Proceedings of the 21st IASTED International Conference

Parallel and Distributed Computing and Systems (PDCS 2009)

November 2 - 4, 2009 Cambridge, MA, USA

A PROGRAMMING MODEL FOR HIGH-PERFORMANCE ADAPTIVE
APPLICATIONS ON PERVASIVE MOBILE GRIDS

Carlo Bertolli, Daniele Buono, Silvia Lametti, Gabriele Mencagli, Massimiliano Meneghin,
Alessio Pascucci and Marco Vanneschi
Department of Computer Science
University of Pisa
L. B. Pontecorvo, 3, I-56127 Pisa, Italy
email: {bertolli, d.buono, lametti, mencagli, meneghin, pascucci, vannesch} @di.unipi.it

ABSTRACT

Pervasive Grids are emerging distributed computing plat-
forms featuring high degrees of dynamicity and hetero-
geneity. They are composed of fixed and mobile nodes, in-
terconnected through wireless and wired networks. Adap-
tivity is the key point for applications to efficiently exploit
Pervasive Grids. We focus on High-Performance pervasive
applications, such as emergency management. We present
a novel programming model which allows programmers to
express high-performance adaptive applications in terms of
their parallel and distributed structures. In this program-
ming model a parallel module can be programmed in mul-
tiple versions, each optimized for a specific platform con-
figuration (e.g. mobile nodes or central servers). The mod-
ule is programmed to select the best version to handle/serve
certain events, such as wireless link failure and user request
for a better QoS. We experimentally show the efficacy of
this approach for a test-based application on a Pervasive
Grid.

KEY WORDS

High-Performance Computing, Context Awareness, Adap-
tivity, Pervasive Grid

1 Introduction

Pervasive Grid computing platforms [13] are composed of
a variety of fixed and mobile nodes, interconnected through
multiple wireless and wired network technologies. In these
platforms the concept of context represents the state of log-
ical and physical resources and of the surrounding environ-
ment (e.g. sensor data). An example of Pervasive Grid
application is risk and emergency management [3|]. These
applications include data- and compute-intensive process-
ing (e.g. forecasting models) not only for off-line central-
ized activities, but also for on-line, real-time and decen-
tralized activities: these computations must be able to pro-
vide prompt and best-effort information to mobile users.
For this purpose applications must deal with the dynamic
changes of the context: adaptivity is the key point for ap-
plications to efficiently exploit Pervasive Grids.

We introduce a novel programming model for High-
Performance applications on Pervasive Grids, featuring
context awareness and adaptivity. We enable application

668-014

307

adaptivity in terms of their (parallel and distributed) struc-
tures and used algorithms. In this paper we consider a risk
and emergency management application. Traditionally,
these applications are performed on centralized servers, but
we can map (part of) them also onto decentralized nodes,
such as PDAs and embedded multicore technology. In fact,
alternative computations should be defined to perform the
same application task (e.g. forecasting model). These com-
putations are different in the used implementation mecha-
nisms and in the provided Quality of Service (QoS). In gen-
eral, they can be also mapped onto different resources. This
mapping should be performed dynamically, to handle cer-
tain context events, such as user requests for different QoS
constraints or catastrophic events such as link failures. In
this paper we consider the term QoS as a set of metrics,
reflecting the experienced behavior of an application such
as: its memory occupation, the estimated performance (e.g.
the average service time for a stream computation or the
completion time of a single task) and the user degree of
satisfaction, such that the precision of computed results.

To enable this kind of behavior, applications have to
be defined as adaptive. Adaptivity requires that specific
programming constructs are provided to programmers to
express (a) different “versions” of the same application
module, and (b) the dynamic selection of the best version
for specific context situations. The programming model,
introduced in this paper, allows programmers to express
multiple versions of a same computation, optimized to be
respectively executed on different resources (e.g. mobile
nodes or high-performance central servers). The key point
is that these versions are described in a same program, pro-
viding constructs to express the dynamic switching to han-
dle programmer defined context events and, in general, to
control their performances and the adaptivity strategies.

In Sect.P2land Blwe summarize the related works and
we introduce a test-case application related to emergency
management. In Sect. d] we introduce our programming
model. In Sect.[5] we describe a prototype implementation
of the programming model related to the test-case and we
present and discuss experimental results, validating our ap-
proach. Finally in Sect. [6| give the conclusion of this work.

debbie
New Stamp

2 Related Work

Adaptivity has been introduced for mobile and pervasive
applications by exploiting the concept of context [2]. Con-
text definition includes environmental data (e.g. air temper-
ature, the state of network links and processing nodes and
high-level information). Smart Space systems [14] mainly
consist in providing context information to applications,
which possibly operate on controllers to meet some user
defined requirements. Some works focused on the issue of
abstracting useful information from raw sensor data in such
a way that they can be used to define application adaptivity.
For instance, [4] exploits ontologies to model various con-
text information, to reason and share or disseminate them.

General mobile applications must adapt themselves to
the state of the context. For instance, a mobile application
can exploit optimized algorithms [9] or protocols [6]. In
this vision, it is the run-time support (e.g. the used proto-
col) which is in charge of adapting its behavior to the con-
text. In a more advanced vision adaptivity can be defined
as part of the application logic itself [3]]. For instance, in
Odyssey [10] an operating system is responsible of mon-
itoring the system resources. Significant changes in re-
source status is notified to applications, which adapt them-
selves to meet a fidelity degree. Adaptivity is expressed in
terms of the choice of the used services.

High-performance for context-aware applications is
introduced in [8]]. In this work high-performance compu-
tations are defined as data stream flows of transformations,
data fusions and feature extractions. Anyway, they are ex-
ecuted on centralized servers, while mobile nodes are only
demanded to result collection and presentation. We go be-
yond this vision by: (i) allowing programmers to express
multiple versions of a same program exploiting different
QoS; (ii) allowing programmers to execute proper versions
also on mobile nodes.

Independently of pervasive environments, several
research works are focused on adaptivity for high-
performance parallel programs. In [1] it is shown how
hierarchical management can be defined in the case
component-based applications are developed according to
known parallelism paradigms. Adaptivity for service-
oriented applications is also targeted in [L1]], but it is only
discussed for large-scale simulations of non-linear systems.
We inherit and extend these research works in our pro-
gramming model. In this paper we mainly focus on the
programming model mechanisms to express adaptivity be-
tween multiple versions of a same computation, and on
their performances according to known cost models.

3 A Test Case: Flood Applications

We consider a schematic view of an application for fluvial
flood management (see Fig.[I). During the “normal” situa-
tion several parameters are periodically monitored through
sensors and possibly by other services (meteo, GIS). E.g.

308

sensors can monitor the current value of flow level, surface
height, flow density in each spatial coordinate.

Sensor Geographic Flood Forecasting Decision
Networks Information System) Model Support System
Precipitation Data Meteorological /
—>
(e.g. satellite images) Prediction Model

v

Figure 1. Scheme of a flood management application.

A forecasting model is periodically applied for spe-
cific geographical areas. Examples are MIKE 21 [18] or
TUFLOW [15]], which are based on mass and momentum
differential equations. Their discrete resolution requires,
for each time slice, the resolution of a very large number
of linear (tri-diagonal) systems, which size depends on the
model precision required. Parallel techniques are available
(e.g. parallel cyclic reduction method) that make it possible
reasonable response times in a scalable manner.

Alternatively a human operator can ask the execution
of the model for a specific area with specific parameters.
A critical situation is that in which the network connection
of the human operator(s) with the central servers is down
or unreliable. This is possible because we are making use
of a (large) set of wired and wireless interconnection links
which are geographically mapped onto the critical area. To
manage the potential crisis in real time, we can execute the
forecasting model and visualization tools on a set of de-
centralized resources, whose interconnection is currently
reliable.

Just limiting to this scenario, it is clear that there is
a complex problem in dynamic allocation of software com-
ponents to processing and communication resources. Some
resources may have specific constraints in terms of storage,
processing power, power consumption: the same version
of the software components may be not suitable for them,
or even may be impossible to run it. Thus, the application
must be designed with several levels of adaptivity.

4 A Programming Model for Parallel Adap-
tive Applications

Our novel programming model ASSISTANT (ASSIST with
Adaptivity and Context Awareness) is based on the AS-
SIST [16] experience, which has been a starting point to
define a novel framework realizing High-Performance per-
vasive applications with adaptive and context-aware behav-
iors. ASSIST [16] is a programming environment for ex-
pressing parallel and distributed computations according to
the structured parallel paradigm. In ASSIST it is not possi-
ble to natively express an adaptive application, which is one
of the intended goals of ASSISTANT. An ASSIST applica-
tion is expressed in terms of a set of ParMods (i.e. Parallel

ASSISTANT Module
ASSISTANT Module

—0 O—| speaseem O

contextcvens A
Context Logic

nager)
contextevents
Context Logic

Figure 2. Cooperating ASSISTANT ParMods.

Modules) interconnected by means of typed streams. The
ParMod construct includes three sections:

e input_section: it is used to express the distribution of
received data from input streams to the parallel activ-
ities performing the computation, according to primi-
tive constructs (e.g. on-demand and scatter) or user-
programmed ones;

e virtual_processors: they are used to express the par-
allel computation applied to each input data, possi-
bly producing an output result. Virtual processors are
the abstract units of parallelism in ASSIST, which are
mapped onto a set of implementation processes;

e output_section: in this section we express the collec-
tion of virtual_processors results and their delivery to
output streams, by means of primitive strategies (e.g.
gather) or user-programmed ones.

4.1 General Semantic of Adaptive Applications

In ASSISTANT we target adaptivity by allowing program-
mers to express how the computation evolves reacting to
specified events. We enable this expressivity in a single
programming construct, as an extension of the previous
ASSIST ParMod. We can characterize three logics (Fig.
that can be used to describe the semantics of an ASSIS-
TANT ParMod:

e Functional logic: this includes all the computations
(sequential or parallel) performed by the ParMod and
expressed according to the ASSIST model. We allow
programmers to define multiple versions of the same
computation, solving the same problem (e.g. tridiag-
onal systems solving), and exploiting different QoS.
Functional logics of ParMods communicate by means
of typed stream of data.

e Control logic or manager: this includes all the adap-
tivity strategies and reconfigurations performed to
adapt the ParMod behavior as a response to speci-
fied events. A cost model for a certain parallelization
schema can express the interested QoS parameters of a
computation in function of architecture-dependent pa-
rameters such as: the communication latency between
processes and the completion time for a specific task.

309

Using proper cost models the control logic can select
the best version to execute when a certain context sit-
uation is verified, maximizing or minimizing specific
QoS parameters (e.g. the module response time or its
memory occupation). In ASSISTANT the program-
mer is provided with high-level constructs to directly
express in a simple way this control logic. Moreover
managers can interact by means of control events, to
exploit global reconfigurations which involve a set of
ParMods.

e Context logic: this includes all the aspects which link
the ParMod behavior with the surrounding context.
The programmer can specify events which correspond
to sensor data, monitoring the environmental and re-
source state (e.g. air temperature and network band-
width). It can also specify events related to the dy-
namic state of the computation (e.g. the module ser-
vice time).

The main construct of the ParMod, which is used to
express these three logics, is operation: a set of operations
reflects the concept of different versions. Only one opera-
tion for each ParMod can be currently activated by its con-
trol logic. When a ParMod is started, a user-specified initial
operation is performed. During the execution, the ParMod
context logic or the managers of other ParMods can no-
tify one or more events. The ParMod control logic exploits
a mapping between these events and reconfigurations, de-
fined by the programmer, to either select a new operation to
be executed, or modify the run-time support of the current
operation (e.g the parallelism degree of a parallel computa-
tion as described in [17]).

The control logic of an ASSISTANT ParMod can be
described as a state graph (Fig. [3). In this graph, nodes
are ParMod operations and arcs are events (or their combi-
nations). In the exemplified graph, the initial operation is
OP,. In the case an event E'Vj occurs, we continue exe-
cuting O F, but we modify some aspects of its implemen-
tation. For instance we modify its parallelism degree. That
is, self-arcs, starting and ending in the same node, corre-
spond to run-time system reconfigurations. Consider now
the arc from OF, to OP; injected by event EV;. In this
case the programmer specifies that if we are executing O P

Figure 3. Example of event-operation graph.

and event 'V} occurs, we stop executing O Py and we start
OP;. This switching can include pre- and post- elabora-
tions: e.g. we can reach some consistent state before mov-
ing from O P, to O P, in order to allow the former operation
to start from a partially computed result, instead of from
the beginning. In the next section we describe the structure
of ASSISTANT applications and the constructs that can be
used to express them.

4.2 Structure of Applications and Adaptivity Con-
structs

Fig.] shows a syntactic scheme of an ASSISTANT Par-
Mod. It has a name and a set of input and output streams.
It can feature a global state shared between operations and
it can define events which it is interested to sense.

Multiple operations can be specified inside a ParMod,
each operation possibly featuring a local private state. As
stated above, each operation inside a same ParMod defines
a different version of the same computation and they must
all feature the same input and output interfaces, in terms of
streams. Each operation expresses all logics of a ParMod,
not only the functional one, and they feature different be-
haviors in terms of distribution and collection of input and
output data, parallelism and distribution strategies (e.g. dif-
ferent algorithmic skeletons [5]). Concerning the control
logic, each operation features a different way of managing
the QoS, the parallelism degree, the atomicity of its com-
putation and the cooperation with other ParMods.

4.2.1 Events and On_Event construct

We have seen that the ParMod behavior is driven by events,
which are defined and used by programmers as the basis
to define adaptivity. In general, the programmer specifies
an initial operation, which is automatically executed when
the ParMod is instantiated. Next, we execute reconfigura-
tions in the case of certain events happen. Events are asyn-
chronous and can be generated from either context inter-
faces or control logic of other ParMods. The programmer
can specify conditions on the current state of the ParMod
to enable the monitoring of certain events. Thus, recon-
figurations can be performed in the case: (a) some pre-
determined events happen and/or (b) some predicates on

I parmod:: in_datastream ...; out_datastream ...; | FUNS;%SI.NAL
global variables - ": Parallel Program
events i f 3:
[{operationl { ‘.f_:.‘:_ ‘i 3; i: f
= . | CONTROL
. ~ } on_event {
¥
I [{operationN [}] I \ }

Figure 4. Syntactic view of a ParMod.

310

the ParMod state are satisfied. That is, the control logic of
a ParMod is stateful. Syntactically, the programmer makes
use of nondeterministic clauses as shown in Fig. [3]

on_event:
event_.combination_0:
do
//New parallelism degree:
parallelism value;
enddo

event_combination_S —1:
do
//New operation executed:
operation_-Name . start () ;
enddo

Figure 5. Scheme of the on_event construct.

Event combinations are logical expressions of both
events and conditions on the global/local state. Classically,
an event is verified if (a) it is present and (b) its local guard
on the state (if present) is verified. If the event_combination
logical expression is satisfied, the corresponding reconfig-
uration code is executed, exploiting the modification of the
parallelism degree (parallelism construct) of the actual op-
eration or the activation of another operation. In the latter
case the parallelism degree of the new operation is com-
puted (implicitly by the run-time support) before starting
it. We notice that the on_event construct specified inside an
operation states which are the transitions starting from the
operation and not the whole set of transitions in the event-
operation graph.

S Implementing a Flood Management Appli-
cation

We show how to apply our programming model for the
flood application described in Section [3] For simplicity,
we consider a part of the whole application (see Fig.
corresponding to the hydrodynamic model [15} [18]. The
modules are depicted in Fig. [

The Generator Module emulates the previous phases
of the forecasting model. It generates a stream of double
precision floating point data obtained from sensors, includ-
ing information related to each river point [15]. It can be
programmed in such a way that it provides a different dis-
cretization of the river basin.

The Tridiagonal Solver Module (TSM) implements a
part of the hydrodynamic model which is applied to each
input stream element. The most compute-intensive part
consists in solving a set of partial differential equations
on two dimensions for each specified point. Mainly, this
can be reduced to solving a large set of tridiagonal linear
systems, which sizes depend on the required accuracy of
results. In this implementation we choose a direct cyclic
method [[7] and we express its parallelism as a task farm

Tridiagonal Solver Module

Generator Module Client Module

. /O\ /o\ 5

Functional » O, O~ -0, O LI Functional

Logic O @) Logic
clusterOperation o interfaceNode

O Operation
Control —O\ K Control
Logic Logic
g pdaOperation g

Functional Logic

A .
i reconfigurations
f C l

X - ontrol Logic - !
notifications 5—:‘ notifications
events

network . energy
monitoring monitoring
Context Logic

Figure 6. A part of a flood management application.

structure: distribution to workers is performed according
to an on-demand policy; each worker solves the partial dif-
ferential equation for each assigned point; collection from
workers is performed according to a FIFO policy. The re-
sult data are a stream of arrays representing the force com-
ponents in the X and Y directions on each point of the river.
The Visualization Module implements the post-processing
activities taking as input the solutions of the linear systems.

In our first prototype we map these modules onto
a specific Pervasive Mobile Grid infrastructure which
scheme is depicted in Fig. []| Sensor networks, which
provide input data through their sink nodes, are located
along the course of the river. Mobile nodes such as PDAs,
which (at least) are required to run a visualization software,
are utilized by the personnel of civil protection. Central
server(s), composed of parallel architectures, are located
on remote sites. Moreover we can consider the presence
of a set of interface nodes which are used to interconnect
(i.e. exploiting routing activities) mobile nodes and sen-
sor devices with remote central server(s) and performing
some computations on-demand (e.g. they can be equipped
with multicore processors). All interconnections are imple-
mented by means of both wireless and wired technologies,
whose robustness depends on mobility factors and on fail-
ures due to emergency conditions.

In this scenario our application needs to adapt accord-
ing to different context situations (e.g. status of networks,
presence of high latency interconnections, energy-related
problems, user-defined QoS constraints):

e we can execute the forecasting model on a central
server, which allow programmers to express the par-
allel computations with highest parallelism degrees.
Due to emergency condition, the Visualization Mod-
ule can request a lower service time threshold to re-
duce the overall completion time. In this case the
module adapts its performance modifying its paral-
lelism degree;

o if the connection between the remote central server
and the corresponding interface node is no more avail-

Cluster
0O

Interface
OO

/ remote center

Node

Figure 7. Logical scheme of a Pervasive Grid platform for
flood emergencies.

able, or it can not guarantee the requested QoS, we can
execute the model directly on the interface node;

e if the interface node has no sufficient computational
power (it performs only routing activities), or if the
connections with user devices are temporarily unreli-
able, we choose to perform the forecasting computa-
tions directly on a set of mobile nodes.

In these cases we can reconfigure our application by
executing difference versions on different resources. For
brevity we describe a part of the implementation of the
most critical module, i.e. the Tridiagonal Solver Module.

5.1 Tridiagonal Solver Module

In this section we do not concern on linguistic aspects of
the programming model, but we are interested in describ-
ing the semantics of its mechanisms. The module imple-
mentation is shown in Figures [§[9] In Fig[§| we show the
module declaration (i.e. its name and its in-out interfaces).

// Tridiagonal Solver Module definition:
module TSM(in_datastream task_in tin,
out_datastream result.out rout) {

// Global state shared between operations:
int actualOperation;

double averageServiceTime;

double serviceTimeThreshold;

// Definition of events:

define event serv_time=Visualization_Module.
newServTime () ;

define event con_fail=netMonitorInterface.conFail();

define event con2_fail=netMonitorInterface.con2Fail();

.see next figure ...

Figure 8. Definition of the Tridiagonal Solver Module.

We can assume that the operation performed on the
central server will provide a better quality of results w.r.t.

the other operations: it could require more precise input
data and it will provide more precise results. This maps in
the size of the single elements passed on the output streams.
In the pseudo-code the input stream data type task_in is a
structure of 8 doubles and the output stream data type are
two arrays of doubles. The size of results, which give the
precision of the forecast, is not specified to reflect its dy-
namic selection.

The module features a set of global attributes which
represent the current operation executed (actualOperation)
and the average service time of the module (averageSer-
viceTime). This metric is automatically updated by the
run-time system, by exploiting the knowledge of the imple-
mented parallelism structure of the current operation exe-
cuted. Moreover a client can specify a maximum threshold
(i.e. a QoS constraint) for the average service time (service-
TimeThreshold) of the module. The module defines three
kinds of events which can be notified either from its context
interfaces or from the control logic of another module:

e serv_time: an event received from the Visualization
Module, which value is a new maximum threshold for
the average service time;

e con_fail: an event produced by a context interface
(netMonitorInterface) of the module, providing a
boolean information related to the connection capa-
bility (based on current latency and connection status)
between the central server and a considered interface
node.

e con2 fail: an event produced by netMonitorInterface,
providing a boolean information related to the connec-
tion capability between the interface node and the user
mobile nodes.

Fig.[9]shows the pseudo-code of the clusterOperation exe-
cuted on the cluster central server.

The operation program includes definitions of local
private attributes, which can specify some performance
values such as the actual parallelism degree of the opera-
tion. Next, follows the operation functional logic as a par-
allel program. For brevity, we avoid to show it.

The on_event construct specifies the adaptive behavior
of this operation. Suppose that the client requires a lower
QoS in terms of a lower average service time. The con-
trol part of the Visualization Module sends a proper control
event to the TSM module. Its effect is to re-compute the
best parallelism degree, using a proper cost model. The
cost model (costmodel function) is instantiated with the ac-
tual cluster parameters (e.g. communication latency be-
tween processes). The parallelism construct re-configures
the operation to reach the computed bestDegree.

The other two event combinations induce an operation
switching for the TSM, and they concern the current status
of networks. In both cases the control parts of the Genera-
tor and Visualization Modules are notified of the decisions
with specific notify function. Next, the clusterOperation is
suspended (stop) and the new operation is started (start)

312

initial operation clusterOperation {
//Local variables of the operation:
int parallelismDegree;

// ... parallel implementation ...

//Management section of the operation:
on_event {
serv_time (requestedThreshold) && (
averageServiceTime > requestedThreshold):
do

serviceTimeThreshold = requestedThreshold;
int bestDegree=costmodel (requestedThreshold);
// Modification of parallelism degree:
parallelism bestDegree;

enddo
con_fail () && (!con2_fail()):
do
notify (Generator_-Module , con_fail);
notify (Client_-Module, con_fail);

//Stop the operation consistently:
this .stop ();
// Activation of the new operation:
nodelnterfaceOperation.start () ;
enddo
con2 _fail ():
do

pdaOperation. start () ;
enddo

..see next figure ..

Figure 9. Operation of the TSM module for central server.

with a proper parallelism degree and system size, chosen
by the run-time support.

5.2 Prototype implementation

We have implemented a first prototype of the program-
ming model applied to the flood application. The prototype
(Fig[6) has been tested on an emulation of the Pervasive
Grid (Fig[7), based on localized resources (a cluster, some
PDA nodes, multicore-based nodes). This prototype con-
sists on a set of processes communicating through sockets.

Fig.[6]shows the first implementation: we emulate the
sink node of the sensor network with a single workstation,
on which the Generator Module is executed. The central-
ized server is emulated with a cluster architecture on which
we can map the clusterOperation. The cluster is composed
of 30 nodes Pentium III 800 Mhz with 512 KB of cache,
1 GB of main memory and connected with a 100 Mbit/s
Ethernet. The interface node is emulated with a multicore
architecture (IBM CELL Broadband Engine with 6 cores)
on which we can execute the nodelnterfaceOperation. The
CELL BE features 256 MB of main memory and each core
has 256 KB of local memory. Finally the mobile devices
are a set of PDAs with 300 Mhz ARM processors (with 64
MB of main memory) on which we map the pdaOperation.

5.3 Experimental Results

We have tested how our prototype can adapt itself to con-
text events and maintaining a specific QoS constraint with
an user. In fact suppose that an user requests a maximum
service time threshold for system solver module, to reduce
the entire execution time of the forecasting computation.
In our experiment this threshold is set to 3 seconds. Fig[I0]
(top) shows the scalability of clusterOperation with differ-
ent system sizes (i.e. 8, 16 and 32 MB).

Scalability of clusterOperation with different system sizes

T T T
Scalabilty of clusterOperation with 32 MB matrices —&—
Scalability of clusterOperation with 16 MB matrices ---e---
ol Scalabilty of clusterOperation with 8 MB matrices -4~ |

Scalability

. . .
2 4 6 8 10 12
Parallelism degree

Service times of cluster and interface node operations

T T T T T T T
clusterOperation with 32 MB matrices —e—
interfaceNodeOperation with 16 MB matrices ------ |
interfaceNodeOperation with 8 MB matrices ---4-

Service time in seconds

Parallelism degree

Figure 10. Scalability of clusterOperation with different
system sizes (top). Average service times of clusterOpera-
tion and interfaceNodeOperation (bottom).

This operation has an expected scalability up to 10
cluster nodes with 32 MB systems. With an higher paral-
lelism degree the scalability of the task farm is limited by
the collector process due to communication latencies. If the
Visualization Module, in response to a corresponding user
intention, requests a maximum service time threshold of 3
seconds, the TSM manager computes the best parallelism
degree and the greatest system size to respect the new QoS
constraint, according with the cost model. In this test it ob-
tains an average service time of ~ 2.93 sec, consistent with
the user constraint.

We have simulated a con_fail event by disconnecting
the connection with cluster. In this case a reconfiguration
starts, and the interfaceNodeOperation is activated by the
TSM manager. To maintain the QoS constraint, we need to
decrease the system size and the precision of forecasting re-

313

sults. In Fig[T0| (bottom) the run-time support must reduce
the system size from 32 MB to 8 MB, obtaining an aver-
age service time of ~ 2.66 seconds (using 6 cores i.e. the
maximum parallelism degree in the CELL BE multicore).

When the con2_fail event occurs we can execute the
computation over an ad hoc network of homogeneous
PDAs. The run-time support computes the necessary par-
allelism degree and system size, to respect the QoS con-
straint. TabldI] shows the average sequential computation
time (1;,0p) for each stream element on a single PDA, in
function of different system sizes.

We consider a simple cost model for this case,
in which we just consider performance-related factors.
More complex models will be developed as future work,
including memory and communication bandwidth con-
straints. ~ The average service time of the pdaOp-
eration can be estimated as following: Tp4.0p =
maz{Tyen, Tfarm, L5 }. and
Tmob

Tfarm = max{Tdish Ta Tcoll}

where T, is the average service time of Generator Mod-
ule (in our test ~ 1 second), T'¢qrm is the average service
time of the task farm computation mapped onto an ad-hoc
network of PDAs, and LY, is the average process com-
munication latency between Generator Module and the pro-
cesses executed on PDA devices. The average service time
of the task farm is the maximum between T5,,,5/N where
N is the parallelism degree, T;; and T, (i.e. the average
service time of distribution and collection processes). In
our experiments the two latter values are completely domi-
nated by the communication latency between processes in-
side the ad-hoc network (L79%). Multiple hops between
the emulated sink node and the mobile ad-hoc network of
PDAs can be necessary: we will show the case of 2 hops.
As input tasks are 64 bytes in size, the latency for 2 hops
covering a range of 100m can be estimated to ~ 0.23 ms
(L9;,7™). To maintain the QoS constraint (i.e. 3 seconds),
when the pdaOperation is activated the run-time support
chooses a lower quality of results and a proper parallelism
degree. In this case using 1 MB systems, the communi-
cation latency L™°> between processes on mobile nodes
(average distance of 50m) is ~ 1.36 sec. So:

Data Size | Average Computation Time (7;,,.5)
1 MB 90.04 seconds

2 MB 193.20 seconds

4 MB 414.28 seconds

8 MB 882.68 seconds

Table 1. Computation time on a PDA device.

with 30 PDAs we have an average service time of ~ 3 sec-
onds, similar to the one obtained with clusterOperation but
with a lower precision (i.e. from 32 MB matrices to 1 MB).

6 Conclusion

In this paper we introduced the ASSISTANT program-
ming model for high-performance context-aware applica-
tions targeting Pervasive Mobile Grids. The programming
model includes constructs to express multiple versions of a
same module (i.e. operation) and a control logic to express
the adaptivity w.r.t. the events (i.e. on_event construct).

We have introduced a test-case modeling a part of a
flood emergency application. In this situation the appli-
cation performs intensive forecasting models. It requires
to adapt its behavior according to the context changes (e.g.
status of connections). For this test-case we have developed
a first implementation of the run-time support of our pro-
gramming model. The main module features three differ-
ent operations best-suitable for different resources. Experi-
ments show how our application can reconfigure the current
operation executed, maintaining a QoS behavior specified
by the user but reducing the precision of the results.

References

[1] M. Aldinucci, M. Danelutto, P. Kilpatrick, Co-design
of distributed systems using skeletons and autonomic
management abstractions, Proc. Euro-Par 2008, Gran
Canaria, Spain, 2008, 403-414.

[2] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on
context-aware systems, Int. J. Ad Hoc Ubiquitous
Computing, 2(4), 2007, 263-277.

[3] C. Bertolli, R. Fantacci. G. Mencagli, D. Tarchi, M.
Vanneschi, Next generation grids and wireless com-
munication networks: towards a novel integrated ap-
proach, Wireless Comm. and Mobile Computing. 9(4),
2009, 445-467.

[4] T. Chaari, D. Ejigu, F. Laforest, V. M. Scuturici, A
comprehensive approach to model and use context
for adapting applications in pervasive environments,
Journal of System and Software, 80(12), 2007, 1973-
1992.

[5] M. Cole, Bringing skeletons out of the closet: a prag-
matic manifesto for skeletal parallel programming.
Par. Comp. 30(3), 2004, 389-406.

[6] R. Curtmola, C. N. Rotaru, BSMR: Byzantine-
Resilient Secure Multicast Routing in Multi-hop
Wireless Networks, IEEE Trans. on Mobile Comp.
8(4), 2009, 263-272.

[7] R.W. Hockney, C. R. Jesshope, Parallel Computers:
Architecture, Programming and Algorithms (Bristol:
Institute of Physics Publishing, 1981).

314

[8] D.J. Lillethun, D. Hilley, S. Horrigan, U. Ramachan-
dran, MB++, An Integrated Architecture for Perva-
sive Computing and High-Performance Computing,
Proc. 13th IEEE Intl. Conf. on Embedded and Real-
Time Computing Systems and Applications, Daegu,
Korea, 2007, 241-248.

[9] A. Mishra, V. Shrivastava, D. Agrawal, S. Banerjee,
S. Ganguly, Distributed channel management in un-
coordinated wireless environments, Proc. 12th Intl.
Conf. on Mobile Computing and Networking, 2007,
Los Angeles, USA, 170-181.

[10] B. D. Noble, M. Satyanarayanan, Experience with
adaptive mobile applications in Odyssey, Mob. Netw.

Appl. 4(4), 1999, 245-254.

[11] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J.
Kurose, D. McLaughlin, R. Wilhelmson, S. Graves,
M. Ramamurthy, R. D. Clark, S. Yalda, D. A. Reed,
E. Joseph, V. Chandrasekar, CASA and LEAD: Adap-
tive Cyberinfrastructure for Real-Time Multiscale

Weather Forecasting, Computer, 39(11), 2006, 56-64.

[12] S.Helal and W. Mann and H. El-Zabadani and J. King
and Y. Kaddoura and E. Janse, The Gator Tech Smart
House: A Programmable Pervasive Space, Computer,

38(3), 2005, 50-60.

[13] T. Priol, M. Vanneschi, From Grids To Service and

Pervasive Computing (Heidelberg: Springer, 2008).

[14] M. Romén, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, K. Nahrstedt, A Middleware Infras-
tructure for Active Spaces, IEEE Perv. Comp. 1(4),

2002, 74-83.

[15] B. Syme, Dynamically Linked Two-
Dimensional/One-Dimensional Hydrodynamic
Modelling Program for Rivers, Estuaries and

Coastal Waters (Spring Hill: WBM Oceanics, 1991).

[16] M. Vanneschi, The programming model of ASSIST,
an environment for parallel and distributed portable

applications, Par. Comp, 28(12), 2002, 1709-1732.

[17] M. Vanneschi, L. Veraldi, Dynamicity in distributed
applications: issues, problems and the ASSIST ap-

proach, Par. Comp. 33(12), 2007, 822-845.

[18] J. R. Thompson, H. Refstrup Sorensen, H. Gavin,
A. Refsgaard, Application of the coupled MIKE
SHE/MIKE 11 modelling system to a lowland wet
grassland in southeast England, J. of Hydrology,

293(1-4), 2004, 151-179.

[19] J.T. Feo, D. C. Cann, R. R. Oldehoeft, A report on the
Sisal language project, J. Parallel Distributed Com-

puting, 10(4), 1990, 349-366.

	Introduction
	Related Work
	A Test Case: Flood Applications
	A Programming Model for Parallel Adaptive Applications
	General Semantic of Adaptive Applications
	Structure of Applications and Adaptivity Constructs
	Events and On_Event construct

	Implementing a Flood Management Application
	Tridiagonal Solver Module
	Prototype implementation
	Experimental Results

	Conclusions

