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Abstract

The steady growth of data volume produced as continuous
streams makes paramount the development of software capa-
ble of providing timely results to the users. The Actor Model
(AM) offers a high-level of abstraction suited for developing
scalable message-passing applications. It allows the appli-
cation developer to focus on the application logic moving
the burden of implementing fast and reliable inter-Actors
message-exchange to the implementation framework.

In this paper, by using the CAF framework as reference
AM implementation, we focus on evaluating the model in
high data rate streaming applications targeting scale-up
servers. Our approach leverages Parallel Pattern (PP) ab-
stractions to model streaming computations and introduces
optimizations that otherwise could be challenging to imple-
ment without violating the Actor Model’s semantics. The
experimental analysis demonstrates that the new implemen-
tation skeletons we propose for our PPs can bring significant
performance boosts (more than 2x) in high data rate stream-
ing applications.
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1 Introduction

The ever-increasing volume of data produced in the form of
continuous streams, has made scalable concurrency a funda-
mental aspect of the software development process.
Actor-based languages and frameworks are more and
more employed to design and develop complex streaming
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applications that need high flexibility, adaptivity, and high-
scalability [13]. The Actor Model (AM) of computation [6, 26,
47] offers a high-level of abstraction that allows developers
to focus on their application business logic while the under-
lying implementation framework takes care of implementing
fast, memory-safe, and reliable messaging systems.

However, in the AM, the scalability concept is often asso-
ciated with scale-out settings (i.e. large distributed systems
or clusters). This is due to its share-nothing pure message-
passing model, which somehow trades single node perfor-
mance for scalability to alarge number of nodes [16]. Nonethe-
less, solutions capable of consolidating several distributed
servers in a single scale-up multi-core have recently gained
special attention since they can reduce HW costs, software
licenses cost, data-center space, and power consumption [11].
Numerous recent research efforts in the direction of de-
signing Stream Processing Engines (SPEs) bear with this
trend [38, 39, 48]. To this end, the “pure” AM does not offer
significant margins for enhancing its efficiency on a single
scale-up multi-core. This is primarily due to the impossibility
of exposing the physical shared-memory to Actors, and to
introduce low-level optimizations in the messaging systems
without breaking the semantics of the model [44].

In our previous works [42, 43], to face the performance
optimization issues of the AM on a scale-up server, we pro-
posed to enhance the model with a set of well-known Parallel
Patterns (PPs). PPs are integrated into the AM as “macro Ac-
tors”. The low-level platform-specific optimizations and the
exploitation of the shared-memory are confined within the
implementation skeleton of the PPs and they are entirely
transparent to the application programmer. The program-
mer has the responsibility to select the proper PP to solve
his/her problem. In contrast, the patterns provider has the
responsibility to produce an efficient and memory-safe im-
plementation of PPs for the target platform (separation of
concerns software design principle). This approach trades
the full flexibility of the AM with increased efficiency on the
single node.

Problem statement. In contrast to the batch processing
model, the continuous streaming model processes input data
as soon as it is available. The aim is to minimize results
latency while keeping up with the input rate. This processing
model is adopted in several streaming applications whose
typical software architecture is exemplified in Fig. 1.

The application processes continuous streams of data from
a set of sources (e.g., IoT sensors, financial markets). The
input data are then processed and aggregated through a
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Fig. 1. Typical software schema of streaming application.

network of Actors (typically having a DAG topology), each
one implementing a stateless or stateful operator (e.g., fil-
ter, reducer, flat-map). Customers (which are the sinks of
the network) dynamically subscribe/unsubscribe application
services, which de facto are continuous streams of output
results (e.g., in the financial domain, chart patterns within
stock prices). The application graph also comprises a set of
non-latency critical Actors implementing specific features
(e.g., logging, billing, disk data recording). Depending on the
input data rate, the number of sources, and the number of
services offered, single operators may be replicated several
times, paying attention to carefully routing messages to the
correct next Actor in case of stateful operators.

These streaming applications could be conveniently imple-
mented by using Actor Model implementations (e.g., CAF [21],
AKKA [25]), because of the many concurrent entities in-
volved, the explicit management of message routing, and the
lack of shared states. Actually, in the stream analytics domain,
specialized SPEs model applications that have static data-
flow graphs of operators executed by dedicated threads [2].
Our objective is to understand whether a more powerful
and flexible model of computation (i.e., the AM), is suitable
for the execution of high data rate stream analytics applica-
tions. We want to investigate if it is possible to preserve the
expressive and flexibility power of the AM and to execute
high-throughput streaming operators capable of coexisting
with standard Actors.

To assess the AM performance figures in this application
context, we simulated a simplified version of the schema in
Fig. 1 by using the C++ AcTor FRAMEWORK (CAF) [21, 22].
Precisely, we implemented a linear pipeline of three Actors:
Source, Forwarder and Sink (cf. Sec. 4). We observed that
the maximum rate our microbenchmark can sustain is more
than 2 times lower than the one obtained by implementing
the same benchmark “manually” with native C++ threads.
Besides, the average message latency is about 3 times higher.

Careful performance analysis has shown two issues:

1. The messaging system’s complexity for managing dif-
ferent message types in an Actor is a limiting perfor-
mance factor in Actor-based streaming applications
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where streaming operators usually deal with a single
data type’.

2. At high input rates, the unlimited capacity of Actors’
mailboxes pushes too much pressure in the memory
system, making it challenging to stabilize the applica-
tion behavior and limit memory consumption.

Contributions. In this work, we tackle the two issues dis-
cussed above. We utilized CAF as a reference implementation
of the AM. Specifically, our contributions are:

e we show the performance limits of Actor-based imple-
mentations in high-throughput data stream processing
computations;

e we propose a new implementation skeleton of the Se-
quential PP (the basic building-block of our PPs), which
has been specifically optimized for high-throughput
and low-latency data streaming computations in scale-
up servers;

e we propose a new implementation skeleton of the Farm
PP that optimizes Pipeline compositions of consecutive
Farm PPs to reduce the number of message hops;

o we discuss the issues of unbounded mailboxes in stream-
ing computations. To introduce a basic backpressure
mechanism for streaming operators, we propose a new
communication primitive that takes into account the
queue length of the receiving Actor.

Using a set of well-known streaming benchmarks, we demon-
strate the performance advantages of using the new imple-
mentations in the C++ ACTOR FRAMEWORK.

Outline. Sec. 2 provides some background information. Sec. 3
introduces the Parallel Pattern Actors used to enhance the
performance of Actor-based programs on scale-up servers.
Sec. 4 proposes a new implementation skeleton of some Par-
allel Patterns targeting high-throughput streaming computa-
tions. Sec. 5 presents the experimental evaluation, with the
considered applications and the results in terms of through-
put. Sec. 6 discusses some related works, and Sec. 7 summa-
rizes the results.

2 Background

The Actor Model. The Actor Model (AM) [6, 7, 33] is a well-
established approach to concurrent and distributed compu-
tations. It addresses the challenges of data races in concur-
rent shared-memory programming with threads by forbid-
ding shared mutable state among Actors. Actors exchange
immutable messages, and the only mechanism for observ-
ing or modifying internal Actor states is to implement a
message-based protocol. Each Actor has a private mailbox
of unbounded capacity, which stores input messages. The
processing of messages is performed asynchronously and
atomically, and there is no guarantee on the processing order.

11t is worthwhile mentioning the sources of overhead we faced are not
related to potential implementation flaws of the CAF library
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The memory isolation, the message-passing style of communi-
cations, and the serial processing of messages ensure data-race
freedom in Actor-based programs.

Pattern-based parallel programming. One of the well-
established approaches for raising the level of abstraction
in parallel computing is based on the concepts of Parallel
Patterns (PPs) [37], which are customizable schemes of par-
allel computations that recur in many applications and al-
gorithms [27]. These parallel abstractions are made avail-
able to programmers as high-level programming constructs
with a well-defined functional and extra-functional seman-
tics. Each parallel pattern has one or more implementation
schema (called implementation skeleton) for a given target
platform [24]. Notable examples of PPs are Pipeline, Map-
Reduce, Task-Farm, Divide&Conquer. PPs are used in several
programming frameworks and libraries such as Microsoft
PPL [20], INnTEL TBB [41], SkEPU [30] and FastFLow [9].

Data Stream Processing. Several broadly used Stream Pro-
cessing Engines (SPEs), such as Storm [2] and FrLink [1],
adopt the continuous streaming model where inputs are pro-
cessed as soon as they are available, and output results are
produced continuously to provide timely information to the
users. Streams are unbounded sequences of data coming from
one or more sources. A source produces data tuples of the
same type. Distinct sources may produce tuples of different
data types. Streaming applications are modeled as DAGs of
stateless or stateful operators that produce results based on
their business logic. Operators can be replicated to keep up
with high input data rates as well as to increase the system
throughput. To deal with streams, many SPEs provide oper-
ators that repeatedly apply the processing on a window of
recent tuples. This is enabled by the so-called sliding window
processing model [32], where a window is a bounded set
of the most recent tuples whose content is dynamically de-
termined according to various semantics (e.g., count-based,
time-based).

The CAF library. The C++ AcTtor FRAMEWORK (CAF) is an
Actor-based framework implemented in modern C++ [21, 22].
The framework follows the Classical Actor Model [26] ini-
tially proposed by Agha [6]. Actors define a set of behav-
iors, each activated upon the receipt of a specific input mes-
sage type. CAF implements behaviors through C++ lambda
functions. The appropriate lambda function will be selected
through a pattern matching between its formal parameters
and the input message types. Moreover, CAF and all im-
plementation of the Classic Actor Model, enables run-time
change of Actor behaviors employing the became primitive.

By using the send primitive Actors can send any sequence
of data types into the mailbox of other Actors. Such types
sequence will be moved to a type-erased tuple that erases the
actual type preserving annotations of the erased types. These
annotations will be used in the pattern matching phase to
discover the behavior to execute and to cast back the types
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to the original ones. Besides, the CAF messaging system
supports two priority levels and the possibility to skip un-
wanted messages (e.g. messages for behaviors not yet set up).
CAF Actors uses a combination of a LIFO lock-free queue
with multiple FIFO buffers to implement the mailbox. The
LIFO queue is a thread-safe unbounded linked-list with an
atomic pointer to its head. There is one FIFO linked-list for
each priority level. CAF supports two priority levels. Each
FIFO queue also has an additional cached buffer to maintain
messages that are skipped. The sender Actor inserts new
elements atomically in the head of the LIFO queue. The re-
ceiver Actor, atomically extracts all the messages from the
LIFO queue using a compare-and-swap operation. Then, the
messages are divided into the two FIFO queues on the basis
of their priority. Finally, the consumer Actor can dequeue
messages with a different proportion from the two queues
to maintain the priority.

CAF allows multiple Actors to implicitly share message
contents, as long as no Actor performs writes. This permits
sending the same content to multiple Actors without any
copying overhead provided the message handler of receiving
Actors take an immutable reference (copy-on-write).

A Work-Stealing algorithm is used to dynamically assign
ready Actors to run-time threads. However, it is also possible
to assign private threads to Actors by spawning detached and
blocking Actors. They are useful for implementing particular
functionalities or executing non-blocking I/O operations.

3 Parallel Pattern Actors

Recently we proposed to use Parallel Pattern abstractions
to enhance the performance of the Actor Model in shared-
memory systems [42, 43]. The motivation is twofold: a) to
introduce a communication structure in Actor-based appli-
cations that usually are characterized by unstructured com-
munication topologies [31], and b) to safely enable some
low-level shared-memory based optimizations that are gen-
erally not allowed by the “pure” Actor Model®.

The set of PPs we defined, is sketched in Fig. 2. We pro-
vided Data-parallel PPs namely Map and Divide&Conquer
(D&C); and Control-parallel PPs namely SeqActor, Pipeline,
and Farm. Fig. 3 shows an example of a possible composition
and nesting of PPs in Actor-based networks.

In our previous works, we focused mainly on enabling
shared-memory exploitation to speed up data-parallel com-
putations such those present in some well-known multi-core
benchmarks (e.g., PARSEC [18]). These computations, usu-
ally work on independent partitions of large arrays or ma-
trices through parallel-for and Map-Reduce. Therefore, we
implemented the Map, and also the D&C Parallel Pattern

2The implementation, called CAF-PP, is available at https://github.com/
ParaGroup/caf-pp.
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Fig. 3. Example of composition and nesting of PPAs.

using the shared memory within their implementation skele-
tons, avoiding data copy, and enhancing the performance of
fine-grained synchronizations.

This approach using PPs for speeding up data-parallel
computations allowed us to obtain performance close to spe-
cialized thread-based multi-core libraries such as FastFLow
[9], providing at the same time the memory-safe environ-
ment of the Actor Model to application programmers.

Data-flow PPs such as SeqActor, Pipeline, and Farm have
been initially introduced mainly to enable patterns compo-
sition, nesting and to provide the programmer with well-
defined structured topologies in the AM. The SeqActor pat-
tern is an Actor wrapper. It is used to integrate standard
CAF Actors within PP Actors (e.g., for creating a pipeline of
Actors). The Pipeline implements a parallel composition of
multiple Parallel Pattern working in parallel on subsequent
data elements. It takes care of connecting each Parallel Pat-
tern in the correct order. The Farm pattern models Parallel
Pattern replication. Each distinct PP replica (usually called
Worker), works in parallel on distinct data elements of the
input stream. Stream elements are forwarded to the Workers
according to some predefined scheduling policy (e.g., round-
robin, random, byKey), or by using a user-defined policy
(through a C++ lambda function). If the number of replicas
is left unspecified, a default value will be used. The most im-
portant feature of these patterns is their ability to compose
different PPs in a functional way. Sequential, Map and D&C
cannot contain nested patterns, and they must be used as
leaves of the data-flow tree representing the application (or
part of it) implemented with Parallel Patterns.
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In this work, our objective is to enhance the performance
of Control-parallel patterns, focusing on streaming applica-
tions and their ever increasing demand of high-throughput
and low end-to-end message latency. Specifically, we pro-
pose a different implementation skeleton for the Sequential
and Farm patterns that optimizes the message exchange in
the composition of PPs within Actor-based applications.

4 Streaming Parallel Patterns Actors

The Actor Model is in principle particularly suited to imple-
ment streaming applications because of the many concurrent
entities usually involved, the explicit management of mes-
sages routing, and the absence of shared states among oper-
ators. An Actor can be mapped one-to-one with a streaming
operator; thus, the Actor programmer may concentrate on
implementing the operators’ business logic without worry-
ing about how inter-Actors communications happen.

In the context of high-throughput demanding streaming
applications targeting scale-up servers, the use of system-
level languages for implementing the AM is unquestionably
a performance plus compared to, for example, Java-based im-
plementations The C++ AcTor FRAMEWORK (CAF) allows the
development of Actor-based programs leveraging modern
C++. Differently from other well-known implementations
of the Actor Model, such as ERLANG [12] and AKKA [10],
which use virtual machine abstractions, CAF applications
are compiled directly into native machine code. However,
CAF does not provide specific support for data-intensive
streaming applications®.

To evaluate the performance of CAF Actors in streaming
computations, we implemented two microbenchmarks.

Microbenchmarks. By using the Parallel Pattern Pipeline,
we connected three SeqActors in a linear chain. The first
Actor (called Source) generates a stream of tuples at max-
imum speed (each tuple is 24 B). The second Actor (called
Forwarder) forwards each input tuple to the next stage, and
finally, the last Actor (called Sink) collects all tuples. Then,
the same pipeline has been implemented by using three C++
threads and two FIFO lock-free queue [8] to implement the
channels between the stages. The two implementations were
executed for 60 s and their throughput was measured in the
Sink node. CAF (version @.17.5)* has been configured to
run with three run-time Worker threads and with the aggres-
sive polling strategy that maximizes system reactivity [45].
Fig. 4 shows the results obtained. The measured through-
put by employing CAF Actors is more than 2 times lower
than the thread-based implementation (1.4 vs 3.3 Mtuples/s).
To better understand the problem, we used a second mi-
crobenchmark implementing a simple Producer-Consumer

3CAF offers experimental support for data-flow streams between Actors [3].
We did not use such a building-block in our implementation because, from
the performance standpoint, it does not solve the issues outlined in Sec. 4
4We also tested the pre-release @.18 obtaining similar performance figures.
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pattern using two CAF Actors (P and C) exchanging 100 M
small messages (4B each). The objective is to evaluate the
overhead for exchanging a single message between P and C.
The first version uses the lock-free queue used in the CAF
run-time for implementing Actors’ mailboxes as a commu-
nication channel between P and C (cf. Sec. 2). Therefore, P
pushes the messages directly into the queue while C pops
them out. In the second version, instead, we used the default
CAF messaging system (which leverages the same lock-free
queue with the dynamic message dispatching). Fig. 5 shows
the results of this second microbenchmark. The overhead
introduced by the Actors messaging system is more than
2times the base case (0.33 ps vs 0.75 ps). Such overhead is
due to the complexity of managing different types of mes-
sages, even if, as in our microbenchmarks, the Actors will
always receive the same input type for the entire execution.
This extra cost, perhaps, can be lowered by fine-tuning the
implementation code, but certainly, it cannot be completely
removed without loosing the flexibility of defining multiple
behaviors for an Actor.

In streaming applications, operators work on statically
defined input and output data types (the type of input and
output tuples), and the extra complexity of managing multi-
ple data types is the primary source of overhead.

Streaming Operators. To tackle the problem that appeared
in the microbenchmarks, we propose a new implementation
skeleton for the Sequential pattern capable of handling a sin-
gle message type and optimized for defining high-throughput
data streaming operators in CAF. Such new skeleton is im-
plemented by the SeqNode class whose interface is inspired
to the one provided by the node building-block in the FasT-
Frow parallel library [9]. Fig. 6 shows its current interface.
Each new operator must define at least the consume method,
which is called as soon as a tuple is available to be con-
sumed by the node. During the SeqNode execution, input
tuples are processed sequentially and in order. The other two
methods on_start and on_stop, are automatically invoked
once when the node starts and right before it terminates,
respectively. These virtual methods may be overwritten in
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the user-defined operator to implement initialization and
finalization code for the operator node.

The SeqgNode has a typed input queue and zero, one or
more typed output queue references (implemented by the
multiQueues object in Fig. 6 line 15) in order to connect the
operator implemented by the node to one or more different
SeqNodes.

1 template<typename Tin, typename Tout=Tin>

2 class SegNode {

3 public:

4 void run() {

5 // execute the node

6 }

7 protected:

8 virtual void consume(Tin & x) = 0;

9 virtual void on_start() { /* nop */ }
10 virtual void on_stop() { /* nop */ }
11 void send next(Tout && x) {

12 /] ...
3 }
14 Queue<Tin> in ;
15 std::optional<multiQueues<Tout>> out ;
16 };
Fig. 6. The base interface of a streaming operator.

1 struct Operator: SeqNode<T> {

2 Operator(MyState s): SeqNode{}, s {s} {}
3 void consume(T &x) override {

4 T y = do_something(x, s_);

5 send_next(std::move(y));

6 1}

7 private:

8 MyState s ; // operator local state
9}

10
11 int main() {
12 //...

13 MyState sl1, s2;

14  Operator opl{sl};

15 Operator op2{s2};

16 Pipeline pipe{opl, op2};

17

18 auto p= spawn_pattern(sys,pipe).value();
19 //...

20 }

Fig. 7. Simple example showing how to define an operator node and how
to use it in a Pipeline pattern.

Therefore, the Sequential pattern has two implementation
skeletons: SeqActor and SeqNode. The main differences be-
tween them is that the first behaves like a standard CAF
Actor and so it can exchange messages with any other Ac-
tor as it is a standard CAF Actor or a PP. On the contrary,
the SeqNode can be used only inside a Pipeline pattern or it
can be a Worker of a Farm pattern. The Pipeline and Farm
patterns provide the necessary interface to enable the Se-
gNode to communicate with other standard Actors. Fig. 7
shows how to define SeqNode operators and how to connect
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Fig. 8. Optimized Pipeline composition of three Farms patterns running
replicas of SeqNode operators.

them in a Pipeline PP. SeqNodes are currently implemented
as CAF blocking Actors. The message exchange between two
consecutive SeqNodes does not rely on the CAF messaging
system. Instead, typed messages are pushed directly into
the input queue of the receiving node. As shown in the mi-
crobenchmark tests, this approach permits to greatly reduce
the message-exchange overhead present in standard Actors,
related to the complexity of managing pattern-matching for
the dynamic message dispatching.

Pipeline compositions of Farms. The functional-style com-
position is one of the primary features of the proposed PPs.
Streaming applications can be easily modeled by one or more
Pipeline compositions of SeqNodes where some operators are
replicated using the Farm pattern and suitable distribution
policies. The Farm implementation skeleton uses a router
Actor to implement the pre-defined or user-defined distribu-
tion policies towards Farm’s Workers (see Fig. 2). The router
Actor introduces an extra message hop for each operator
replica in a streaming network formed by multiple Farm
compositions. Clearly, these extra hops may have an impact
on the end-to-end latency for traversing the entire network
of operators and may introduce a bottleneck in case of high
data rates and fine-grained operators. For these reasons, we
decided to introduce a new implementation skeleton for the
composition of Farm PPs within a Pipeline to reduce the
number of router Actors hence of message hops.

When a Pipeline pattern connects two consecutive Farms
(regardless the kind of PP compositions used in the Work-
ers), the router Actor of the second farm is automatically
removed and its distribution policy is implemented within
the send_next method of the right-most leaf PPs (i.e., Sequen-
tial, Map, and D&C) present in all Worker replicas of the first
Farm. Fig. 8 shows a simple use-case in which three Farm
patterns are used within a Pipeline to replicate three Sequen-
tial operators (in the figure we used SeqNodes). Only the
first Farm preserves the router Actor because it can receive
messages from outside the pattern, e.g., from a standard CAF
Actor. On the contrary, the second and third Farm(s) do not
have the router Actor.

L.Rinaldi and M.Torquati and G.Mencagli and M.Danelutto

The send_next_if primitive. In almost all SPEs is imple-
mented a form of backpressure to guarantee that sender Ac-
tors cannot overload receiver Actors due to different relative
speed [36]. Instead of implementing complex and costly de-
mand signaling protocols between each sender and receiver,
we decided to implement a more straightforward form of
flow-control by providing a send_next_if command within
Parallel Patterns. The if condition is applied to the actual
number of messages present in the destination queue. If the
length of the queue (observed by the sender) is greater than
the specified parameter value, the send command immedi-
ately returns to allow the user to take actions (e.g., waiting
a while before retrying or discarding the message or buffer-
ing it locally). The send_next_if command, like send_next,
uses the policy configured by the next pipeline stage to select
the queue in which to insert the message. However, if the
next stage policy is either round-robin or random, the com-
mand will try to enqueue the messages in all next queues
before returning with failure. This simple mechanism allows
the sender to implement flow-control strategies and to auto-
regulate the speed of sending messages. In high data rate
scenarios, such control-flow strategies are typically needed
only in the Source operator.

We modified the CAF LIFO queue by adding a new method
that returns the estimated length of the queue (i.e., synchro-
nized_size). This method will be internally used by the
send_next_if command to check the queue length of SeqAc-
tors and SeqNodes. synchronized_size counts the elements
present both in the multiple FIFO queues and in the LIFO
thread-safe queue. In the first case the count is performed
without synchronization and might return an approximated
value, instead the LIFO queue count is performed within a
spin-lock to avoid data-races. However, in the implementa-
tion we made, the extra cost of the synchronization is payed
only in the send_next_if where the queue length is needed
and not in the send_next.

5 Evaluation

The experiments were conducted on a Intel Xeon multi-core
equipped with a dual-socket Intel E5-2695 Ivy Bridge CPUs
running at 2.40GHz and featuring 24 cores (12 per socket 2-
way hyper-threading). Each hyper-threaded core has 32 KB
private L1, 256 KB private L2 and 30 MB of L3 shared cache.
The server has 48 logical cores, 64 GB of DDR3 RAM. It runs
Linux 4.15.0 x86_64 with the CPUfreq performance governor
enabled. We used gcc 9.0.1 with the -03 optimization flag.
The CAF version is 0.17.5, and for all tests, the number
of run-time Worker threads was set to the total number
of Actors used. The Work-Stealing CAF run-time has been
configured to use the most aggressive polling strategy.

In addition to the simple pipeline microbenchmark dis-
cussed in the previous section, we tested a set of streaming
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applications typically used to evaluate Stream Processing En-
gines, namely Word Count, Fraud Detection, Spike Detection,
Linear Road, briefly described in the following.

Our first test was to evaluate the improvement of using
SeqNodes instead of SeqActors in the three-stage pipeline
microbenchmark. Fig. 9 compares the maximum through-
put (tuples/s) obtained by the the two versions, CAF im-
plementing Pipeline (SeqActor,SeqActor,SeqActor); CAF PP
implementing Pipeline (SeqNode,SeqNode,SeqNode), of the
same operators. A large part of the overhead discussed in
Sec. 3 has been removed. The difference with the baseline
(called Thread in Fig. 4), is now about 15% (2.8 M vs 3.3 M
tuples/s), which means that there are still a small margin
for fine-tuning our SeqNode implementation. Concerning
the cost for exchanging a message between a Producer and
a Consumer Actor, Fig. 10 shows that the SeqNode-based
implementation (i.e., CAF PP) reduces the average time from
0.81 ps to 0.38 ps.

Applications. We considered four streaming applications
whose operators graphs are sketched in Fig. 11°. The fig-
ure also shows the kind of communication between opera-
tors: forward, byKey and broadcast. These communication
attributes are meaningful if the next operator is replicated
using a Farm pattern. The forward communication is the
default one. It states that an input tuple can be assigned to
any replicas. We implemented this communication mode
with the round-robin policy strategy of the Farm pattern.
The byKey distribution allows sending all input tuples with
the same key attribute (i.e., a specific field of the tuple) to
the same operator replica. Finally, the broadcast distribution
duplicates the tuple and sends it to all next operators.
Fraud Detection (FD) applies a Markov model to compute
the probability of a credit card transaction to be a fraud. Spike
Detection (SD) finds the spikes in a stream of sensor readings
using a moving-average operator and a filter. Word Count
(WC) counts the number of instances of each word in a text
file. An operator splits the lines into words; a second opera-
tor counts the word instances. Linear Road (LR) emulates a

5The C++ source code is publicly available in GitHub: https://github.com/
ParaGroup/StreamBenchmarks.
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Fig. 11. Applications used in the evaluation.

tolling system for the vehicle expressways. The system uses
a variable tolling technique accounting for traffic congestion
and accident proximity to calculate toll charges.

In Fig. 12, 13, 14, 15 we reported the throughput obtained
by implementing the applications’ operators (one replica per
operator) by using the two implementation skeletons for the
Sequential pattern (SeqActor vs SeqNode, labeled with CAF
and CAF PP, respectively). All tests have been executed 20
times for 60 seconds. The average value obtained and the
error-bar are reported in the figures. The throughput has
been measured in the Sink operator varying the input data
rate in the Source. As long as the data rate is relatively low,
there are no significant differences between the two imple-
mentation skeletons, even though the end-to-end latency is
higher for the SeqActor-based implementation (not reported
here for space reasons). Conversely, with high data rates,
the difference between the two versions is increasing sig-
nificantly. Word Count presents the biggest difference. This
is due to the very high data rate produced by the Splitter
operator that gets in input a line from the Source, and pro-
duces in output all words it contains, thus multiplying the
nominal input data rate.

Fig. 16 shows the performance improvement obtained for
all applications by the SeqNode-based implementations. In
this case, for both implementations, we ran the Source opera-
tor at maximum speed. In addition, they use the send_next_if
primitive. The “queue length value” is set to 1K elements,
and if reached, the Source waits for some nanoseconds before
retrying the send. In this way, the internal pipeline operators
are not overloaded and the entire system stabilizes after few
seconds of execution. In this case we executed all applica-
tions for 10 minutes. As expected, the improvement of the
CAF PP version using SeqNodes is significant, more than 2x
in all application but Fraud Detection where it is about 30%.

Finally, the table in Fig. 17 reports the results obtained
in all applications by replicating all streaming operators. In-
stead of finding the best replication degree for each operator
(operators have different execution times, and some of them
may need more replicas while others do not need to be repli-
cated at all), we decided to equally replicate all of them until
we fill up all logical cores of the server considered (48 in our
case). The replication degree is specified in the table. This
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Fig. 16. Performance improvement of CAF PP vs
CAF for WC, FD, SP, LR applications. The tests
were executed at maximum rate in the Source.

WC FD SD LR
Operators 4 3 4 9
Replicas x12 Xx16 x12 X5
CAF 26M 327K 16M 1.0M
CAFPP 81M 560K 9.7M 2.1M
Improvement 3.1 1.7 6 2

Fig. 17. Applications throughput (tuples/s) ob-
tained replicating all operators. The improvement
is the ratio between CAF PP and CAF.

way, we can evaluate the behavior of the two implementation
skeletons under very high data rates, since all Source replicas
execute at maximum speed. In this test we used for both
versions the implementation skeleton for the Farm pattern
that removes the routing Actor between two consecutive
Farm PPs. For all applications, we obtained a performance
improvement in terms of throughput, and as expected, the
relative distance between the two implementation skeletons
(i.e., SeqActor vs SeqNode) further increased in all applica-
tions but Linear Road, where the relative distance remains
about the same due to its peculiarities.

Allin all, at high data rates, the new implementation skele-
tons of our PPs provide a definite performance boost without
compromising the AM’s message-passing semantics.

6 Related Work

The Actor Model provides important guarantees to deadlock-
freedom and data-race-freedom. However, on shared-memory
systems, those guarantees come at the price of some extra
performance overheads. Combining the Actor Model with
shared-memory for performance is efficient but may intro-
duce data-races. Several research works focused on improv-
ing the performance of the Actor Model without losing its
important guarantees. Some tried to provide more efficient
run-time mechanisms to speed up the execution of Actor-
based applications [14, 31, 45, 46], others, instead provide

high-level abstractions to support the distinctive features of
the Actor Model [19, 23, 34, 40, 44].

Some works focused on improving the AM messaging
system. AcTOR4J [15] is a new AM implemented in Java
that focuses on optimizing message exchange among Actors.
AcTtor4j differently from AKka [10] moves the Actor queue
to the underline native executor, thus the Actor is bound to
that executor along with other concurrent Actors. Using this
approach the implementation can optimize message queue at
the level of the underline executor guaranteeing low latency.

SALSA L1TE [28] is a run-time the AM language SALSA. It
has been designed to efficiently implements the basic features
of the Actor Model, i.e. message-passing and dynamic Actors
creation. SALSA LITE is highly optimized for multi-cores and
proposes a non-transparent execution of Actors where the
user should manually assign Actors to executors.

Selectors [35] in an extension of the AM. The Selectors
manages multiple incoming queues that can be activated
or deactivated. A deactivated queue may continue to re-
ceive messages, but the Selectors will temporarily ignore it.
The authors claimed that the use of the SELECTORS concept
makes synchronization and coordination patterns more natu-
ral to implement (e.g., synchronous request-reply, producer-
consumer with bounded buffer).

The CAL Actor Language [29] attempted to integrate the
data-flow programming model with Actors. CAL has been
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adopted in the standardization effort of the MPEG Reconfig-
urable Video Coding Framework [17].

AKKA [10] is one of the most used Actor frameworks. In
AXKA, the programmer can choose the type of queue to use
for the mailbox of each Actor [5]. There is a set of default
queues with different features, e.g. bounded or unbounded
queue, priority-based queues, and it is even possible to supply
a custom queue. Moreover, AKKA provides mechanisms to
replicate Actors by using Routers [4]. A Router provides a
set of distribution policies, one of them being the possibility
to send the message to the Actors with the smallest queue
length. This feature is supported regardless of the kind of
mailbox used by the individual Actor. Every AKka mailbox
implementation provides an API to get the queue length.
Moreover, AKKA has an extension, not based on the AM,
designed for streaming called Akka STREAM. The system is
based on the Reactive Stream project and implements a static
graph of operators with typed messages.

Instead, the CAF STREAM experimental extension of CAF,
has a similar design of AkkA STREAM, but (for now), it does
not provide any high-level structure for building networks of
operators. It maintains a close connection with CAF Actors.

Recently, there has been an interest in developing SPEs
for scale-up servers [39, 48]. However, most of them are
based on the JVM or use the batching model. The WiND-
Frow library [38], written in modern C++, implements the
continuous streaming model and leverage PP abstractions
for complex streaming operators. Its run-time is based on
the thread-based FastFlow library [9].

To the best of our knowledge, there were no previous
attempts to integrate optimized stream-oriented PPs within
the Actor Model.

7 Summary

In this work, we studied the use of the Actor Model in high
data rate streaming computations on multi-cores. We used
C++ AcTor FRAMEWORK as a reference implementation of
the Actor Model. We discussed the performance limits of
Actor-based implementation in high-throughput streaming
applications. Then, we propose a new implementation skele-
ton of both the Sequential and Farm Parallel Patterns for CAF,
which have been specifically optimized for high-throughput
and low-latency data streaming computations implemented
with Actors. The results obtained by testing a small set of
well-known benchmarks demonstrate the benefits of using
the new implementations, which can bring a performance
boost of more than 2x on state-of-the-art scale-up servers.
The optimizations introduced are transparent to the CAF
Actor programmer that uses PPs.
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