
ACM 978-1-4503-0062-9/10/06/...$10.00”

Resource Discovery Support for Time-Critical Adaptive
Applications

Carlo Bertolli and
Daniele Buono

Dept. of Computer Science
University of Pisa, Italy
{bertolli,d.buono}

@di.unipi.it

Gabriele Mencagli and
Massimo Torquati

Dept. of Computer Science
University of Pisa, Italy
{mencagli,torquati}

@di.unipi.it
Marco Vanneschi

Dept. of Computer Science
University of Pisa, Italy

vannesch@di.unipi.it

Matteo Mordacchini and
Franco Maria Nardini

ISTI-CNR, Pisa, Italy
{m.mordacchini,f.nardini}

@isti.cnr.it

ABSTRACT
Several complex and time-critical applications require the
existence of novel distributed and dynamical platforms com-
posed of a variety of fixed and mobile processing nodes and
networks. Notable examples of such applications are cri-
sis and emergency management and natural phenomenon
prediction. In this scenario we need the development of ap-
plications able to adapt their behavior according to the dy-
namical platform conditions, such as the presence of specific
classes of computing resources and the actual network avail-
ability. For these reasons such adaptive applications need to
interact with a fast and reliable resource discovery support,
which ensures required response times by means of an high-
degree of reconfigurability and selectivity. In this paper we
present an integrated approach between our programming
model for distributed adaptive time-critical computations
and a suitable resource discovery support.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—Distributed applications.

General Terms
Design, Experimentation, Performance.

Keywords
Autonomic Computing, High-Performance Computing, Per-
vasive Grid, Resource Discovery.
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1. INTRODUCTION
Over the past few years Grid Computing has emerged as

the dominant paradigm for wide-area distributed comput-
ing. However, recent technological advances in computing
and in particular in communication technologies and the
proliferation of pervasive systems are leading to the emer-
gence of a new generation of applications that use context
information as an integral part of the application manage-
ment, to optimize and dynamically adapt the cooperation of
the application software components. Notable examples of
such applications are emergency management, natural phe-
nomenon prediction, homeland security and i-mobility.

The abstract platform on which this kind of applications
are executed is composed of a variety of fixed and mobile
nodes, interconnected through multiple wireless and wired
network technologies. Such heterogeneous resources are char-
acterized by different and highly variable levels of availabil-
ity (e.g. they can dynamically change their location and
presence) and by different capabilities (e.g. memory and
processing capacity and their performance). In this case the
term context represents the actual conditions of both the
surrounding environment and the computing and commu-
nication platform. In this scenario, fixed and mobile nodes
(e.g. PDA, wearable devices, smart-phones) and networks
must be able to capillary provide users with the necessary
services in different processing and connectivity conditions.

The Pervasive Grid paradigm [8] implies the development,
deployment, execution and management of applications that,
in general, are dynamical in nature. Dynamicity concerns
the resource discovery process (both for processing nodes
and software components) and the deployment and compo-
sition of the most suitable versions of software components.
The main objective is to satisfy the needed Quality of Service
(QoS): i.e. a set of metrics reflecting the experienced behav-
ior of an application such as its memory occupation, battery
consumption, the estimated performance as well as the user
degree of satisfaction, e.g. the precision of computed re-
sults. The specification and requirements of this QoS itself
are varying dynamically, according to the information pro-
duced by sensors and services, as well as according to the
monitored state and performance of networks and nodes.
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It is clear that Pervasive Grid applications must be char-
acterized by an adaptive behavior in order to efficiently deal
with highly variable QoS requirements and with the dy-
namicity of the surrounding execution platform. Adaptivity
means that the application must be able to identify specific
conditions which require the execution of proper application
reconfiguration activities: e.g. some non-functional applica-
tion parameters can be modified, such as its memory occu-
pation, its performance and its battery consumption. In a
very heterogeneous environment, such as a Pervasive Grid,
the relevant differences between the available processing re-
sources can lead to more general application reconfigura-
tions: we can provide a set of different versions of the same
software component, each one suitable for specific context
situations (e.g. mapping onto new available and discovered
computing resources or when some network conditions oc-
cur). In this case a crucial issue is how to efficiently discover
the presence of new available processing nodes and how to
efficiently find and deploy the most-suitable version of a spe-
cific application component on these discovered resources.

In time-critical scenarios, such as emergency management,
the resource discovery phase plays a central role. Finding
computing resources and software components in a fast, pre-
dictable and reliable way is an unavoidable requirement in
order to exploit an acceptable overhead for the application
reconfiguration activities. In this paper we present an in-
tegrated approach between resource discovery methodolo-
gies and a programming model for high-performance adap-
tive application for Pervasive Grids. Our focus is mainly
based on the development of critical compute-intensive ap-
plications which require efficient and configurable run-time
mechanisms for exploiting application adaptivity.

This paper is organized as follows. In Section 2 some
related works concerning adaptive systems and resource dis-
covery methodologies are introduced. In Section 3 a specific
time-critical Pervasive Grid application is presented: a sys-
tem for flood emergency management. In Section 4 a pro-
gramming model for high-performance adaptive applications
is described focusing on the interaction with the resource
discovery phase. In Section 5 the resource discovery run-
time support is introduced and, finally, in Section 6 some
first experiments are described which have been useful for
evaluating our approach.

2. RELATED WORK
Adaptivity has been introduced for mobile pervasive ap-

plications by exploiting the concept of context [2]. For in-
stance, in Odyssey [7] an operating system is responsible for
monitoring the resource utilization. Significant changes in
the resource status are notified to applications, which adapt
their execution quality to the new execution environment.

High-performance for pervasive applications is introduced
in [6]. Anyway, in this work high-performance computations
are executed on centralized servers, while mobile nodes are
only demanded to result collection. Several research works
are focused on adaptivity for parallel programs in grid envi-
ronments. In [1] it is shown how a hierarchical management
can be defined in the case component-based applications are
developed according to well-known parallelism paradigms.

Many resource discovery solutions have been investigated
for grid platforms and for pervasive heterogeneous scenar-
ios. Interesting approaches are related to the distribution
and sharing of resource information across federated reg-
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Figure 1: Logical scheme of a Pervasive Grid for
flood emergencies.

istries (i.e. distributed approaches). Typically these sys-
tems are built on Peer-to-Peer technologies as in Schmidt
and Parashar [9]: they present a P2P indexing system and
associated P2P storage that supports large-scale, decentral-
ized and real-time search capabilities. In Li et al. [5] the
authors use a Chord P2P protocol as overlay, consisting of
Service Peers (SP). Each SP is mapped onto several Logi-
cal Machines (different machines corresponding to the same
hardware). Each Logical Machine maintains the necessary
interfaces to map Web Services onto the P2P network.

3. PERVASIVE GRID SCENARIO
We consider a fluvial flood prevention system whose Per-

vasive Grid infrastructure is depicted in Figure 1. It exploits
a large number of sensors spread across the river, moni-
toring the water level and other environmental parameters.
During “normal“ situation those parameters are periodically
acquired and used by a forecasting model, which is a time-
critical compute-intensive processing. During the emergency
itself, shot-term predictions for a limited area of the river are
also required. In this scenario a human operator could ask
the execution of the model for a specific river area. In “nor-
mal” situations, the forecasting processing is executed on a
remote cluster architecture, so we imagine a network infras-
tructure made of dedicated links (wireless and wired) be-
tween the cluster and mobile devices geographically spread
along the river basin. In critical situations the network con-
nectivity with the central servers could be down or unreli-
able. To manage this potential crisis in real-time, we can
execute the forecasting model on a set of decentralized re-
sources whose interconnection is currently reliable. Thus,
the logical interconnection structure of the application has
to be mapped onto the surrounding physical infrastructure
in the most efficient way, to make it possible the fastest and
most reliable prediction with the currently available nodes.
Therefore the application must be designed with several lev-
els of adaptivity, to be useful both on normal and critical
situations, and on a broad and dynamical range of devices.

Just limiting to the above scenario, it is clear that there is
a complex problem in dynamical allocation of software com-
ponents to processing and communication resources. Some
resources may have specific constraints in terms of storage,
processing power and power consumption: the same version
of the software components may be not suitable for them,
or even may be impossible to run on them. Therefore the
application needs an updated view of the execution environ-
ment, in order to choose the best component allocation over
the available nodes. Historically, especially in grid environ-
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ments, this part of the application has been exploited by a
resource discovery support or service.

Though many research efforts have been performed, classi-
cal grid approaches are not suitable in a very dynamical and
heterogeneous environments as Pervasive Grids. We started
from a previous work on resource discovery algorithms [4],
to make them suitable for time-critical applications charac-
terized by strict real-time constraints. As a consequence,
a key-issue is the development of resource discovery mecha-
nisms featuring predictable and settable response times. For
instance, in emergency management systems we are inter-
ested in quick responses by the resource discovery service,
even at the cost of loosing some levels of accuracy. The
trade off between accuracy and fast responsiveness, in find-
ing resources within a very heterogeneous and dynamical
environment, is not an easy task to solve.

4. THE ASSISTANT PROGRAMMING
MODEL

Our evaluation framework for the development of high-
performance adaptive applications is the ASSISTANT pro-
gramming model [3]. In ASSISTANT an adaptive appli-
cation is described as a graph of distributed cooperating
software components, each one exploiting a possible high-
performance computation expressed by using well-known par-
allelism schemes (i.e. the Structured Parallel Programming
approach as in our previous work [11]). An ASSISTANT
component is also a complete high-performance, adaptive
and context-aware unit, so it also exploits its own manage-
ment and context logics in order to express an adaptive be-
havior in response to environmental and platform changes.

Referring to the emergency management application pre-
sented in Section 3, an adaptive component is responsible for
executing the flood forecasting model characterized by spe-
cific performance constraints. As stated before, this part of
the application could be executed on very different resources,
depending on the current conditions of the Pervasive Grid
platform. For obtaining the required performance, in the
model solving phase, we have to use different sequential al-
gorithms and different parallelization techniques, depending
on the hardware on which it is currently executed. This
means that the programmer must specify different versions
of the single component, that will perform better on the
various available and discovered computing resources.

Obviously, the alternative versions of the same component
have different but compatible semantics: i.e. they can ex-
ploit different algorithms, different parallelization schemes
or optimizations, but preserving the component interfaces
in such a way that the selection of a different version does
not modify the behavior of the global application. Of course
only a specific version of a component is selected for the ex-
ecution, according to the actual context conditions and the
adaptation strategy performed by its management logic.

As depicted in Figure 2 ASSISTANT features proper pro-
gramming constructs to define, for each application compo-
nent, its adaptive behavior by expressing:

• Computations: this represents all the possible ver-
sions performed by the component. One of them can
be selected for the execution according to the current
context conditions (e.g. QoS measurements and differ-
ent availability of computing and network resources);

• Manager: it is responsible for executing the adap-

tation strategies performed to adapt the component
behavior in response to specific events;

• Context: this includes all the aspects which link the
module behavior with the surrounding context. Sen-
sors, monitoring services and in general context in-
terfaces can generate events that are received by the
component. This information can be utilized to trig-
ger specific reconfigurations according to the exploited
management strategy.

In many time-critical application, like emergency manage-
ment, we need to adapt the application behavior in order to
respect and maintain a user-defined QoS level, e.g. we could
require a minimum throughput for the execution of a parallel
computation like the flood forecasting model. For this rea-
son we can exploit proper performance models of well-known
parallelization schemes (e.g. a task-farm or a data-parallel
schemes) in such a way as to have a reasonable expectation
of the performance in function of specific parameters (e.g.
the execution time of a sequential code and the communica-
tion time between different processes).

In response to platform changes, we need to modify the
allocation of the application components over the physical
nodes, i.e. changing the parallelism degree or, if it is neces-
sary, to completely deploy a different version of the same
component on a specific set of discovered computing re-
sources. In this phase the Manager cooperates with a re-
source discovery service to obtain a list of nodes that could
be used for the next configuration. From our point of view
this interaction is not only limited to the deployment phase.
Resource information likes network latencies, energy levels,
number of available nodes can be continuously monitored
and acquired by the Manager of each component, in order
to dynamically instantiate the performance model parame-
ters in such a way as to maintain an updated view of the
surrounding execution platform. For these reasons the in-
teraction with a distributed resource discovery service is a
key-point in our approach, both for component deployment
reasons but also for updating the adaptation strategies of
each application component.

5. RESOURCE DISCOVERY SERVICE
In our approach the resource discovery service must be

part of the ASSISTANT run-time support running on each
device of the Pervasive Grid. It uses a distributed reposi-
tory containing all the information regarding the available
resources. Figure 2 shows how the resource discovery ser-
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Figure 2: Resource discovery interaction with an
ASSISTANT adaptive component.

vice is internally structured. It consists of two main parts:
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i) a Discovery and Ranking Engine (DRE) that acts as an
“intelligent” interface to Managers, and ii) a P2P meta-data
index storing all the resource information.

The DRE implements the provided interfaces for Man-
agers to use the resource discovery service, which works in
a flexible, configurable and fast way. Efficiency is an impor-
tant feature due to the importance of information provision-
ing during normal or emergency situations. The DRE en-
gine has been implemented to manage an XML description
of the resources by indexing their features. In this approach
resource is a general term which corresponds to hardware
computing resources but also software application compo-
nents. For this reason, each resource has two main features:
(i) functional, and (ii) non-functional parameters. Func-
tional features are basically for software resources, i.e. the
name of the service and a short textual description of the
service features. Non-functional ones consist in QoS param-
eters or other properties related to a computing resource.
Functional and non-functional parameters are stated in a re-
source description shared through the distributed resource
repository. Descriptions use the XML language to enable a
portable representation of resources.

The DRE [4] has been developed using Information Re-
trieval techniques to enable efficiency over big indexes. The
Vector Space Model consists in representing an object as a
vector in Rn, where each dimension corresponds to a sepa-
rate term. If a term occurs in the object, its value in the
corresponding vector entry is non-zero. Resource descrip-
tions are modeled as vectors in Rn, where n is the number
of possible terms. For simplicity we consider only unit vec-
tors. The normalization is done in a way that all the vector
coordinates will range between 0 and 1/n.

DRE uses a well-known Information Retrieval similarity
function called cosine metric. Given a query q and a set
of resources S, the equation in (1) measures the similarity
degree between the query and the resource. By operating
in this way the DRE is able both to find resources on the
Pervasive Grid by means of the P2P index, and to rank
the obtained resources. Managers asking for a particular
resource will be provided with a list of resources similar to
what they have required.

sim (q, s ∈ S) =

nX
i=1

qisi (1)

The P2P index relies on a Voronoi-based overlay network
[5]. In this network, objects are mapped using their fea-
tures as coordinates in the space. The space is divided in
regions using the Voronoi tessellation technique. Each peer
is assigned to a different region and is responsible for the
points falling into it. Each point of the space is assigned to
the closest peer according to some notion of distance. The
set of points that are assigned to a peer pi constitutes the
cell of pi. If two cells are adjacent, their related peers are
linked. The resulting network is also called the Delaunay
triangulation of the objects. The system does not have any
a-priori knowledge of the topology like for Pervasive Grid
platforms. Thus, it can be adapted to different dynami-
cal situations and scenarios. Since objects with similar at-
tributes are close in the network, data locality is preserved
and can be used to find all/some objects that are located into
a region, also called Area of Interest (AoI). Moreover, local-
ity constitutes an advantage for fault tolerance, e.g. with
respect to the “classical” Distributed-Hash-Table based P2P

approaches, since object insertion/removal perturbs only the
neighborhood of the object. As a further advantage, the
routing mechanism of Voronoi networks makes it possible to
reach the requested area even if the network contains some
”wholes”, i.e. regions with disconnected or malfunctioning
peers. As a consequence we think that a Voronoi approach
is a suitable solution for Pervasive Grid platforms.

6. TEST RESULTS
In the fluvial flood management application described in

Section 3, the most critical part is the flood forecasting
model, that involves the numerical resolution of a number
of partial differential equations. In many approaches (like
MIKE 21 [10]) this phase requires the resolution of a large
sequence of tridiagonal linear systems whose size determines
the forecast precision. In this paper we limit to the tridiag-
onal system resolution, which is the most compute-intensive
processing of the overall forecasting model.

In this experiment our objective is to respect a QoS con-
straint for the service time of the tridiagonal solver, in order
to simulate a real case of emergency where an human oper-
ator requires a short-term forecast for a limited area. Exist-
ing parallel techniques for solving tridiagonal systems make
it possible the achievement of reasonable service times in a
scalable manner. In this example we select the Cyclic Reduc-
tion algorithm providing different parallelization schemes
used according to different resource availability. We consider
the presence of different classes of computing resources:

• Low-end interface node: a multicore IBM Cell pro-
cessor, with six cores and 256 MB of main memory,
which interconnects mobile devices with a centralized
architecture;

• High-end Mobile nodes: in our tests we have used
a set of PDAs with 300 Mhz ARM processor and 64
MB of main memory;

• Low-end Mobile nodes: a set of PDAs equipped
with a 300Mhz ARM processor and a limited amount
of main memory (i.e. 16MB).

For brevity we only consider the scenario in which discovered
mobile resources are utilized. During the development of
the alternative versions of the forecasting component, we are
interested in the memory occupation which must be different
depending on the resources selected for the execution. For
this reason we have developed two different parallel task-
farm versions: the first one exploits an higher throughput
but with a larger memory occupation; the second one is
characterized by a lower throughput but with a more limited
memory utilization.

On the interface node we can solve up to six systems si-
multaneously, so we must reserve space in main memory for
the resolution of six tridiagonal systems; unfortunately the
faster version does not fit in the main memory, so we have to
use the slower one which requires a less memory utilization.
Memory occupation is also important for the mobile nodes.
In this case the parallelism degree of the task-farm scheme
is the number of utilized mobile nodes, each one solving
the systems one at a time only. Therefore, PDAs with 64
MB of main memory can execute the faster version, while
for the mobile nodes equipped with only 16 MB we have
to use the slower version. Figure 3 shows how important
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Figure 4: Number of hops for the P2P index to ob-
tain a response with several levels of selectivity.

is a good knowledge of the current execution environment:
having more high-end PDAs, or an unloaded interface node
can change the service time significantly, and allows us to
remain under the required QoS level (i.e. in the example a
specific maximum threshold for the average service time).

In this experiment we are interested in dynamically dis-
cover computing resources. In Figure 4 is reported our pre-
liminary study on the P2P index performance, presenting
the number of hops required to discover nodes on the over-
lay network. The selectivity level represents the amount of
P2P network covered by the query. With an higher selec-
tivity we can obtain better results, but at the cost of more
hops on the network and thus a slower response time. This
means the Manager can require faster response times from
the RD service at the cost of lower result quality by chang-
ing the selectivity level. Another important point is that the
number of hops is limited (10-30 with ten thousand nodes);
in our experiments using a 802.11n Wi-Fi network we have
a point-to-point transfer delay of 0.06 seconds for 1 MB of
data. Indeed the P2P traffic for a query is much lesser than 1
MB of data, so we can estimate a response time of less than
1 second for 15-30 hops, and thus a fast enough response
time for our emergency scenario.

7. CONCLUSIONS AND FUTURE WORKS
In this paper we have shown the importance of predictable

and limited response times for each part of the system,
especially the resource discovery service for adaptive and
time-critical applications. From our preliminary results the

Voronoi-based P2P index exploits all the required features:
high-performance and, more important, a reconfigurable se-
lectivity level to adjust the query response times. We are
working on a better integration of this service in our AS-
SISTANT programming model, in particular we plan to use
the resource discovery service not only for finding hardware
resources, on which the application components could be
deployed, but also the software components themselves that
can be found on a distributed remote software repository.
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