Container-based Support for Autonomic Data
Stream Processing through the Fog

Antonio Brogi, Gabriele Mencagli, Davide Neri, Jacopo Soldani
and Massimo Torquati

Department of Computer Science, University of Pisa
Largo B. Pontecorvo 3, I-56127 Pisa, Italy
{brogi,mencagli,davide.neri,soldani,torquati}@di.unipi.it

Abstract. We present a container-based architecture for supporting au-
tonomic data stream processing application on Fog computing infras-
tructures. Our architecture runs applications as Docker containers, and
it exploits Docker’s native features to dynamically scale up/down the
resources of a Fog node assigned to the applications running on it. Pre-
liminary results demonstrate that Docker containers are appropriate for
building migratable autonomic solutions in the Fog.

Keywords: Data Stream Processing, Autonomic Computing, Fog, IoT, Docker

1 Introduction

Fog computing [21] aims at distributing computing, storage and networking re-
sources along the Cloud-to-IoT continuum, closer to the edge of the network
where millions of connected devices produce huge data flows. Many applications
(e.g., intelligent transportation, emergency management or e-health) need to
process such data flows by meeting compelling time requirements which cannot
be satisfactorily met by traditional Cloud+IoT solutions, typically because of
latency and/or bandwidth limitations [5].

To suitably host autonomic data stream parallel applications on Fog infra-
structures, new solutions for the dynamic management of resources within and
across Fog nodes are needed. Container-based virtualization can help solving
this need [17], and the objective of this paper is precisely to investigate how to
use it to dynamically manage autonomic applications on Fog infrastructures.

We present a container-based architecture for supporting autonomic data
stream processing applications one Fog infrastructures. The architecture exploits
containerization to dynamically scale the resources assigned to each deployed
application. Each Fog node hosts a Fog Node Controller, which interacts with the
controllers of the autonomic applications deployed on such node. The objective
of the interaction is to dynamically scale up and down the resources assigned
to hosted applications. Fog Node Controllers of different nodes also interact
to support the migration of deployed applications. Fog Node Controllers and
applications are deployed as Docker containers.



The rest of this paper is structured as follows. We first discuss (Section 2) two
motivating examples that illustrate need and benefits of dynamic resource man-
agement within/across different Fog nodes. After introducing Docker (Section 3),
we describe the proposed system architecture (Section 4). We also present the
results of two experiments (Section 5) that show the feasibility of the proposed
container-based support for autonomic data stream processing in the Fog. We
finally discuss related work (Section 6) and we draw some concluding remarks
(Section 7).

2 DMotivating examples

In this section we describe two basic examples that motivate the development of
our architecture. The first example describes a scenario of intra-fog node resource
management and orchestration, through the synergical interaction between the
Fog Node Controller (FNC) and the Application Controllers (ACs) running the
autonomic logic of streaming applications within a fog node. The second focuses
on a more complex and challenging case of inter-fog node adaptation, where our
architecture is exploited in order to take full advantage of its potential.

Intra-fog node scenario. Each fog node, besides being interconnected to var-
ious data providers (e.g., sensors, IoT and edge devices), can be connected to
an overlay of fog nodes and eventually to a traditional cloud system. Fig. 1(left)
exemplifies our vision by highlighting the role of a fog node. Within a fog node,
various streaming applications can run. Each streaming application is charac-
terized by: i) a set of data providers that feed the application with a continuous
flow of data items to be processed; ii) a set of data consumers that will re-
trieve real-time data analytic produced by the application. We also envision
that each application should be designed with an autonomic logic inside, respon-
sible for scaling up/down the resources utilized by the application and/or other
application-dependent configuration knobs (e.g., load balancing policies, schedul-
ing disciplines). While some kinds of reconfigurations are executed transparently
to the Fog infrastructure others needs a proper interaction with the FNC (e.g.,
resource scaling).

Consider an application consuming a data stream generated by a set of mobile
devices localized near to a fog node, and processing the most recent data items
using a sliding-window model [2] according to a feasible parallel pattern like the
ones in [7]. To keep up with the arrival rate, the AC of the considered application
may decide to increase the parallelism degree of such application in order to
process input data faster. While the AC is in charge of reconfiguring the appli-
cation to exploit additional resources (e.g., by spawning new processes/threads
on-demand), the FNC is responsible for making the resources available to respond
to the dynamic need of applications. To this end, the FNC is in charge of main-
taining a complete vision of the node status (e.g., cores and cpu time available,
memory utilization [3]), and of processing the requests of AC by finding feasi-
ble agreements. For example, if the AC requires the exclusive utilization of eight
additional cores, the FNC can serve such request completely, if enough physical



" Fog Nods~

Streaming comp.

[P

Streaming app.

=y (HE-

resource allocation

scslmg requests/reply , _’,ﬁ—' ; :
\\ /’/scalmg - o
#“ FNC

'i Streammg comﬁ

Fog Node

Fig. 1: Fog computing architecture and internal behavior of a fog node, managing
several streaming applications or their parts.

resources are available. Otherwise, the FNC can partially serve the request of the
AC by allocating fewer cores. As extrema ratio, the FNC may unilaterally release
some cores previously assigned to other running applications to serve completely
the request, by informing the corresponding ACs of the decision taken. This sce-
nario is depicted in Fig. 1(right).

Inter-fog node scenario. Suppose that an application is a composition of two
communicating components. The first (called Filtering) is a small graph of oper-
ators processing items produced by a set of data providers, by discarding inputs
that are deemed to be irrelevant to the rest of the application. This component
processes data items at high speed, thus it must exploit geographical proxim-
ity [19] with the data providers in order to leverage a reduced network cost.
Instead, the Selection component runs a computationally demanding preference
query like a skyline or a top-k query [23], in order to extract the best objects
among the most recent data items received from the preceding phase.

“FogNoded ... " FogNode2
i Streaming comp.
Filtering Comp. .-~~~

v Selection Comp.

' Streaming comp..

location

N

%ziz da;%%l

Fig.2: Example of migration of a data stream processing component between Fog
Nodes.



The infrastructure should be able to support the migration of streaming
components from a fog node to another one properly chosen. This can be the
result of an internal decision of the application itself, or externally triggered by
the resource management control of the fog platform. As in the example of Fig. 2,
the data providers feeding our Filtering component, which is initially deployed on
FN1, are mobile devices that may enter in the proximity of FN2 at a certain time
instant. The corresponding AC that continuously monitors the component’s QoS
may experience too high network latency and/or insufficient network bandwidth.
Therefore, the AC may opportunistically decide to ask the FNC of FN1 to start
the migration to a suitable fog node (e.g, FN2 in this case). As a second case,
the decision can be triggered by the infrastructure itself, for example if the FNC
is unable to meet the resource utilization requests of the applications running
in the first fog node, and some of them must be migrated to make further local
resources available. In both cases, the underlying infrastructure should provide
mechanisms for seamless migration with minimal intrusion and downtime in the
processing flow.

3 Background: Docker

Container-based virtualization technology offers a lightweight virtualization which
provides near-native performances [22]. Container-based virtualization leverages
directly on the kernel features of the host OS for running multiple isolated user-
space instances (called containers). Since containers share the same kernel of
the host OS, container-based virtualization adds minimal overhead to the guest
applications.

Docker [8] is the de-facto standard technology exploiting container-based vir-
tualization. It provides the ability to package any application with all its depen-
dencies (e.g., libraries, binaries, data files, etc.) into an isolated Docker container.
Docker also i) permits limiting the resources assigned to a container in term of
memory and CPU (by default, a container has no resource constraints), ans i)
it provides functionalities for checkpointing and restoring a running container
by exploting CRIU [6,9,18].

A Docker container is created from a Docker image. From a single Docker
image one or more Docker containers can be started. Docker also permits to
look for existing images instead of building them from scratch. The images can
be stored into Docker registries (e.g., Docker Hub [12]) where other users can
retrieve and use them. Docker registries ease the distribution of images across
different environment.

Docker containers can communicate by using Docker container network-
ing [11]. Two containers attached to the same network can communicate with
all other containers attached to the same network. Docker offers various network
drivers depending if the containers reside on a single host or across a cluster of
hosts. Standard sockets can also be used as low-level mechanisms for implement-
ing a communication channel between containers.



Fog Node (FN)

FN Controller (FNC)
Application (App)
App. Controller (AC)
FNC-FNC connections
FNC-AC connections

1= J@o

Fig. 3: An example of instance of the proposed architecture.

Docker has also built-in orchestration tools that allow to deploy multi-container
applications. For instance, Docker compose [10] permits creating and managing
Docker containers on a single host or in a cluster of hosts.

4 System architecture

We hereby illustrate the main concepts of the high-level architecture we envision.
Such architecture is composed by four main components: Fog nodes (FNs), fog
node controllers (FNCs), autonomic applications (Apps), and autonomic applica-
tion controllers (ACs). A sample instance of our proposal is depicted in Fig. 3.

FNs are devices (e.g., smartphones, laptops, routers) with limited amounts of
available computational resources, and they are in charge of running container-
ized Apps. Therefore, FNs must be able to decide whether an App can run on a
FN, and how many computational resources to assign to such App (e.g., cores,
CPU time, memory, bandwidth). This is why FNs are equipped with FNCs that
are in charge of scheduling containerized Apps on FNs and of assigning to each
App a certain amount of resources available in the hosting FN.

Each App runs in an independent container, or alternatively it can be split into
various interacting components, each running in an independent container. Each
AC running within a Docker container is also in charge of running the autonomic
control loop of the corresponding App or component, and of interacting with the
FNC of the corresponding FN to dynamically scale up/down the set of resources
assigned to the Docker container, and/or to support the migration to another
FN (or to the cloud).

Accordingly, FNCs will have to support both FNC-FNC and FNC-AC communi-
cations. FNC-FNC communications are inter-node, hence requiring to be network
communications. FNC-AC communications are instead intra-node, hence they can
be implemented with reduced communication latency by exploiting shared mem-
ory or domain sockets mechanisms. The latter seems to be more suitable, as FNCs
and ACs run in Docker containers, and different Docker containers can commu-
nicate using shared socket files (see Sect. 3).



In the following, we detail the behaviour of the architecture during the execu-
tion of the scenarios sketched in Sect. 2, by distinguishing those only concerning

fog nodes from those also including autonomic applications?.

Fog nodes. Our architecture is designed to account for FNs freely joining or
detaching from the system. Whenever a new FN is willing to join the system, its
FNC must connect to one or more of the FNCs already available in the system
(e.g., those of the “geographically closest” FNs, or those that can guarantee a
desired response time). It must then communicate the computational resources
available in the new FN, and this information will be taken into account (by all
FNCs) when deciding how to schedule containerized Apps within/across FNs. At
this point, the new FN is considered to be part of the overlay of FNs, hence being
eligible for deploying containerized Apps on it.

Whenever a FN wishes to detach from the system, its FNC should communicate
to the other FNCs that such FN is going to detach. This will result in disconnecting
FNC of the detaching FN from the overlay of FNs, and in migrating all Apps running
on the detaching FN to the other FNs in the system.

It is worth noting that a FN may detach from the system without priorly
advertising the FNCs of the other FNs (e.g., because the corresponding device
unexpectedly crashes or shuts-down), and this should also result in migrating
all Apps that were running on the crashed FN to the other FNs in the system.
To enable this, the availability of each FN will have to be monitored (e.g., with
watchdogs or heartbeat services connected to its FNC).

Autonomic applications. Data stream processing applications will be deploy-
able on the proposed architecture after being properly containerized as (possibly
multi-container) Docker applications. The images of the containers forming an
application will have to be available on a remote, publicly accessible Docker
registry (e.g., Docker Hub [12]).

The administrator of an application can issue the deployment of her appli-
cation by connecting to one of the FNCs in the system, and by indicating the
Apps to be executed. The administrator indicates the Docker images used to run
the Apps along with the deployment constraints of each App. For example, the
administrator can constraint the App to be deployed on a certain subset of FNs,
or she can specify that the App must be migrated to cloud whenever all the FNs
do not satisfy the requested resources by the App.

The FNCs will then coordinate themselves to identify a FN satisfying the de-
ployment constraints of an App, and they will inform the corresponding FNC to
enact the deployment of such App. The FNC will then download the image of the
App from the remote registry, it will start the App by running a Docker container
from the downloaded image, it will assign an initial set of computational re-
sources to the App, and it will start interacting with the AC to scale the resources
assigned to the App (when necessary).

! Due to space limitations, we hereafter abstract from the actual policies to be em-
ployed for coordinating FNCs and for deciding how to schedule containerized Apps
within/across FNs depending on available resources.



A FNC can scale up and down the set of resources assigned to an App (e.g.,
by decreasing/increasing the cores, CPU time, and bandwidth assigned to such
App) by simply changing the resources assigned to the corresponding Docker
container (see Sect. 3). This may be driven by exploiting reactive or predictive
control policies [16], and it happens: when a FNC needs to remove some of the
resources that were assigned to an App and to re-assign such resources to other
Apps, or when an AC realizes that the App it is controlling requires less/more
resources (e.g., to change the parallelism degree and adapt it to the data rate
of the input stream). In the latter case, an AC sends a request to the FNC of the
hosting FN, which decides how/whether to scale the resources assigned to the
corresponding App.

It may happen that the computational resources available in a FN are no
more capable of satisfying the requirements of all Apps running on it. If this is
the case, the FNC of the overloaded FN will interact with the other FNCs in the
system to decide which Apps can be migrated and on which FNs. To migrate
them, it then send a migration request to the AC of each App to be migrated.
The AC will then start preparing the migration by storing the current state of
the App, and it will answer to the FNC by returning it the current state of the
App. The FNC of the FN where the App must be migrated will then initiate the
procedure for deploying such App, by exploiting the stored state of App as the
initial application state.

It may also happen that no FN is capable of satisfying the requirements of a
to-be-migrated App. If this is the case, the FNCs can decide to migrate an App to
the cloud (with a migration approach very similar to that described above), or
to reduce the resources assigned to an App as much as possible (if such App does
not support fog-to-cloud migration).

Finally, an App can be undeployed from the system by simply informing the
FNC of the FN where such App is running. This can either be done by the AC
(if it realizes that the App has ended its tasks), or by the administrator of the
App. The FNC will then just have to remove the corresponding Docker container,
hence freeing the resources assigned to it.

5 Preliminary results

In this section we show two preliminary results aimed at illustrating that Docker
can help deploying autonomic data stream processing applications in the Fog.
First, we illustrate how Docker can be exploited by a FNC for limiting the physical
resources (i.e., CPUs) assigned to a containerized App running on a FN. Second,
checkpoint and restore features offered by Docker (version 17.03.1-CFE) are used
to freeze and restore a containerized App on a FN2.

Intra-fog node test. In the first test, we considered a FNC and an App running
in Docker containers on a FN. The goal of the experiment is twofold: we show

2 The source code of the experiments is available on GitHub https://github.com/
di-unipi-socc/ffdocker.



how a FNC and the AC of an App can communicate on the same FN, and how
the FNC can exploit Docker for limiting the CPUs assigned to such App. More
precisely, the App and the FNC work as follows:

— the App is an autonomic application equipped with its AC that consumes the
CPUs of the FN running the cpuburn application (https://patrickmn.com/
projects/cpuburn/). The AC periodically sends a request to the FNC asking
for increasing or decreasing a random number of the CPUs assigned,;

— the FNC waits for incoming requests from the AC and (if available) increases
or decreases the assigned CPUs to the App.

The FNC and the App reside on the same FN and they communicate using a socket
file, where the FNC is the server and the App the client.

As we anticipated above, the App and the FNC are shipped in their own Docker
containers and their images are stored in the Docker Hub registry®. The App is
packaged into the diunipisocc/app image while the FNC is packaged in the
diunipisocc/fnc image. In order to run the experiment, the FNC must be first
executed by running the diunipisocc/fnc image with the following command:

docker run -v /tmp/ffsocket.sock:/tmp/ffsocket.sock
-v /var/run/docker.sock:/var/run/docker.sock
diunipisocc/fnc

When the FNC starts, it waits for requests listening on the /tmp/ffsocket.sock
socket file. The -v option is used to mount a folder from the host into a container.
Instead, the /var/run/docker.sock is the socket used by the FNC for interacting
with Docker to update the CPUs assigned to the App container. The App can be
launched by running the diunipisocc/app image:

docker run -v /tmp/ffsocket.sock:/tmp/ffsocket.sock
diunipisocc/app

The App mounts the /tmp/ffsocket.sock file for communicating with the FNC.

Fig. 4 (left) shows the result of the experiment executed on an Intel Linux
machine with 48 cores. In the experiment, the FNC is configured to assign at most
20 cores to the App among the 48 cores available. The App, every 5 seconds, asks
to the FNC to increase or decrease the cores assigned to it by a random number
between 5 and 30. If the number of cores requested by the App are less or equal
than 20, the FNC assigns to the App the cores requested, otherwise the FNC assign
to the App at most 20 cores.

We measured the mean time required by the FNC to increase or decrease the
cores assigned to a container. The time measured for updating the cores is about
80 microseconds with a standard deviation of 16 microseconds.

Inter-fog node test. In the second experiment we tested the possibility to
use Docker for implementing containers live migration. The current version of

3 The Docker images used to run the experiments are available in Docker Hub https:
//hub.docker.com/u/diunipisocc/



T
301 00 i 1004 >
Q
5 20 e soe X K
g « 50 1
z 10| 2 o
ORequested z
e Assigned
0 ul L ul T T 0 o-0-0-0-¢
0 10 20 30 40 50 60 0 5 10 15
Elapsed time (sec) Elapsed time (sec)

Fig. 4: Results obtained by running the intra-fog node experiment (left), and by
running the inter-fog node experiment (right).

Docker only allows to checkpoint and restore a running container into the same
host, whereas it does not support live migration across different hosts yet. There
are other projects that implements live migration on top of CRIU [1], but they
are not yet integrated with Docker.

The experiment reproduces a simplified version of the inter-fog scenario pro-
posed in Sect. 2. The Filtering component sends an integer every 10 milliseconds
(100 integers per second) to the Selection component that receives the stream of
integers and prints them. Selection, Filtering and FNC run in their Docker con-
tainer and they communicate via the default Docker bridge network (see Sect. 3).
In our test we simulated the situation where the FNC checkpoints and restores
the Filtering component in the same FN, evaluating the downtime experienced
by the Selection component. This situation can happen, for example, if the FNC
decides to temporarily suspend the execution of the Filtering component be-
cause it needs all the resources available on a Fog node to serve a higher priority
request coming from another App.

The FNC triggers the migration of a component using the following steps:

1. The FNC sends a migration request to the Filtering component, notifying that
the migration phase is willing to start.

2. The Filtering component receives the migration request, performs a clean up
phase (e.g., it may notify the data sources to interrupt the data streaming),
and sends a migration reply to the FNC.

3. The FNC receives the migration reply message and performs a checkpoint of
the Filtering component,

4. Immediately after, the FNC restores the Filtering component into the same
host and it continues to produce the stream of integers starting from the last
checkpointed value.

The checkpoint of the Filtering saves both the application internal state
(i.e. the last integer sent in the stream) and the sockets used for the commu-
nication. Fig. 4 (right) shows the result of the execution of the experiment in



a single node. The Selection component receives 100 integers every second on
average. After five seconds the Filtering component is forced to perform a mi-
gration by the FNC. The downtime experienced by the Selection component is
about 5 seconds which is still significant though compliant with the measure-
ments described in https://criu.org/Performance_research. However, the
checkpoint and restore mechanisms of Docker are still under development and
not yet officially released. We expect to see further optimizations in the next
stable releases.

6 Related work

[19] proposes an architecture for processing streaming applications near-to-the-
edge. The goal is to deploy latency-sensitive streaming operators near to the
IoT devices that generate raw data streams. The infrastructure considers only
two tiers: the first with traditional data centers and clouds, the second featuring
cloudlets near to IoT devices. The application programmer defines which tier will
preferably execute the distinct operators of a streaming application. With respect
to our work, the distinction in two tiers seems restrictive, and the applications
do not provide any elastic/autonomic support or capability.

Recently, techniques to map streaming applications onto IoT environments
have received a considerable attention, because existing IoT platforms still lack
of advanced features in terms of dynamic resource management and data privacy
that are needed by the streaming context. IoT devices are often considered as
mere data providers, at most enabled to filtering the data in order to save net-
work bandwidth. [14] envisions an interesting approach that has several common
points with our research. Container-based technologies are used to encapsulate
streaming operators and to easily deploy them on a distributed environment.
One of the aspects that distinguishes our approach is that each containerized
application should have both the processing logic and the autonomic logic in-
side, the latter directly connected to our infrastructure management entities.
This makes each running container an autonomous and adaptive entity, and not
a static running code as in [14].

[20] presents Foglets, a programming infrastructure for managing geo-dis-
tributed awareness applications in the Fog. Based on the mobility of the sensors
and the requirements of an application, the paper proposes both algorithms
for deploying the application components on the fog nodes and techniques for
handling the migration of these components between fog nodes. While, Foglets
migrates applications whenever the resources they require are no more available
in a Fog node, our approach tries to accomplish the application requirements by
increasing or decreasing the resources available in a fog node before starting the
migration phase.

A nice application scenario has been described in [4] for a urban video surveil-
lance system deployed on a fog infrastructure. The approach follows a divide-
and-conquer design, where raw data from IoT devices is filtered by applications
running in Fog nodes and forwarded to a centralized cloud for processing. Al-



though an interesting example, the utilization of the Fog infrastructure is limited
and does not exploit the full potential of the paradigm.

Other recent papers mainly focus on extensions of the run-time support of
existing and popular stream processing frameworks like Apache Storm and Flink,
in order to make the frameworks able to deploy and run streaming applications
in geographically distributed environments not limited to a single Cloud [13, 15].
Differently, our approach is focused around a two-level adaptation approach,
where applications are themselves adaptive with their logic, interacting with our
infrastructure for negotiating agreements in the resource utilization. Therefore,
our approach is not limited to a single application running exclusively on the
platform, and it is suitable to manage the execution of general applications and
services, also outside the stream processing domain.

7 Conclusions

Fog computing is becoming a powerful enabler for IoT. Despite the growing in-
terest, the implications and the advantages of Fog computing in streaming sce-
narios must still be explored and analyzed. Furthermore, the availability of new
emerging virtualization concepts, like container-based technology, stimulates the
research of new solutions for efficiently and flexibly deploy streaming applica-
tions in geographically distributed environments. In this paper we proposed a
Docker-based architecture as an enabler for Fog deployment of autonomic appli-
cations. Besides the general overview of our idea, we presented also a concrete
discussion of how the Docker technology can be exploited. Finally, first prelim-
inary results confirmed our expectations about Docker as a viable approach for
a new highly distributed and fog-oriented framework.

Acknowledgement. This work has been partially supported by the EU H2020-
ICT-2014-1 project RePhrase (No. 644235).

References

1. Process HAULer. https://criu.org/P.Haul, last accessed: April 28th, 2017

2. Andrade, H., Gedik, B., Turaga, D.: Fundamentals of Stream Processing. Cam-
bridge University Press (Sept 2014), cambridge Books

3. Bertolli, C., Mencagli, G., Vanneschi, M.: Analyzing memory requirements for
pervasive grid applications. In: 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing. pp. 297-301 (Feb 2010)

4. Chen, N.; Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic
urban surveillance video stream processing using fog computing. In: 2016 IEEE
2nd International Conference on Multimedia Big Data (BigMM). pp. 105-112 (Apr
2016)

5. Chiang, M., Zhang, T.: Fog and iot: An overview of research opportunities. IEEE
Internet of Things Journal 3(6), 854-864 (Dec 2016)

6. CRIU: Criu integration with docker. https://criu.org/Docker, last accessed:
April 28th, 2017



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

De Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators
on data streams: An algorithmic skeleton approach. Int. J. Parallel Program. 45(2),
382-401 (Apr 2017)

Docker Inc.: Docker. https://www.docker.com/, last accessed: April 28th, 2017
Docker Inc.: Docker checkpoint command. https://docs.docker.com/engine/
reference/commandline/checkpoint/, last accessed: April 28th, 2017

Docker Inc.: Docker compose. https://docs.docker.com/compose/, last accessed:
April 28th, 2017

Docker Inc.: Docker container networking. https://docs.docker.com/engine/
userguide/networking/, last accessed: April 28th, 2017

Docker Inc.: Docker hub. https://hub.docker.com/, last accessed: April 28th,
2017

Hochreiner, C., Vogler, M., Schulte, S., Dustdar, S.: Elastic stream processing
for the internet of things. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). pp. 100-107 (June 2016)

Hochreiner, C., Vogler, M., Waibel, P., Dustdar, S.: Visp: An ecosystem for elastic
data stream processing for the internet of things. In: 2016 IEEE 20th International
Enterprise Distributed Object Computing Conference (EDOC). pp. 1-11 (Sept
2016)

Mehdipour, F., Javadi, B., Mahanti, A.: Fog-engine: Towards big data analytics
in the fog. In: 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure
Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl
Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech). pp. 640-646 (Aug 2016)
Mencagli, G., Vanneschi, M.: Qos-control of structured parallel computations: A
predictive control approach. In: 2011 IEEE 3rd International Conference on Cloud
Computing Technology and Science. pp. 296-303 (Nov 2011)

Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures — a tech-
nology review. In: 2015 3rd International Conference on Future Internet of Things
and Cloud. pp. 379-386 (Aug 2015)

Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating LinuX Con-
tainers Using CRIU, pp. 674-684. Springer International Publishing, Cham (June
2016)

Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: Towards
unifying stream processing over central and near-the-edge data centers. In: 2016
IEEE/ACM Symposium on Edge Computing (SEC). pp. 168-178 (Oct 2016)
Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., Ottenwélder, B.: Incremen-
tal deployment and migration of geo-distributed situation awareness applications in
the fog. In: Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems. pp. 258-269. ACM (June 2016)

Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78-81 (May
2016)

Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A.C., Peterson, L.L.: Container-
based operating system virtualization: A scalable, high-performance alternative to
hypervisors. SIGOPS Oper. Syst. Rev. 41(3), 275-287 (Mar 2007)

U, L.H., Mamoulis, N., Mouratidis, K.: Efficient evaluation of multiple preference
queries. In: 2009 IEEE 25th International Conference on Data Engineering. pp.
1251-1254 (March 2009)



