op(k) € {0,1} for the
parallel variant (conventionally O for the task-farm and 1 for
the map). The cost models are shown in Table 2.

In Table 2, the mean calculation time T, (k) is given
by the frame resolution M(k) (in pixel) multiplied by the
per-pixel cost for applying the two filters (7 and T respec-
tively). It is worth noting that by increasing the parallelism
degree we are able to improve the service time as long as
the scheduling (for the task-farm) or the scattering/gather-
ing functionalities (for the map) become a bottleneck. This
is captured by the max in the service time expressions of Ta-
ble 2. The scattering/gathering phases are implemented as a
linear sequence of send/receive operations to/from workers.
The term L, corresponds to the communication latency for
transmitting/receiving images (or their parts). This parame-
ter is modeled as a linear function of the message size o

Lcom(o-) = tstartup + O - ttransm (10)

As shown in several examples in the literature [57], if Zsarrup
and t;,4usm are properly estimated in typical working condi-
tions of the network, this model gives reasonably accurate
approximations particularly for sufficiently large messages.

The response time is influenced by the mean waiting
time Wy in the Server queue. By using Queueing Theory
results, we have many degrees of freedom associated with
the queue size, the population type, and the probability dis-
tribution that fits better with the real behavior of the system.
In this example we use a M/M/1 queueing model which as-
sumes exponential distributions for the service time and the
inter-arrival time. As it is known, for this queue type the
waiting time can be estimated as follows:

Ts(k)?

Mol = 700 —T®

(1)

Application of Model Predictive Control to Structured Parallel Computations 15

Task-Farm (op(k) = 0)

MAP - Data-Parallel (op(k) = 1)

Tcalc(k) = Ty - M (k)

Tcalc(k)

Ts(k) ~ max{2me (M(k)), ()

Ls (k) =~ 4Leom (M(k)) + Teate (k)

} Ts (k) =~ maX{Lcam (M(k)) + Tycarter(k),

Ls(k) =~ 2 Leom (M(K)) + 2 Tycarrer (k) +

Tcalc(k) = Tr - M (k)

calc(k)
- n(k) }

Tcalc (k)
n(k)

Tscarter(k) = n(k) - Leom (%:))>

Table 2: Performance models of the two variants of the Server Operating Part.

With this definition, the system of equations admits one and
only one positive solution satisfying p; < 1. We use this so-
lution to estimate the mean response time, i.e. Ro(k+1).
We have performed a preliminary experiment on a plat-
form composed of 10 Clients interconnected to a homoge-
neous cluster of production workstations hosting the Server
execution. The run-time support of the Operating Part (exe-
cuting the task-farm or the map parallelism form) has been
implemented using the MPT library. In the experiment we
use FullHD frames (~ 5.93 MB per frame). The mean frame
rate from each Client (the inverse of 7¢;) is equal to 30 frames
per seconds. The parameters of the communication cost model
have been estimated through a linear regression. Figure 13
shows the experimental results using up to 15 cluster nodes.

Response time cost model (Task-Farm).

64 \ Experimental results. —s—
-~ 32 Model results. ----s--- .3
g N
8 16 e
-
g 8 S
& 4
(5}
= 2
1
1 2 4 6 8 10 12 14
Server parallelism degree
(a) Task-Farm variant.
Response time cost model (MAP).
256 T — T T
128 Experimental results. ——]
- N Model results. ----=---
9 64
2 32
g 16 \\3\1 PR
p 8 s SO R n---em e —
I
5]
2 4
2
1
1 2 4 6 8 10 12 14

Server parallelism degree

(b) MAP (Data-Parallel) variant.

Fig. 13: Response time using different parallelism variants.

In the task-farm, by increasing the parallelism degree
we observe a monotonically decreasing behavior of the re-

sponse time (Figure 13a). For parallelism degrees greater
than the number of Clients, each new task (frame) can be im-
mediately scheduled to an available worker. In constrast, the
map variant is characterized by a non-monotonic behavior
(Figure 13b). With high parallelism degrees the scattering/-
gathering phases may become a bottleneck that negatively
influences the Server service time and the waiting time in
the input queue. With a parallelism degree greater than 9 in
the model (10 in the experiment), the negative effect on the
service time dominates the latency reduction giving worse
response times. With the M/M/1 model we achieve slightly
over-estimated results (the mean relative error is ~ 10%). A
better precision can be obtained by adopting other queue-
ing models: e.g. using different distributions or considering
finite populations.

5.2.2 Application of Model Predictive Control

In this section we study the application of MPC to adapt
the configuration of the Server ParMod. We introduce two
variables defined as a function of response time and control
inputs: P(k) and Ay (k). The former is a measure of how
much the response time constraint is satisfied. To provide
a real-time execution of this application, the response time
needs to be maintained within a desired region established
with the users. If the mean response time during step k is
greater than Ry, or less than Rg . (two user-defined max-
imum and minimum thresholds), P(k) is equal to the cor-
responding relative error between the actual value and the
nearest threshold. Otherwise, it is zero for any value within
the desired region:

0 1f RQmin S RQ(k) S RQmax

RQ (k) B RQmax

Ro(k) >R
RQmax Q() Ql‘l‘l(lX

Ro(k) <R,
Ro.. o(k) <Rg,;,

Gabriele Mencagli, Marco Vanneschi

The second variable Ay (k) indicates the presence of a re-
configuration at control step k, where the control input vec-
tor is composed of two elements for the parallelism degree
and the parallel variant, i.e. u(k) = [n(k), op(k)]":

0 if u(k)=u(k—1)
Ay (k) =
1 otherwise
The optimal control problem consists in the minimization of

the following cost function, defined over a prediction hori-
zon of h > 1 control steps:

k+h k+h—1
J(ky=wi- Y, P(i)+wy- Y Au(k) (12)
i=k+1 i=k

where wy and w, are two positive weights. If w; >> wy, the
Control Part explores the horizon in order to find the best
sequence of reconfigurations to respect the response time
constraint. If more than one reconfiguration sequence satis-
fies the given thresholds, the controller selects the trajectory
with the minimum number of control input changes.

5.2.3 Dynamic workload and statistical forecasting

Automated or human users can dynamically variate the
frame resolution in order to analyze smaller details with a
higher degree of accuracy (e.g. when motion is detected).
Variable resolutions correspond to a different computational
burden to the Server that needs to select the most effective
configuration to respect the QoS constraints.

In this example we study a scenario in which the frame
size can be modeled as a non-stationary process exhibit-
ing seasonal patterns [48] (e.g. periodical execution phases
of different length and amplitude characterized by a higher
frame resolution). Figure 14 shows an example of time-series
composed of 300 steps each one of 240 seconds.

Mean frame size: trace-file.

4.9 T T
4.2 L A
35T ».':.“ \‘ljv' " o
28 | “An»w.«.,_: ‘ o 1“ o
2.1 fphon™ Lot
14 1 1 1 1 1

0 50 100 150 200 250 300

Control step

T ; .
... Mean frame size. --------

I
DTN
VN

Frame Size (MB)

Fig. 14: Time-series of the mean frame size.

Such kind of seasonal workload can be predicted using
an improved definition of the Holt-Winters filter (the de-
tails about this method can be found in [16]). We exploit
a triple exponential smoothing using an additional exponen-
tial (EWMA) filter for estimating the seasonal component.

This method provides accurate multiple-step ahead predic-
tions of the time-series. Global errors for each considered
length of the horizon are shown in Table 3.

Horizon 4
5.82%

Horizon 3
5.39%

Horizon 2
4.97%

Horizon 1
4.60%

MAPE

Table 3: Global MAPE over the entire execution.

5.2.4 Effectiveness and feasibility of MPC

The application has been executed using 10 Clients and
setting the maximum and the minimum threshold to 4.5 and
4 seconds respectively. The initial configuration of the Server
is the task-farm with one worker. Server ParMod is executed
on a homogeneous cluster of 32 workstations. Figure 15
shows the reconfiguration sequences with different horizons
of 1, 2 and 3 control steps.

We note that a long horizon improves the stability degree
of the control decisions, since the Control Part is able to de-
termine the minimum set of reconfigurations that allows the
response time to be within the thresholds for the entire dura-
tion of the prediction horizon. With a horizon of 4 steps (not
shown in Figure 15 for space reasons), we are able to slightly
reduce the number of reconfigurations of 12.24% compared
to 1-step ahead MPC strategy (the MST passes from 6.10 to
6.95).

Besides the reconfiguration number, a long horizon (pro-
vided that predictions are still sufficiently accurate) is ef-
fective in reducing the number of QoS violations, i.e. situ-
ations in which the mean response time measured is higher
or lower than the maximum/minimum threshold. Figure 16
depicts the mean response time sampled for each step of the
execution. The number of violations is 88, 86, 75 and 58 us-
ing a horizon of 1, 2, 3 and 4 steps. With the 4-step ahead
MPC strategy we achieve a 34% reduction of QoS violations
compared with 1-step ahead MPC.

Unfortunately, the prediction horizon can not be arbi-
trary long. The first reason is because predictions become
less accurate going deeper in the horizon. Secondly, the ex-
ploration of the evolution tree (Section 4.2.3) must be com-
pleted within the control step duration. In this example the
Operating Part has 64 possible configurations (two parallel
variants each one with 32 parallelism degrees) resulting in a
large state-space if we consider long horizons. With a hori-
zon of 4 steps the state-space is formed by 17M states, thus
prohibitive to explore exhaustively. Therefore, we need to
apply techniques able to make the resolution feasible and
even negligible w.r.t the control step length.

We instantiate the Branch & Bound scheme described in
Section 4.2.3. During the exploration of the evolution tree,
we denote by C°P' the minimum cost of all root-to-leaf paths

Application of Model Predictive Control to Structured Parallel Computations 17

Parallelism degree of Server Parmod - MPC Strategy.

g 20 ‘ —

5 16l MPC h=1. —— |
hel

e 12} .
©

s 4 1
8 o ; ; ; ; ;

e 0 50 100 150 200 250 300

Control step

(a) 1-step ahead MPC - Non-Functional Reconf.

Parallelism degree of Server Parmod - MPC Strategy.

MPC h=3. ——

Parallelism degree
S
A OON
3
. L

0 I I I I I
0 50 100 150 200 250 300

Control step

(c) 3-step ahead MPC - Non-Functional Reconf.

Parallel variant of Server Parmod - MPC Strategy.

MPC h=2, ——
o A) o 1
FARM
0 50 100 150 200 250 300

Control step

(e) 2-step ahead MPC - Functional Reconf.

Parallelism degree of Server Parmod - MPC Strategy.

$ 20 ‘ ‘ —

5 16l MPC h=2, —— |
o

e 12} 1
g g

o

T 4 i
g o ; ; ; ; ;

e 0 50 100 150 200 250 300

Control step

(b) 2-step ahead MPC - Non-Functional Reconf.

Parallel variant of Server Parmod - MPC Strategy.

MPC h=1. ——
el UL L TUITTL_IT]
FARM
0 50 100 150 200 250 300
Control step
(d) 1-step ahead MPC - Functional Reconf.
Parallel variant of Server Parmod - MPC Strategy.
MPC h=3. ——
wl LT LTI LTI
FARM
0 50 100 150 200 250 300

Control step

(f) 3-step ahead MPC - Functional Reconf.

Fig. 15: Functional and Non-functional reconfigurations of the Server ParMod.

currently explored during the search process and by C/ the
cost associated with the node j of the tree, i.e. it represents
the cost of the path from the root to j. The search space can
be reduced by applying the pruning condition stated by the
following proposition:

Proposition 1 (Pruning condition). Let be i the currently
explored node of the evolution tree with a cost C'. If the cost
function J is monotonically increasing with the steps of the
horizon, we can apply the following condition:

— ifiis not aleaf and Ci > C°P' we can discard the entire
sub-tree rooted at node i.

Otherwise, if the previous condition is not verified and i is a
leaf with C* < C°P', then we set C°P' = C".

Proof (sketch)

The idea of the proof can be straightforwardly derived from
the monotonicity of cost function J. If node i is not a leaf and
its cost C' is higher than the best cost C,;, we can certainly
state that all the sub-paths starting from i and reaching a leaf
will have a total cost higher than C°?', since by going deeper
in the horizon the cost can only increase and never decrease.
Therefore, it is possible to discard the sub-tree rooted at i
without losing the optimal solution.

It is trivial to verify that our cost function is monoton-
ically increasing with the steps of the horizon. Therefore
we can apply the pruning condition to this problem. Table 4

Strategy Total States Expl. States (B&B) Time (B&B)
MPC h=1 65 65 <1ms
MPC h=2 4,161 253 < 1ms
MPC h=3 266,305 1,038 <1ms
MPC h=4 17,043,521 5,884 14.53 ms

Table 4: Explored states with the Branch & Bound approach.

compares the theoretical number of states with the average
number explored by the B&B approach.

As we can see the reduction is of one or more orders
of magnitude. This makes it possible to complete the calcu-
lation of the optimal control trajectory of the 4-step ahead
MPC strategy with an average time near to 14 milliseconds,
which is negligible w.r.t. the control step length.

6 Conclusions and Future Work

This paper describes the application of MPC to distributed
parallel computations. We show how the knowledge of the
computation structure, expressed using structured parallelism
paradigms, and the definition of their cost models can be ex-
ploited to instantiate the control of distributed parallel com-
putations using MPC. To exhaustively evaluate our approach,
in the future we plan to provide further examples using pat-
terns not discussed in this paper, such as stencil data-parallel
programs and divide-and-conquer parallelizations. Further-

Gabriele Mencagli, Marco Vanneschi

Response time of Server Parmod - MPC Strategy.

g MIN. ——
8 3
o
@
c
I
[}
= ! H
0 50 100 150 200 250 300
Control step
(a) 1-step ahead MPC.
Response time of Server Parmod - MPC Strategy.
~ 55 T T T T
g MPC h=3, =w-eseees MAX., —— MIN. ——
£ 1
o
x
i=4
©
3] H
= X
0 50 100 150 200 250 300
Control step

(c) 3-step ahead MPC.

Response time of Server Parmod - MPC Strategy.

N
Q
&
o
@
c
©
[
= .
0 50 100 150 200 250 300
Control step
(b) 2-step ahead MPC.
Response time of Server Parmod - MPC Strategy.
g MAX, —— MIN, ——
8]
(e
4
c
[
L5}
= .
0 50 100 150 200 250 300
Control step

(d) 4-step ahead MPC.

Fig. 16: Mean response time Ry of the Server during the execution.

more, it can be interesting to explore the use of a discount-
ing factor in the formulation of optimization problems. Dis-
counting factors could be an effective way to deal with un-
certain operating environments in which the future system
state predictions become increasingly inaccurate as we go
deeper into the prediction horizon.

In the paper we give an insight into how high-level pro-
gramming models should incorporate the different elements
of MPC by placing proper mechanisms in the run-time sup-
port level. This aspect of the research, only hinted in this
paper actually, needs further investigation in the future.

From the experimental viewpoint, the presented case-
studies show that MPC, besides being applicable to struc-
tured parallel computations, maintains the desired properties
studied in the literature [37]. In the first case-study we com-
pare MPC with a heuristic strategy. The results show that by
using MPC we are able to reduce reconfigurations of 40%
w.r.t a simple strategy based on condition-action rules (ap-
plied for a similar problem in [55,2]). Operating cost can be
reduced of 24% with an improvement in the number of com-
pleted tasks of 12% using the same execution conditions. In
the second case-study we focus on the effects of the hori-
zon length on the effectiveness of the adaptation process.
By using sufficiently long horizons (feasible managed using
Branch and Bound schemes), we are able to reduce QoS vi-
olations of 35% with a further reduction of reconfigurations
of 12% compared with the strategy using a one-step horizon.

Finally, the paper discusses the problem of making the
optimization process feasible with the used sampling inter-
val. We introduce a generic B&B scheme that should be con-
sidered one of the possible methods to deal with this issue.
The scheme has been instantiated in the second case-study
exploiting the specific properties of the optimization prob-
lem. When larger platforms featuring hundreds or thousands
of processors are considered, the computational cost could
become impractical even using B&B. In that case other in-

teresting techniques are based on evolutionary algorithms
and specialized heuristics. As a future work we plan to eval-
uate the integration of such techniques in our approach.

References

1. Abdelwahed, S., Kandasamy, N., Neema, S.: Online control for
self-management in computing systems. In: Real-Time and Em-
bedded Technology and Applications Symposium, 2004. Proceed-
ings. RTAS 2004. 10th IEEE, pp. 368 — 375 (2004)

2. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Towards hierarchi-
cal management of au- tonomic components: A case study. In:
Parallel, Distributed and Network-based Processing, 2009 17th
Euromicro International Conference on, pp. 3—-10 (2009). DOI
10.1109/PDP.2009.48

3. Aldinucci, M., Danelutto, M., Teti, P.. An advanced environment
supporting structured parallel programming in java. Future Gener-
ation Computer Systems 19(5), 611 — 626 (2003). jce:title; Tools
for Program Development and Analysis. Best papers from two
Technical Sessions, at ICCS2001, San Francisco, CA, USA, and
ICCS2002, Amsterdam, The Netherlands;/ce:title;,

4. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and dynamic
reconfiguration planning for distributed software systems. Soft-
ware Quality Control 15(3), 265-281 (2007)

5. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi,
M.: P3I: A structured high-level parallel language, and its struc-
tured support. Concurrency: Practice and Experience 7(3), 225—
255 (1995)

6. Bacci, B., Danelutto, M., Pelagatti, S., Vanneschi, M.: A hetero-
geneous environment for hpc applications. Parallel Computing
25(13-14), 1827-1852 (1999)

7. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource
allocation heuristics for efficient management of data centers for
cloud computing. Future Generation Computer Systems 28(5),
755 — 768 (2012). jce:title;Special Section: Energy efficiency in
large-scale distributed systemsj/ce:title;,

8. Bernini, D., Micucci, D., Tisato, F.: Space integration services:
a platform for space-aware communication. In: IWCMC ’10:
Proceedings of the 6th International Wireless Communications
and Mobile Computing Conference, pp. 489-493. ACM, New
York, NY, USA (2010). DOI http://doi.acm.org/10.1145/1815396.
1815510

Application of Model Predictive Control to Structured Parallel Computations

19

9.

10.

12.

13.

14.

15.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Bertolli, C., Buono, D., Lametti, S., Mencagli, G., Meneghin, M.,
Pascucci, A., Vanneschi, M.: A programming model for high-
performance adaptive applications on pervasive mobile grids. In:
Proceeding of the 21st IASTED International Conference on Par-
allel and Distributed Computing and Systems, pp. 38-54 (2009)
Bertolli, C., Buono, D., Mencagli, G., Vanneschi, M.: Express-
ing adaptivity and context-awareness in the assistant programming
model. In: Proceedings of the Third International ICST Confer-
ence on Autonomic Computing and Communication Systems, pp.
38-54 (2009)

. Bertolli, C., Mencagli, G., Vanneschi, M.: Adaptivity in risk and

emergency management applications on pervasive grids. In: Pro-
ceeding of the 10th International Symposium on Pervasive Sys-
tems, Algorithms, and Networks, p. to appear (2009)

Bertolli, C., Mencagli, G., Vanneschi, M.: Analyzing memory re-
quirements for pervasive grid applications. Parallel, Distributed,
and Network-Based Processing, Euromicro Conference on 0, 297—
301 (2010)

Bhavanishankar, R., Subramaniam, C., Kumar, M., Dugar, D.: A
context aware approach to emergency management systems. In:
IWCMC ’09: Proceedings of the 2009 International Conference
on Wireless Communications and Mobile Computing, pp. 1350-
1354. ACM, New York, NY, USA (2009). DOI http://doi.acm.org/
10.1145/1582379.1582675

Botorog, G.H., Kuchen, H.: Efficient high-level parallel program-
ming. Theoretical Computer Science 196(12), 71 — 107 (1998)
Charteris, A., Syme, W., Walden, W.: Urban flood modelling and
mapping 2d or not 2d. In: Proceedings of the 6th Conference
on Hydraulics in Civil Engineering: The State of Hydraulics, pp.
355-363. Barton A.C.T: Institution of Engineers, Barton, Aus-
tralia (2001)

Chatfield, C., Yar, M.: Holt-winters forecasting: Some practical is-
sues. Journal of the Royal Statistical Society. Series D (The Statis-
tician) 37(2), pp. 129-140 (1988)

Cole, M.: Bringing skeletons out of the closet: a pragmatic man-
ifesto for skeletal parallel programming. Parallel Comput. 30(3),
389-406 (2004)

. D-ITG: Distributed Internet Traffic Generator. http://www.

grid.unina.it/software/ITG/papers.php
Fantacci, R., Vanneschi, M., Bertolli, C., Mencagli, G., Tarchi, D.:
Next generation grids and wireless communication networks: to-
wards a novel integrated approach. Wirel. Commun. Mob. Com-
put. 9(4), 445-467 (2009)

Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control:
theory and practice a survey. Automatica 25, 335-348 (1989)
Gholami, M., Salahshoor, K., Tabatabaei-pour, M., Shaker, H., Al-
izadeh, T.: Improved model predictive control of discrete-time hy-
brid systems with mixed inputs. In: Industrial Electronics Society,
2007. IECON 2007. 33rd Annual Conference of the IEEE, pp. 744
=749 (2007)

Gomes, A.T.A., Batista, T.V., Joolia, A., Coulson, G.: Architect-
ing dynamic reconfiguration in dependable systems pp. 237-261
(2007)

Gonzilez-Vélez, H., Leyton, M.: A survey of algorithmic skeleton
frameworks: High-level structured parallel programming enablers.
Software—Practice & Experience 40(12), 1135-1160 (2010). DOI
10.1002/spe.1026. 2010 JCR Impact Factor 1-year: 0.573 5-year:
0.786

He, Q., Dovrolis, C., Ammar, M.: On the predictability of large
transfer tcp throughput. Comput. Netw. 51, 3959-3977 (2007)
Heemels, W.P.M.H., Sandee, J.H., Van Den Bosch, PP.J.: Anal-
ysis of event-driven controllers for linear systems. International
Journal of Control 81(4), 571-590 (2008)

Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback
Control of Computing Systems. John Wiley & Sons (2004)
Horvath, T., Abdelzaher, T., Skadron, K., Liu, X.: Dynamic volt-
age scaling in multitier web servers with end-to-end delay control.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

IEEE Trans. Comput. 56(4), 444-458 (2007). DOI 10.1109/TC.
2007.1003

Huebscher, M.C., McCann, J.A.: A survey of autonomic
computing—degrees, models, and applications. ACM Comput.
Surv. 40(3), 1-28 (2008)

Kephart, J., Walsh, W.: An artificial intelligence perspective on au-
tonomic computing policies. In: Policies for Distributed Systems
and Networks, 2004. POLICY 2004. Proceedings. Fifth IEEE In-
ternational Workshop on, pp. 3—12 (2004)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
Computer 36(1), 41-50 (2003)

Kieran, D., Yan, W.: A framework for an event driven video
surveillance system. In: Advanced Video and Signal Based
Surveillance (AVSS), 2010 Seventh IEEE International Confer-
ence on, pp. 97-102 (2010). DOI 10.1109/AVSS.2010.57
Kuchen, H., Ernsting, S.: Data parallel skeletons in java. Procedia
Computer Science 9(0), 1817 — 1826 (2012). jce:title; Proceedings
of the International Conference on Computational Science,
{ICCS} 2012/ce:title;,

Kusic, D., Kandasamy, N.: Risk-aware limited lookahead con-
trol for dynamic resource provisioning in enterprise computing
systems. Cluster Computing 10(4), 395-408 (2007). DOI
10.1007/s10586-007-0022-y. URL http://dx.doi.org/
10.1007/s10586-007-0022~y

Kusic, D., Kandasamy, N., Jiang, G.: Combined power and per-
formance management of virtualized computing environments
serving session-based workloads. Network and Service Man-
agement, IEEE Transactions on 8(3), 245-258 (2011). DOI
10.1109/TNSM.2011.0726.100045

Legaux, J., Loulergue, F., Jubertie, S.: Osl: An algorithmic skele-
ton library with exceptions. Procedia Computer Science 18(0),
260 — 269 (2013). jce:title;2013 International Conference on
Computational Sciencej/ce:title;,

Liu, H., Parashar, M.: Accord: a programming framework for au-
tonomic applications. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on 36(3), 341 — 352
(2006). DOI 10.1109/TSMCC.2006.871577

Maggio, M., Hoffmann, H., Papadopoulos, A.V., Panerati, J., San-
tambrogio, M.D., Agarwal, A., Leva, A.: Comparison of decision-
making strategies for self-optimization in autonomic computing
systems. ACM Trans. Auton. Adapt. Syst. 7(4), 36:1-36:32
(2012). DOI 10.1145/2382570.2382572

Maheshwari, N., Nanduri, R., Varma, V.: Dynamic energy efficient
data placement and cluster reconfiguration algorithm for mapre-
duce framework. Future Gener. Comput. Syst. 28(1), 119-127
(2012)

Mencagli, G., Vanneschi, M.: Qos-control of structured parallel
computations: A predictive control approach. In: Cloud Comput-
ing Technology and Science (CloudCom), 2011 IEEE Third In-
ternational Conference on, pp. 296-303 (2011). DOI 10.1109/
CloudCom.2011.47

NCTUNS: Network Simulator and Emulator. http://nsl.
csie.nctu.edu.tw/nctuns.html/ (2011)

Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang,
G., Hariri, S.: Automate: Enabling autonomic applications on
the grid. Cluster Computing 9, 161-174 (2006). DOI
10.1007/s10586-006-7561-5. URL http://dl.acm.org/
citation.cfm?id=1127683.1127688

Park, S.M., Humphrey, M.: Predictable high-performance com-
puting using feedback control and admission control. Parallel
and Distributed Systems, IEEE Transactions on 22(3), 396411
(2011). DOI 10.1109/TPDS.2010.100

Patikirikorala, T., Colman, A., Han, J., Wang, L.: An evaluation
of multi-model self-managing control schemes for adaptive per-
formance management of software systems. Journal of Systems
and Software 85(12), 2678 — 2696 (2012). jce:title; Self-Adaptive
Systemsj/ce:title,,

20

Gabriele Mencagli, Marco Vanneschi

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

Pellegrini, M.C., Riveill, M.: Component management in a dy-
namic architecture. J. Supercomput. 24(2), 151-159 (2003). DOI
http://dx.doi.org/10.1023/A:1021798709301

Potocnik, B., Music, G., Zupancic, B.: Model predictive control
systems with discrete inputs. In: Electrotechnical Conference,
2004. MELECON 2004. Proceedings of the 12th IEEE Mediter-
ranean, vol. 1, pp. 383 — 386 Vol.1 (2004)

Reiff-Marganiec, S., Turner, K.J.: Feature interaction in policies.
Comput. Netw. 45, 569-584 (2004). DOI 10.1016/j.comnet.
2004.03.004. URL http://portal.acm.org/citation.
cfm?id=1031816.1031818

Rossiter, J.A.: Model-based predictive control: a practical ap-
proach. Control series. CRC Press, pub-CRC:adr (2003)

Saini, M., Xiangyu, W., Atrey, P., Kankanhalli, M.: Dynamic
workload assignment in video surveillance systems. In: Multime-
dia and Expo (ICME), 2011 IEEE International Conference on,
pp. 1-6 (2011). DOI 10.1109/ICME.2011.6012076

Sandee, J.H., Heemels, W.P.M.H., Van Den Bosch, P.P.J.: Case
studies in event-driven control. In: Proceedings of the 10th in-
ternational conference on Hybrid systems: computation and con-
trol, HSCC’07, pp. 762-765. Springer-Verlag, Berlin, Heidelberg
(2007)

Shi, X., Liu, C., Wu, S., Jin, H., Wu, X., Deng, L.: A cloud ser-
vice cache system based on memory template of virtual machine.
In: Proceedings of the 2011 Sixth Annual ChinaGrid Conference,
CHINAGRID 11, pp. 168-173. IEEE Computer Society, Wash-
ington, DC, USA (2011). DOI 10.1109/ChinaGrid.2011.20. URL
http://dx.doi.org/10.1109/ChinaGrid.2011.20
Vanneschi, M.: The programming model of assist, an environment
for parallel and distributed portable applications. Parallel Comput.
28(12), 1709-1732 (2002)

Vanneschi, M., Veraldi, L.: Dynamicity in distributed applications:
issues, problems and the assist approach. Parallel Comput. 33(12),
822-845 (2007)

Wang, X., Du, Z., Chen, Y., Li, S., Lan, D., Wang, G., Chen, Y.:
An autonomic provisioning framework for outsourcing data center
based on virtual appliances. Cluster Computing 11(3), 229-245
(2008). DOI 10.1007/s10586-008-0053-z. URL http://dx.
doi.org/10.1007/s10586-008-0053~-z2

Warneke, D., Kao, O.: Exploiting dynamic resource allocation for
efficient parallel data processing in the cloud. IEEE Trans. Parallel
Distrib. Syst. 22(6) (2011). DOI 10.1109/TPDS.2011.65
Weigold, T., Aldinucci, M., Danelutto, M., Getov, V.: Process-
driven biometric identification by means of autonomic grid com-
ponents. Int. J. Auton. Adapt. Commun. Syst. 5(3), 274-291
(2012). DOI 10.1504/1JAACS.2012.047659. URL http://dx.
doi.org/10.1504/IJAACS.2012.047659

Wernsing, J.R., Stitt, G.: Elastic computing: a framework for trans-
parent, portable, and adaptive multi-core heterogeneous comput-
ing. SIGPLAN Not. 45(4), 115-124 (2010)

Wilkinson, B., Allen, M.: Parallel programming: techniques and
applications using networked workstations and parallel comput-
ers. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1999)
Yaikhom, G., Cole, M., Gilmore, S., Hillston, J.: A structural
approach for modelling performance of systems using skele-
tons. Electronic Notes in Theoretical Computer Science 190(3),
167 — 183 (2007). jce:title;Proceedings of the Fifth Work-
shop on Quantitative Aspects of Programming Languages (QAPL
2007);/ce:title;,

Yuan, Q., Liu, Z., Peng, J., Wu, X., Li, J., Han, F,, Li, Q., Zhang,
W., Fan, X., Kong, S.: A leasing instances based billing model for
cloud computing. In: Proceedings of the 6th international confer-
ence on Advances in grid and pervasive computing, GPC’11, pp.
33—-41. Springer-Verlag, Berlin, Heidelberg (2011)

