Consistent Reconfiguration Protocols for Adaptive
High-Performance Applications

Carlo Bertolli
Department of Computing
Imperial College London
180 Queens Gate, London, SW7 2AZ, UK
Email: c.bertolli@imperial.ac.uk

Abstract—Programming models for Pervasive Computing ap-
plications typically include the possibility of specifying software
components according to multiple alternative versions, each
optimized for a certain class of computing and communication
technologies. A main mechanism provided by these programming
models permits to dynamically select one of the alternative
versions for the execution. This reconfiguration activity may be
critical, from a performance point of view, when considering
High-Performance Pervasive Computing applications, especially
if the reconfiguration must be performed in such a way that
the application semantics is respected (i.e. the reconfiguration is
consistent). In this paper we show how to introduce consistent re-
configuration protocols for the ASSISTANT programming model,
we exemplify two general protocols and we show experimental
results for one of them.

Index Terms—High-Performance Computing, Autonomic
Computing, Reconfiguration Protocols, Pervasive and Mobile
Computing

[. INTRODUCTION

One of the most important issue for Pervasive Computing
platforms [1], [2] is represented by the presence of several
strongly heterogeneous and dynamic computing and commu-
nication resources, such as classical server platforms (e.g.
clusters), decentralized and mobile nodes (e.g. smart-phones
and Personal Digital Assistants) and their interconnection
networks.

Therefore High-Performance pervasive applications are sup-
ported with the possibility of defining parallel components
in multiple alternative versions, each one optimized for a
certain class of computing resources. For instance a complex
computing component may be defined in two versions: one
for traditional HPC architectures as a cluster of workstations
and another one for next-generation smart-phone supporting
multicore facilities. In some cases it would be necessary to
dynamically switch from one version to another one, e.g.
to face with node and link failures but also to optimize
the application performance w.r.t. the dynamic availability of
platform resources or the user’s performance sensation [3], [4].
For instance, we may switch between two versions if the newly
activated version features a better behavior than the deactivated
one according to the actual networking conditions.

978-1-4577-9538-2/11/$26.00 ©2011 IEEE

Gabriele Mencagli and Marco Vanneschi
Department of Computer Science
University of Pisa
Largo B. Pontecorvo, 3, [-56127, PI, Italy
Email: {mencagli, vannesch} @di.unipi.it

There exist programming models [4], [3] offering the
possibility to develop components in multiple versions and
to dynamically select one of them according to a reactive
adaptation logic: the component monitors the actual context
situation, e.g. the current state of the underlying executionc-
platform, and it possibly changes its employed version, i.e. it
locally implements the adaptation strategy in what is called
an autonomic behavior. As a clear case, in Odyssey [3] it is
possible to optimize the user’s sensation on the quality of the
computation by dynamically selecting a best version for each
application component.

Unlike these contributions, in our research work we are
mainly interested in High-Performance Pervasive Computing
(HPPC) applications, examples of which are Emergency Man-
agement, Intelligent Transportation and National Defense. For
these scenarios it is of paramount importance that certain
QoS parameters are respected during the whole execution.
For instance, consider an application providing real-time flood
forecasting information to a set of operators near an emergency
area: in this case, delivering results later than their actual
usefulness may lead to disastrous consequences.

To guarantee that QoS parameters are respected, parallel
HPPC applications are supported by proper adaptivity and
dependability mechanisms, which costs, in terms of induced
performance overhead, must be known. In this paper we
consider the notable case in which a component adaptation
strategy decides to switch from one version to another one.
In some cases this “switching” activity (generally speaking
called reconfiguration) must be performed in such a way that
the overall application semantics is not violated, i.e. it runs
proper consistent reconfiguration protocols.

Consistent reconfiguration protocols may be obtained by
modifying existing fault tolerance mechanisms, i.e. by treating
reconfigurations as failures. Nevertheless, this would avoid the
chance of introducing specific reconfiguration optimizations,
as well as to introduce other than fault tolerance protocols,
such as rollforward ones. Therefore, fault tolerance and recon-
figuration protocols are different but they are built up from the
same mechanisms which are the common ones in distributed
systems, and they aim at different optimizations.

In this paper we introduce a methodology for deriving

2121

consistent reconfiguration protocols which are optimized to
support HPPC applications during the so-called version switch-
ing reconfiguration. Our contribution is shown for the AS-
SISTANT [5], [6] programming model which represents our
research framework under which we present general results.
The protocols that can be derived from our methodology
are shown to be consistent, i.e. they respect the application
semantics and their overhead can be statically analyzed by
means of proper performance models. These models can be
derived by the properties of the chosen programming model
and can be used to define adaptation strategies which also
consider the cost of a reconfiguration rather than just the
performance of the final component version. In this paper
we show experimental results assessing the validity of the
described performance analysis.

As a comparison with existing works we consider contribu-
tions related to the Grid Computing area. Notable examples
are: the CILK programming model [7], which is supported by
reconfiguration and fault tolerance mechanisms optimized for
its task-parallel programming model; the contributions of [§],
based on the concept of malleable application, which is able
to re-distribute its data units and modify the grain of its
tasks. Unlike these contributions we do not focus a specific
implementation, but we introduce a methodology to derive
reconfiguration protocols for a widespread class of stream-
based applications in which compute-intensive elaborations are
activated by the reception of a large sequence (i.e. data stream)
of independent input tasks.

The outline of this paper is the following: in Section II
we introduce the programming model of ASSISTANT. In
Section III we present our methodology for deriving consistent
reconfiguration protocols and we exemplify two protocols.
Finally, in Section IV we show experimental results of one
of the protocols and in Section V we give the conclusions.

II. THE ASSISTANT PROGRAMMING MODEL

ASSISTANT is our research framework for HPPC ap-
plications and it is based on structured parallel program-
ming [9] to express alternative parallel versions of a same
application component. ASSISTANT allows programmers to
define parallel and adaptive applications as graphs of inter-
connected components, each one defined by using a specific
programming construct, i.e. the Parallel Module or ParMod.
Interconnection of ParMods is made by means of data streams,
i.e. possibly unlimited sequences of typed elements (i.e. a unit
of information), which are typically implemented by means
of communication channels between the distributed set of
processes implementing a ParMod.

The ParMod semantics is characterized by two different
logics which interact between themselves (see [10]):

« Functional Logic or Operating Part: this part encapsu-
lates multiple versions of the parallel module, each one
with a different behavior according to several parameters
(e.g. memory utilization and expected performance). Only
one version at time is allowed to be active;

o Control Logic or Control Part: this part implements the
adaptation strategies by analyzing the current platform
and application behavior and by issuing reconfiguration
commands to the Operating Part.

To express these logics we introduce a new construct, called
operation, implementing a specific version (i.e. its functional
part) and the corresponding adaptation strategy (i.e. its control
part) applied when the version is executed. A ParMod includes
multiple operations which totally describe its functional and
control logics (see a ParMod example in [10]).

For lack of space in this paper we are mostly interested in
the interactions between the control and the functional logic,
which follow the abstract scheme depicted in Figure 1. The
functional logic can be reconfigured in specific reconfiguration
points implicitly identified by the run-time support system. As
an example a typical ParMod reconfiguration point is defined
between successive task receiving.

old ParMod reconfiguration new ParMod
o Bl
) reconf point 1;:’ otocol
Operating ®
Part
Reconfiguration Reconfiguration
commands feedback
-
TControI v
control _}i | |
Part | |
itori LReconf itori
Monitoring Monitoring
Update Update
Fig. 1. Interaction scheme between functional and control logics.

When the Control Part receives a monitoring update (i.e.
updated monitoring data are periodically available from en-
vironmental sensors and probing services connected with the
ASSISTANT ParMod) it decides the needed reconfigurations
by evaluating a specific adaptation algorithm (with an average
execution time Toontror)- After that, a set of reconfiguration
commands are sent to the Operating Part, which receives and
applies them at the following reconfiguration point. For ap-
plying the selected reconfigurations the processes implement-
ing the Operating Part execute a consistent reconfiguration
protocol, which induces a corresponding overhead during the
execution (i.e. with an average completion time 7'pyotocor aS
shown in Figure 1).

Concerning the Operating Part, in this paper we consider
two general structured parallel computations: task-farm and
data-parallel (see [10]). In the former structure an input
stream of tasks is parallelized on a replicated set of workers,
where each task is solved sequentially by one of them. In
the implementation, task scheduling and result collection are
respectively performed by two processes, i.e. the emitter and
the collector . In data parallel programs we partition each
received task amongst a set of workers (i.e. each task gives
place to a complex state which is partitioned amongst the set
of workers) which concurrently participate to its elaboration
possibly according to some communication stencils. The state

2122

distribution and result collection are respectively performed
by scatter and gather processes. For both structures we denote
with the term parallelism degree the number of used workers.

III. CONSISTENT RECONFIGURATION PROTOCOLS

Consider the case of an operation (i.e. version) switching
from a source to a target operation. To simplify the discussion
we assume that tasks can be independently executed both for
task-farm and for data-parallel computations, that they are
deterministic, in the sense that a task execution gives always
the same result, and that they are idempotent.

Broadly, consistent reconfiguration protocols are applied to
the following situation: a ParMod consumes from a set of input
streams and produces results to a set of output streams. If we
take a computation snapshot, we can see that there are: (i) a
set of tasks Ty which are stored in the input streams; (ii) a
set of tasks T'p currently in execution on the ParMod; (iii) and
a set of task results Ty previously produced onto the output
stream by the ParMod. In this sense the goal of a consistent
reconfiguration protocol is to properly manage the set Tp.

We formalize the concept of consistency implemented by
a reconfiguration protocol. In this section we consider two
definitions:

o« Weak Consistency: all elements received on input
streams are processed and their results are delivered to
the intended consumers.

Note that this definition does not admit to lose a result but
it permits their replication. The second definition forbids also
replication:

« Strong Consistency: all elements produced onto input
streams are processed and their results are delivered to
the intended consumers at most one time.

We introduce a formalization methodology of consistent recon-
figuration protocols which is based on a proper modeling tool
enabling us to define protocols in terms of tasks and results.

A. Formalization of Reconfiguration Protocols

We introduce a modeling tool enabling us to uniquely
identify stream elements and which requires that such elements
may be recovered at any instant of the computation by
accessing streams with proper identifiers.

The tool is inspired by the Incomplete Structure (or I-
Structure) data structure, introduced with other purposes in
data-flow programming models [11]. An I-Structure is a pos-
sibly unlimited collection of typed elements each labeled with
a sequence identifier, or a integer position. There are two ways
of accessing an I-Structure:

o we can read the element stored in a given position. This
operation is denoted with get(position, element) and, in
case the provided position is empty, it blocks until a value
is produced on the position;

e we can write a value to a given position. This operation
is denoted with put(position, element) and it features
the following write-once property: it is not possible
to perform a put more than once on each I-Structure
position.

i IN

O
S IIm

Fig. 2. I-Structure model of ParMod input and output streams, respec-
tively inter-connected to a set of generators (Gi,...,Gy) and clients
(C1 ...,Cp). I-Structure black colored elements denote tasks which have
been consumed, while elements colored with lighter gray denote tasks
produced onto the stream but not yet consumed.

OUT k
- T W
A

i I

ParMod

of

In Figure 2 we show how the I-Structure tool is used:
all input streams of a ParMod are mapped onto a single I-
Structure denoted with IN, and all output streams are mapped
onto a further I-Structure denoted with OUT. When accessing
IN or OUT, the producers, consumers and ParMod processes
must arrange the generation of positions in such a way that
both the write-once and application semantics are respected.
Note that IN and OUT are not necessarily ordered between
them.

In this model we can identify, for each I-Structure, two in-
dexes: that of the last consumed element (e.g. j, ! in Figure 2);
that of the last produced element (e.g. ¢, k). By using these
indexes we can precisely characterize the task sets described
above: for instance Tp can be defined as the set of elements
with indexes on the input stream from O to 7, to which we have
to subtract all elements whose results have been produced to
the output stream, i.e. result elements with indexes on the
output stream from 0 to k. This index-based modeling is
especially useful when proving the correctness of consistent
reconfiguration protocols (which are not presented here for
space reasons).

B. Implementation

We show reconfiguration protocols for a distributed imple-
mentation of ASSISTANT (see [10]) based on networks of
distributed processes and communication channels, in which
streams are implemented as channels and each element is
mapped onto a message. At this level the I-Structure abstract
model requires that stream elements (or messages) can be
recovered at any time during the computation. Typically, in a
channel implementation, when a message is received (i.e. ex-
tracted) from the message queue its content can be overwritten
by successive messages. Therefore we can guarantee recovery
of messages in two ways: (1) by supporting communication
channels with message logging techniques; (2) by requiring all
application components to re-generate elements under request.
The protocols described in this paper refer to the latter
solution. Nevertheless, they may be applied also to the former
case, by changing the way in which message re-generation is
obtained.

The implementation of the I-Structure model for streams is
shown in Figure 3. All input and output streams are respec-
tively mapped onto the same CH;x and CHpy 7 channels. For

2123

ParMod

operation

Fig. 3. Implementation of the I-Structure model: input and output streams
are respectively implemented with two asymmetric communication channels.

the purpose of re-generation, messages are labeled with their
input stream sequence identifier, i.e. when performing a put
(or a send to CH;y) the sent message includes the element
itself along with the input stream sequence identifier. The input
stream identifier is also preserved when the corresponding task
result is produced onto the output stream.

Finally, we define the notion of Vector Clock (VC) to map
element positions from different I-Structures. For re-generation
purposes we are required to map output stream identifiers onto
corresponding input stream identifiers (i.e. result identifiers
onto related input task identifiers). A generic VC includes
a set of pairs of the form (1,%1);(2,k2);...,(N,kn). The
first element of each pair is the sequence identifier of result
on the output stream (from 1 to IV); these are related to the
corresponding sequence identifier of input task generating the
results (from kq to k).

In a VC we can identify the maximum contiguous
sequence identifier MC, in the set ki,...,kn, as the
maximum integer included in the input stream identifiers
for which all its predecessors are included in the set
ki,...,kn. For instance, if we have the following VC
(1,12);(2,3);(3,15); (4,1); (5,20); (6,2);, MC = 3, as the
mapped identifiers include all numbers from 1 to 3, and the
successive included number is 12.

C. Consistent Operation Switching Protocols

There are at least two ways of implementing a consistent
operation switching protocol for an ASSISTANT ParMod:

« we can wait for the source operation to perform all tasks
in Tp and then activate the target operation from the
first task which has not been consumed by the source
operation. When the source operation is notified of the
reconfiguration, it first needs to stop to receive input tasks
from IN. Next, the target operation must know the posi-
tion of the last value consumed by the source operation.
We denote these kinds of protocols as rollforward,

« when notified the source operation can immediately stop
its execution. The target operation has to re-obtain the
tasks in Tp and re-start their execution. We denote these
kinds of protocols as general rollback, because they can
be supported independently of the actual parallel compu-
tations performed by the source and the target operations.
The design of these kinds of protocols requires the target
operation to characterize the Tp» set, possibly sharing
information with the source operation. A solution consists
in analyzing the IN, OUT streams and a VC relating them.

In this section we describe the rollforward and generic rollback
protocol. In the description we assume that the target operation
has been previously deployed on the target platform and it is
ready to start its execution.

a) Rollforward Protocol: a rollforward protocol is based
on “flushing out” all tasks in 7'» in the source operation and
then starting the execution of the target operation from the last
un-consumed element from the input stream. To do so, we
can simply connect both operations to the input and output
channels CH;y and CHpyr and implement the following
sequence of actions after ParMod Operating Part has been
notified of the operation switching command:

o the processes on the source operation go on with their
computation, except that they stop receiving tasks from
the input stream;

o when the all tasks are executed and their corresponding
results are delivered, they signal to the Control Part their
termination;

« the Control Part notifies the target operation to start its
execution;

« these processes simply start to receive input tasks from
CH;n, whose message queue contains the last un-
received tasks.

Note that this protocol implements the strong comnsistency
definition.

The application of this protocol depends, from a perfor-
mance viewpoint, on the time available to perform the oper-
ation switching and the time needed to execute the protocol
Tprotocol- If we suppose that all the communication channels
have been implemented with an asynchrony degree equal
to one, upper bounds to the time spent on executing the
rollforward protocol can be estimated as:

« if the source operation is a task-farm, at the worst case
we have to consider the parallel execution of all tasks
possibly executed on N workers (each costs Tyy) plus
the time needed to schedule Tg, execute Ty, collect
and deliver T the last task received by the emitter. The
time needed to flush out this last task (T + Tw + T¢)
can be partially overlapped to the time needed to collect
all results of previous tasks currently executed on the
workers, i.e. at the worst case /N - T¢. Therefore we can
define:

if Tp+Tw >N -T¢c

T farm "
otherwise

{ 2Tw +Tg + Tc
roll fwd —

Tw+ N -T¢c

« if the source operation implements a data-parallel, we
have to consider the termination of the task currently in
execution (in Ty s time) possibly plus the time needed
to scatter T's, execute Ty and gather T; a task (i.e. the
one remaining on the scatter process). Therefore:

v < 2-Tws+Ts+Tg if Ts +Tws > 1q
rollfwd =\ Tyo+2.-Ta otherwise
b) Generic Rollback Protocol: in a rollback protocol we

stop the execution of the source operation and we immediately
switch to execute the target one. To do so, the Control Part

2124

sequentially signals the processes in the Operating Part of both
operations (i.e. it first stops the source operation processes and
then it signals the start to the target operation processes).

The target operation needs to obtain all tasks in T» from
the related generators. To do so, it needs to access the Vector
Clock mapping output onto input sequence identifiers, which
can be provided directly from the source operation. We can
characterize two types of information passed from the source
to the target operation:

e the MC value: in this case the target operation will
request generators to re-generate elements with sequence
identifiers greater than MC. Note that some elements may
have been previously executed and their results sent to the
output stream, hence their execution will be duplicated.
Therefore this protocol implements the weak consistency
definition;

« the entire VC: in this case the target operation guides the
re-generation of elements in T’p by requesting to gener-
ators only those elements corresponding to the missing
sequence identifiers, which are found by scanning from
MC to the maximum sequence identifier of submitted
results in the VC. Note that this protocol avoids result
duplication, hence it implements the strong consistency
definition.

In both cases, the information can be provided by the source
operation, or can be obtained by channel analysis and coop-
eration between the target operation, the generators, and the
clients.

As in the rollforward protocol the target operation, after
recovering and re-executing all tasks in T’p, can simply re-
start to receive messages from the input channel. To avoid
replication of input tasks we can, for instance, clear the input
channel CH;y or delete their sequence identifiers from the
VC before passing it to generators.

The choice of applying this kind of protocol depends on
the amount of work which we can lose. We can quantify this
work depending on the parallel computation performed by the
source operation:

« if the source operation is a task-farm, we have to re-
execute at most N + 2 tasks: N for the workers and 2
for emitter and collector. In addition, in the first version
of the protocol we have to sum up also all tasks whose
results have been delivered in an un-ordered way to the
output stream;

« if the source operation is a data-parallel, we have to
re-execute at most three tasks: one on the scatter, one
currently executed by workers, and one on the gather.
No more tasks have to be re-executed because the data-
parallel guarantees ordering on input and output streams.

c) Protocol Comparison: The choice of the best protocol
depends on the characteristics of the involved source and
target operations (e.g. their performance), and the specific
reconfiguration case. For instance, the rollforward protocol
can be used if we can guarantee that the source operation
will be running and available for the whole reconfiguration

time. If this is not the case, then we have to run the rollback
protocol which minimizes or nullify the participation of the
source operation. From a performance viewpoint we select
the rollback protocol if the target operation has a higher
performance w.r.t. the source one, or the rollforward one
otherwise.

IV. EXPERIMENTS

We have performed experiments to evaluate the cost of
the described rollforward protocol to assess the performance
models described in the previous section. The target appli-
cation is related to a flood emergency management situation
described in [10], [5], [12], and it practically consists in a
ParMod solving tri-diagonal systems of linear equations. For
this component two distinct parallelization schemes have been
implemented by using the MPI (Message Passing Interface)
communication library:

o a task-farm structure, in which an emitter process is
responsible for scheduling each input task (i.e. in this
case a data-structure representing a tri-diagonal system)
to a set of replicated parallel executors. Each input task
is scheduled to an available worker according to a fair
and load-balanced on-demand distribution (each worker
notifies the emitter whenever it is available for receiving
a new task). Results collection is performed by a further
collector process;

« a data-parallel structure, in which a scatter process per-
forms for each received system a partitioning of the
input data-structure among a set of worker processes that
compute the sequential elaboration on their own partition.
In this algorithm data dependencies imply a necessary
communication phase between workers that need to ex-
change local data at each step of the computation. This
interaction is also called communication stencil. Finally
a gather process collects the workers results filling the
output data-structure that will be transmitted to out-going
application modules.

The experiments are related to the situation in which we
are switching from a task-farm operation executed on a
distributed-memory architecture (a cluster of workstations in
this case), to a data-parallel operation mapped onto a shared-
memory multicore platform. The cluster includes 30 nodes
Pentium III 800 MHz with 512 KB of cache, 1 GB of main
memory and interconnected with a 100 Mbit/s Fast Ethernet;
the multicore is a Intel Xeon E5420 Dual Quad Core multicore
processor, featuring 8 cores of 2.50 GHz, 12 MB L2 Cache
and 8 GB of main memory.

In the experiments we monitor the time spent on applying
the reconfiguration protocol T'p,otocor, Which is evaluated as
the time passing from the notification from the Control to
the Operating Part of the operation switching to the instant
in which the target operation starts delivering results to the
client.

As the single task execution time on the source operation in-
fluences the rollforward cost, we show the experimented times
for different task grains, which in this application corresponds

2125

to the size of resolved systems: for SMB Ty = 4.0436 sec.;
for 16MB Ty, = 8.4194 sec.; for 32MB Ty, = 17.4813 sec.

The results presented in Figure 4 show the L,.ccon s behavior
w.r.t. the task grain and the task-farm parallelism degree of the
source operation. By comparing 7Ty, values we can see that

50 T T

par=5 —8—
45 | par=15 o P
40 | par = 28 N 1]
35)
30
25
20
15
10

Lreconf (secs.)

system size (MB)

Fig. 4. Switching overhead (Lyeconf) of the rollforward protocol by varying
the task grain (i.e. solved system size).

Lyccony can be broadly approximated to the double of Ty,
especially when the optimal parallelism degree (see below) is
used (in this application T and T¢ are negligible).

Figure 5 shows the L,con s behavior for a wider set of task
grains by varying the parallelism degree p. As we can note,
the case of p = 15 is the optimal one w.r.t. the cases p = 5
and p = 32, as it best fits the optimal value for the task-farm
parallelism degree.

50

T
size = IMB

size =2MB --{)--
45 - size =4MB ---A---
size = 8MB <z

G size = 16MB -
40 - e size = 32MB --Q-- -7 1

35 | s 1
30 | 1
25

20

Lreconf (secs)

15
parallelism degree

Fig. 5. Switching overhead (Ly.ccon) of the rollforward protocol by varying
the parallelism degree.

V. CONCLUSION

In this paper we have shown how consistent reconfigura-
tion protocols can be supported for ASSISTANT applications

during operation (i.e. version) switching. We have introduced
a methodology based on the abstract I-Structure model and
we have exemplified two protocols, respectively based on
a “graceful” switching rollforward mechanism and a fast
rollback strategy. We have described the experimental results
for the rollforward protocol, showing how the performance
behavior of the parallel computation performed by the source
ParMod operation influences the overhead induced by the
protocol.

In our next research works we will provide experimental
results also for the generic rollback protocol. Especially for
such class of reconfiguration protocols optimizations are cer-
tainly possible, as the possibility to start the computation of
the T'p task set from partially computed results instead from
the beginning. The applicability of such optimizations, which
certainly depend on the specific pair of source and target
operations, will be investigated in our future works.

REFERENCES

[1] V. Hingne, A. Joshi, T. Finin, H. Kargupta, and E. Houstis, “Towards
a pervasive grid,” in IPDPS ’03: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing. Washington, DC,
USA: IEEE Computer Society, 2003, p. 207.2.

T. Priol and M. Vanneschi, Towards Next Generation Grids: Proceedings

of the CoreGRID Symposium 2007. Springer Publishing Company,

Incorporated, 2007.

[3] B. D. Noble and M. Satyanarayanan, “Experience with adaptive mobile
applications in odyssey,” Mob. Netw. Appl., vol. 4, no. 4, pp. 245-254,
1999.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project aura:
Toward distraction-free pervasive computing,” IEEE Perv. Comp., vol. 1,
no. 2, pp. 22-31, 2002.

[S] C. Bertolli, D. Buono, S. Lametti, G. Mencagli, M. Meneghin, A. Pas-
cucci, and M. Vanneschi, “A programming model for high-performance
adaptive applications on pervasive mobile grids,” in Proceeding of the
21st TASTED International Conference on Parallel and Distributed
Computing and Systems, November 2009, pp. 38-54.

[6] C. Bertolli, G. Mencagli, and M. Vanneschi, “A cost model for
autonomic reconfigurations in high-performance pervasive applications,”
in Proceedings of the 4th ACM International Workshop on Context-
Awareness for Self-Managing Systems, ser. CASEMANS ’10. New
York, NY, USA: ACM, 2010, pp. 3:20-3:29. [Online]. Available:
http://doi.acm.org/10.1145/1858367.1858370

[71 R. D. Blumofe and P. A. Lisiecki, “Adaptive and reliable parallel
computing on networks of workstations,” in ATEC '97: Proceedings
of the annual conference on USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 1997, pp. 10-10.

[8] T. Desell, K. E. Maghraoui, and C. A. Varela, “Malleable applications
for scalable high performance computing,” Cluster Computing, vol. 10,
no. 3, pp. 323-337, 2007.

[9]1 M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto

for skeletal parallel programming,” Parallel Comput., vol. 30, no. 3, pp.

389-406, 2004.

C. Bertolli, D. Buono, G. Mencagli, and M. Vanneschi, “Expressing

adaptivity and context-awareness in the assistant programming model,”

in Procs. of the Third Intl. Conf. on Autonomic Comp. and Comm. Syst.,

vol. 23, September 2009, pp. 32-47.

Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: data structures

for parallel computing,” ACM Trans. on Progr. Lang. and Syst., vol. 11,

no. 4, pp. 598-632, 1989.

C. Bertolli, G. Mencagli, and M. Vanneschi, “Adaptivity in risk and

emergency management applications on pervasive grids,” in ISPAN '09:

Proceedings of the 2009 10th International Symposium on Pervasive

Systems, Algorithms, and Networks. — Washington, DC, USA: IEEE

Computer Society, 2009, pp. 550-555.

[2

(10]

[11]

[12]

2126

