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Abstract—Pervasive Grid Computing Platforms include cen-
tralized computing nodes (e.g. parallel servers) as well as
decentralized and mobile devices. Pervasive Grid applications
include data- and computing-intensive components which can be
mapped also onto decentralized and mobile nodes. The effective
and practical success of this mapping resides also in deriving
proper configurations of applications which consider the limited
memory capabilities of those resources. In this paper we target this
issue by showing how we can study and configure the memory
requirements of an Emergency Management application. We
present our solutions by using the ASSISTANT programming
model for Pervasive Grid applications.

Index Terms—Parallel Processing, Parallel Language, Struc-
tured Programming, Memory Management

I. INTRODUCTION

Pervasive Grid computing platforms [1] are composed of
a variety of fixed and mobile nodes, interconnected through
multiple wireless and wired network technologies. Com-
plex Pervasive Grid applications include data- and compute-
intensive processing (e.g. forecasting models) not only for off-
line centralized activities, but also for on-line, real-time and
decentralized ones: these computations must be able to provide
prompt and best-effort information to mobile users.

Until now these complex applications have been mapped
onto centralized parallel servers [2], while decentralized and
mobile nodes were mainly used for back-end tasks (e.g. result
visualization). The main motivation behind this choice is
that those devices offer poor resources, which are generally
thought to be insufficient for executing a complex application.
From another viewpoint, we notice that this is true because
complex computations are programmed and configured only
to be mapped on a high-performance platform.

Our research work is based on the definition of the ASSIS-
TANT [3] (ASSIST with Adaptivity and Context-Awareness)
programming model which allows programmers to express
multiple versions of a same parallel module targeting different
execution platforms. In this paper we analyze the case in which
the target platforms have constraints on the available memory
space, which characterize decentralized and mobile computing
nodes. As contributions of this paper, we will show that the
features of the introduced programming model allow:

• to express parallel computations which memory require-
ments can be statically and dynamically analyzed and
configure;

• to express adaptive behavior w.r.t. memory constraints of
available computing nodes.

The main features of ASSISTANT are that it allows to
express parallel computations by means of a general blend
of algorithmic skeletons [4] (also called structured parallel
programming). In this paper we show how the properties of
algorithmic skeletons allow us to target the first contribution
of above. To concretize this contribution we focus on a flood
management application, we show multiple versions of a flood
forecasting module and we provide its memory requirements
analysis. We also performed experiments to assess the analyt-
ical results. ASSISTANT also offers high-level programming
constructs to express dynamic selection and configuration of
multiple parallel versions of a same program. We show how
these feature allows us to target the second contribution of
above and we concretize it by showing how adaptivity can be
programmed for the flood management application.

The outline of this paper follows: Sec. II describes related
works; Sec. III describes the flood management application;
Sec. IV gives an overview of the main ASSISTANT constructs;
Sec. V describes an implementation of the flood management
application in ASSISTANT, highlighting memory-related log-
ics. Sec. VI draws the conclusions of this work.

II. RELATED WORK

Several research works aim at making possible the exploita-
tion of mobile computing nodes to perform simple to complex
adaptive computations. These works are based on the concepts
of context [5]. The context includes environmental data such
as air temperature and the network and node states. Smart
Space systems mainly consist in providing context information
to applications, which possibly operate on controllers to meet
user requirements. Some works focus on abstracting useful
information from raw sensor data for adaptivity purposes,
possibly by means of ontologies [5].

Concerning adaptivity, a mobile application can exploit
optimized algorithms, protocols or systems in its run-time.
Adaptivity can be also defined at the application level [6].
For instance, in Odyssey [7] adaptivity is expressed in terms
of the choice of the services from which an application is
composed.

In [2] High-performance application are introduced in the
context of pervasive computing, for stream-based transforma-
tions, fusion and feature extractions. Unlike our work, high-
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Fig. 1. Scheme of the flood management application.

performance computations are only mapped on centralized
parallel servers.

III. FLOOD MANAGEMENT APPLICATION

We consider a schematic view of an application for flu-
vial flood management (see Fig. 1). During the “normal”
situation several parameters are periodically monitored and
acquired through sensors and by other services (meteo and
GIS). For instance sensors can monitor the current value and
variation of flow level and surface height. A forecasting model
is periodically applied for specific geographical areas and
for widest combinations of these areas. An example is the
TUFLOW [8] hydrodynamic model, which is based on mass
and momentum partial differential equations to describe the
flow variation at surface. Their discrete resolution requires,
for each time slice, the resolution of a very large number of
tridiagonal systems. Parallel techniques are available that make
it possible reasonable response times in a scalable manner.
The quality of the forecasts also depends on the size of the
tridiagonal systems. From the memory occupation viewpoint,
larger system size induce a higher memory occupation for the
resolution, independently of the used sequential and parallel
algorithm.

To achieve high-performance we choose to map the fore-
casting module on a centralized high-performance parallel
server (e.g. a cluster). Nevertheless, in a Pervasive Grid we are
forced to consider also critical situations. An example of such a
situation is that in which the network connection of the human
operator(s) with the central servers is down or unreliable.
This is possible because we are making use of a (large)
set of mobile interconnection links which are geographically
mapped onto a critical area. To manage the potential crisis
in real time, we can think to execute the forecasting model
and visualization tools on a set of decentralized nodes whose
interconnections are currently reliable. For this mapping to be
feasible, programmers must design their applications in such
a way that multiple versions of modules (e.g. the forecaster)
are provided, each featuring different memory requirements.

In this paper we consider two cyclic reduction algorithms
[9] for tridiagonal system solving. For brevity, we avoid
to introduce their mathematical formulations: the interested
reader can refer to [9].

Below, we show our methodology in designing and devel-
oping complex High-Performance Pervasive Grid applications
w.r.t. the study of memory requirements.

IV. THE ASSISTANT PROGRAMMING MODEL

For brevity, we give a brief description of the main pro-
gramming constructs of ASSISTANT. The reader can refer to
[3] for a full description.

a) Parallelism: As introduced above, ASSISTANT pro-
vides constructs to express structured parallel computations
composed by means of streams [10]. In particular, the follow-
ing constructs are available:
• input section: it is used to express the distribution of

received data from input streams to the parallel activities
performing the computation, according to primitive con-
structs (e.g. on-demand and scatter) or user-programmed
ones;

• virtual processors: in this construct we specify the par-
allel computation applied to each input data, possibly
producing an output result. Parallel computations that can
be expressed are task farm and data parallel.

• output section: in this section we express the collection
of virtual processors results and their delivery to output
streams, by means of primitive strategies (e.g. gather) or
user-programmed ones.

The programmer can define multiple parallel modules (or
ParMod) by means of this construct, and she/he can compose
them in generic graphs by means of streams.

b) Adaptivity: The ParMod also includes constructs to
express multiple versions of a same module and their dynamic
control, i.e. its adaptivity. In a single ASSISTANT ParMod
multiple parallel computations are encapsulated in multiple
instances of the operation construct. This construct is the unit
of adaptivity and deployment and it can be described by the
following logics:
• Functional logic: this includes all the computations

(sequential or parallel) performed by the ParMod and
expressed according to the model described above.

• Control logic or manager: this includes all the adaptivity
strategies and reconfigurations performed to adapt the
ParMod behavior as a response to specified events. A cost
model for a certain parallelization schema can express the
interested QoS parameters of a computation in function of
architecture-dependent parameters such as: the communi-
cation latency between processes and the completion time
for a specific task. Using proper cost models the control
logic can select the best version to execute when a certain
context situation is verified, maximizing or minimizing
specific QoS parameters (e.g. the module response time
or its memory occupation).

• Context logic: this includes all the aspects which link
the ParMod behavior with the surrounding context. The
programmer can specify events which correspond to
sensor data and to the dynamic state of the computation
(e.g. the module service time).

A ParMod includes multiple operations each specifying its
own logics of above. The general adaptive semantics of a
ParMod can be described as following. When a ParMod is
started, a user-specified initial operation is activated. Only one
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Mem. Req. per Worker Alg. 1 Alg. 2
Task Farm Mw(N, δ, n) = (q−1) · (4 ·N · δ)+N · δ Mw(N, δ, n) = 5 · N · δ

Data Parallel Mw(N, δ, n) =
1
n

[(q − 1) · (4 · N · δ) + N · δ]
Mw(N, δ, n) = 1

n
(5 · N · δ)

TABLE I
MEMORY REQUIREMENTS PER WORKER

operation for each ParMod can be currently active. During the
execution the context logic or the managers of other ParMods
can notify one or more events. The ParMod control logic
exploits a mapping between these events and reconfigurations,
defined by the programmer, to either select a new operation
to be executed, or modify the run-time support of the current
operation (e.g the parallelism degree).

V. ADAPTIVITY FOR FLOOD MANAGEMENT

We describe two cyclic reduction algorithms we parallelize
them.

A. First Algorithm

This algorithm includes two main parts. The first part
(denoted by transformation part) transforms in q − 1 steps
(q = log2(N+1)) the input system. At each step l we consider
all rows i such as i mod 2l = 0, for which we solve:

al
i = αia

l−1
i−2l−1 bl

i = bl−1
i + αic

l−1
i−2l−1 + γi

cl
i = γic

l−1
i+2l−1 kl

i = kl−1
i + αik

l−1
i−2l−1 + γik

l−1
i+2l−1

αi = −al−1
i /bl−1

i−2l−1 γi = −cl−1
i /bl−1

i+2l−1

(1)
where ai, bi, ci and ki are the three diagonal coefficients and
the constant term of the i-th system row. The superscripts
denote the computational step at which their values are taken.

The second part of this algorithm is denoted resolution
part in which we compute the solutions to the linear sys-
tem, according to a fill-in procedure. It includes q steps for
l = q, q − 1, . . . , 1. At each step l we consider all rows i for
which i mod 2l = 0 and we compute:

xi = (kl−1
i − al−1

i xi−2l−1 − cl−1
i xi+2l−1)/bl−1

i (2)

In this case we do not need multiple x values for each
computation step. The memory requirement of this algorithm
is the sum of the following terms:

• as we have to keep all the values computed during the
transformation part, as they are used in the resolution one,
we need: (q−1)·(4·N ·δ) bytes, where we have considered
4 values for each row (a,b,c and the constant term k) and
δ is the system size for double precision floating point
values. As α and γ are temporary, we avoid to consider
their cost;

• the resolution part only requires a single copy of the x
array: the memory requirement is N · δ bytes.

B. Second Algorithm

The second algorithm includes two parts as the previous
one. The first part includes q steps. Unlike the first algorithm,
we solve the same equations (1) but for all system rows at each
steps. The second part includes only a single step in which we
directly get all the solutions of the system. These are computed
in the following way: xi = kq

i /bq
i . Notice that we only need

the last values of the transformed system, instead of all the
ones computed during the first part. Thus:
• the transformation part rewrites at each step the whole

tridiagonal system. At each step we only need the values
computed at the previous step and the new ones: N · 4 · δ
bytes;

• the resolution part requires the same memory amount of
the first algorithm.

Thus, this algorithm requires N ·4 · δ +N · δ = 5 ·N · δ bytes.

C. Parallel Versions

Looking at the algorithms above we can think to use two
kinds of parallel structures:
• Task Farm: the systems (tasks) belonging to the input

stream are scheduled w.r.t. several replicated workers
according to a load balancing strategy, each worker
executing the sequential algorithm on a different input
system. Each worker performs a whole cyclic reduction
algorithm on each assigned input system. Thus, the
memory requirements for each worker correspond to the
one of the whole algorithm.

• Data Parallel: each tridiagonal system is partitioned
(scattered) onto replicated workers, each one performing
the sequential algorithm in its partition. Workers coop-
erate during each step according to the communication
stencil. The result is obtained by gathering local results.
We assume that the system is equally partitioned into
workers. For n workers the memory requirements for
each one of them correspond to the algorithm memory
occupation divided by n.

We compute the memory requirements per worker (see Ta-
ble IV-0b) and per parallel module (see IV-0b) of both
algorithms. The formulas can be simply derived by proper
multiplication and division of the sequential formulas.

It is important to notice that the task farm version operates in
parallel on p systems, while the data parallel one solves only a
system at time. This is the reason behind the different memory
requirements of task farm and data parallel paradigms.

From the analysis of the equations it can be noticed that:
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Mem. Req. per Module Alg. 1 Alg. 2
Task Farm Mp(N, δ, n) = n ·

[(q − 1) · (4 · N · δ) + N · δ]
Mp(N, δ, n) = n · (5 · N · δ)

Data Parallel Mp(N, δ, n) =
[(q − 1) · (4 · N · δ) + N · δ]

Mp(N, δ, n) = (5 · N · δ)

TABLE II
MEMORY REQUIREMENTS PER PARALLEL MODULE

• for the single worker, the task farm memory requirements
remain constant, equal to the memory requirements of the
sequential algorithm. The data parallel memory require-
ments decrease linearly with the parallelism degree;

• for the whole parallel module, the task farm requirements
increase linearly with the parallelism degree. Also in
this case, the data parallel decrease linearly its memory
requirements.

From these observations we can derive a general selection
policy for the versions of above:
• the first algorithm parallelized as a task farm requires

more memory than the other versions. We can map it
on the centralized parallel server where each node has
its own local memory: increasing the parallelism degree
also increase the total memory available;

• the second algorithm parallelized as a task farm requires
less memory than the first algorithm, but more than the
data parallel version. We can map it on a decentralized
interface node featuring a multicore architecture, which
memory availability is larger than that of mobile devices
but lower than that of a centralized server.

• the second algorithm parallelized according to the data
parallel paradigm requires less memory than the other
versions: it is feasible to be mapped on a decentralized
set of mobile devices or on interface nodes with limited
memory capabilities.

D. Programming Adaptivity

We show how adaptivity can be programmed in ASSIS-
TANT, also taking into account memory requirements, in a
simple example. Suppose that we are executing a data parallel
(second algorithm) on an interface node and that the client
PDAs become disconnected. In this case we start executing
the forecasting module directly on the PDA network: before
starting the execution we compute the optimal application
configuration, w.r.t. generated system size, by analyzing the
currently available memory of PDAs.

Fig. 2 shows the control logic of the operation executed on
the interface node. The operation control logic is implemented
in the on event construct:
• in the case in which all connections fail, perform the

actions in the do-enddo block;
• read the available memory per PDA from context inter-

faces.
• compute the maximum value for N (system size) which

requires a total memory which is lower or equal to the one
available on each PDA (we use the Mw function). The

o p e r a t i o n i n t e r f a c e N o d e O P {
/ / Loca l v a r i a b l e s o f t h e o p e r a t i o n :
i n t p a r de g ;
/ / . . . p a r a l l e l i m p l e m e n t a t i o n . . .
o n e v e n t {

( ( w i r e l e s s f a i l ( ) ) && ( w i r e d f a i l ( ) ) )
do

t h i s . s t o p ( ) ;
/ / g e t t h e a v a i l a b l e memory per PDA
i n t avail mem = c o n t e x t . pdaMem ( ) ;
/ / compute t h e max s y s t e m s i z e (N) f o r

which t h e memory
/ / req . are below t h e a v a i l a b l e one
i n t N = c o n s t r a i n t ( max (N, Mw(N, d e l t a , 1 ) )

<= avail mem ) ;
/ / c o n f i g u r e t h e g e n e r a t e d s y s t e m s i z e . .
pdaOP . s e t S y s t e m S i z e (N) ;
/ / . . and o u t p u t r e s u l t s i z e
pdaOP . s e t I n t e r f a c e ( r e s u l t , N/ 2 ) ;
pdaOP . s t a r t ( ) ;

enddo
}

}

Fig. 2. Operation of the TSM module for the interface node.
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Fig. 3. Memory occupation per worker of the task farm and data parallel
for N = 220 − 1 by varying the parallelism degree.

result must be lower than the detected available memory
(constraint function);

• configure pdaOP to generate to the computed N value;
• instantiate the output interface for results in such a way

that it corresponds to the size of results, which depend
on the size of the generated and solved systems (half of
the system size, in this forecasting problem).

Finally, we can start the pdaOP.
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for N = 219 − 1 by varying the parallelism degree.

E. Experiments

We performed experiments to show the difference between
the memory requirements of the task farm with the first
algorithm and the data parallel with the second algorithm.

For performance reasons, we mapped the task farm version
on a cluster architecture, featuring 30 nodes Pentium III 800
MHz with 512 KB of cache, 1 GB of main memory and
interconnected with a 100 Mbit/s Fast Ethernet. We mapped
the data parallel operation on a Intel E5420 Dual Quad Core
multicore processor, featuring 8 cores of 2.50 GHz, 12 MB
L2 Cache and 8 GB of main memory.

On both platforms we have implemented our operations in
C++ exploiting the MPICH library for inter-process communi-
cations. At the implementation level we have to consider also
the unavoidable costs of process and communication library
implementation, which also depend on the selected platforms.
Results show that this support cost dominates the application
total memory requirements for smaller system sizes.

Fig. 3 shows the comparison for the task farm and data
parallel between theoretically computed values and actually
measured ones for the case of N = 220 − 1 by varying the
parallelism degree (1 to 6 processors). In the figure dotted lines
represent experimental data, while continuous ones theoretical
data: the latter values are computed by solving the Mw equa-
tions (see Sect. III). Notice that, as expected, the theoretical
value is always below the corresponding experimental one:
this happens because the Mw equations model the application
state, not all the needed memory. In the experimental data
data we have also to add the costs given by the process and
communication implementation.

We have obtained similar results for the cases of N =
219 − 1 (Fig. 4) and N = 218 − 1 (Fig. 5). In all figures,
notice that for low partition sizes (e.g. data parallel case), the
memory requirements are dominated by the costs of process
and communication implementations. This cost is dependent
on the used platform, but also in the way in which we support
our application.

To summarize, when the system size has a significant impact
on the application memory occupation, our analysis based on
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structured parallelism models represents a good framework to
express adaptivity aspects w.r.t. memory requirements. This
is not true in the case in which the memory occupation is
dominated by implementation mechanisms of processes.

VI. CONCLUSION

In this paper we have shown how memory requirements
for complex Pervasive Grid applications can be analyzed
by exploiting the structured parallel programming paradigms.
We have described our analytical methodology on a flood
management application and we have show how this can be
used to program adaptive behavior in ASSISTANT.
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